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1 Introduction
Non-Newtonian calculus, which is used in many

fields such as engineering, mathematics, finance, eco-
nomics, medicine and biomedicine, was developed
between 1967 and 1970 as an alternative to the classi-
cal analysis of Newton and Leibnitz, [1, 2]. The book
’Non-Newtonian Calculus’, which forms the basis of
non-Newtonian calculus, was published in 1972, [3].
The derivative and integral were investigated in the
metacalculus, [4]. Geometric calculus and their appli-
cations were investigated in [5]. Some basic topolog-
ical properties of the real non-Newtonian axis were
investigated in [6]. The non-Newtonian Lebesgue
measure for non-Newtonian open sets was defined in
[7]. Finally, the non-Newtonian measure for closed
non-Newtonian sets was defined and some related
theorems were given in [8]. For more details see,
[9],[10],[11],[12],[13],[14],[15],[16],[17],[18],[19],
[20].

Let ν be a generator, which means that ν is a bijec-
tion function fromR to a subsetA ofR. Let ṗ, q̇ ∈ A.
Then the ν− arithmetic is defined as follows;

ν − addition ṗ+̇q̇ = ν{ν−1(ṗ) + ν−1(q̇)}
ν − subtraction ṗ−̇q̇ = ν{ν−1(ṗ)− ν−1(q̇)}
ν − multiplicative ṗ×̇q̇ = ν{ν−1(ṗ)× ν−1(q̇)}
ν − division ṗ/̇q̇ = ν{ν−1(ṗ)/ν−1(q̇)}
(ν−1(q̇) ̸= 0)
ν − order ṗ≤̇q̇ ⇔ ν−1(ṗ) ≤ ν−1(q̇)

The set of ν−integers is

Zν = Z(N) = . . . , ν(−1), ν(0), ν(1), . . . .

The set Rν = R(N) = {ν(a) : a ∈ R} is called
the set of non-Newtonian real numbers.

The absolute value of non-Newtonian number ȧ ∈
A ⊂ Rν is denoted by |ȧ|N and define as follows;

|ȧ|ν =

 ȧ , ȧ>̇ν(0)
ν(0) , ȧ = ν(0)
ν(0)−̇ȧ , ȧ<̇ν(0)

Accordingly,
√
ȧ2N

N
= |ȧ|N = ν

{
|ν−1(ȧ)|

}
is written for each u̇ in the set A ⊂ Rν , [21].

Definition 1. The non-Newtonian outer measure of
a non-empty ν−bounded set K is the greatest lower
bound of the measures of all ν−bounded, ν−open
sets containing the set K. So it is defined by

m∗
NK =ν inf

K⊂G
{mNG} ,

[22].

Definition 2. The non-Newtonian interior measure of
a nonempty ν−bounded set K is the smallest upper
bound on the measures of all ν−closed sets contained
in the set K. So it is defined by

m∗NK =ν sup
F⊂K

{mNF} ,

[22].

Theorem 1. Given a ν−bounded set K. If ∆ is a
ν−open set containing the set K, then we have the
following equation;

m∗
NK+̇m∗N

[
CK
∆

]
= mN∆,

[22].
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Definition 3. If the non-Newtonian inner and outer
measure of a ν−-bounded setK are equal, the setK
is called a non-Newtonian Lebesgue-measurable set
or simply the ν−-measurable set, [22].

Theorem 2. If the set K is the ν−measurable set in
Rν , then ν−1(K) is the measurable set in R, [22].

Theorem 3. Given a ν−bounded set E. If the set E
can be written as a combination of finite or countably
infinite sets of pairwise disjoint ν−measurable sets
Ek, then E is ν−measurable and

mNE =ν

∑
k

mNEk

equality is fulfilled, [23].

2 Main Results
In this section, we introduce non-Newtonian

isometry and examine some of its basic proper-
ties. We also give a characterization of the rela-
tionship between real isometry and non-Newtonian
isometry. Finally, we show that the ν−measure of
ν−measurable sets is invariant for every generator
under ν−isometries.

Definition 4. Let φν : Rν → Rν be a function such
that

|φν(x)−̇φν(y)|N = |x−̇y|N
for every x, y ∈ Rν , then the function φν is called a
non-Newtonian isometry or ν−isometry.

Example 1. Let φν : Rν → R+(N) be a ν−isometry
and let the generator ν be the function exp. Hence, we
have∣∣φν(x)−̇φν(y)

∣∣
N

= ν
{∣∣ν−1(φν(x))− ν−1(φν(y))

∣∣}
= exp {|ln(φν(x))− ln(φν(y))|}

= exp
{∣∣∣∣ln φν(x)

φν(y)

∣∣∣∣} .

Also, we can write that∣∣x−̇y
∣∣
N

= ν
{∣∣ν−1(x)− ν−1(y)

∣∣}
= exp {|ln(x)− ln(y)|}

= exp
{∣∣∣∣ln x

y

∣∣∣∣} .

Thus, we get

exp
{∣∣∣∣ln φν(x)

φν(y)

∣∣∣∣} = exp
{∣∣∣∣ln x

y

∣∣∣∣}
and so ∣∣∣∣ln φν(x)

φν(y)

∣∣∣∣ = ∣∣∣∣ln x

y

∣∣∣∣ .

Theorem 4. Let ν : A ⊆ R → Rν be the generator
function and let φν : Rν → Rν be a non-Newtonian
function. If φν is an ν− isometry, then the function
ν−1 ◦ φν ◦ ν is an isometry in A ⊆ R.

Proof. Since the function φν is an ν−isometry, we
have ∣∣φν(x)−̇φν(y)

∣∣
N

=
∣∣x−̇y

∣∣
N
.

Thus, we write

ν
{∣∣ν−1(φν(x))− ν−1(φν(y))

∣∣}
= ν

{∣∣ν−1(x)− ν−1(y)
∣∣}

and∣∣ν−1(φν(x))− ν−1(φν(y))
∣∣ = ∣∣ν−1(x)− ν−1(y)

∣∣ .
This gives∣∣(ν−1 ◦ φν ◦ ν

)
ν−1(x)−

(
ν−1 ◦ φν ◦ ν

)
ν−1(y)

∣∣
=
∣∣ν−1(x)− ν−1(y)

∣∣
which completes the proof.

Theorem 5. Let φν be a ν−isometry. Then, we have
the following properties;

a) If A ⊂ B, then φν(A) ⊂ φν(B),

b) φν

(⋃
k

Ek

)
=
⋃
k

φν(Ek) ,

c) φν

(⋂
k

Ek

)
=
⋂
k

φν(Ek).

d) If E0 is an empty set, then φν(E0) = E0.

Proof. Since φν is a ν−isometry then ν−1 ◦φν ◦ ν is
an isometry.

a) If A ⊂ B, then ν−1(A) ⊂ ν−1(B). Thus, we have

⇒
(
ν−1 ◦ φν ◦ ν

)
(ν−1(A)) ⊂

(
ν−1 ◦ φν ◦ ν

)
(ν−1(B))

⇒
(
ν−1 ◦ φν

)
(A) ⊂

(
ν−1 ◦ φν

)
(B)

⇒ φν(A) ⊂ φν(B).
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b) Since ν−1

(⋃
k

Ek

)
=
⋃
k

ν−1(Ek), then we get

⇒
(
ν−1 ◦ φν ◦ ν

)(
ν−1

(⋃
k

Ek

))
=
⋃
k

(
ν−1 ◦ φν ◦ ν

) (
ν−1(Ek)

)
⇒
(
ν−1 ◦ φν

)(⋃
k

Ek

)
=
⋃
k

(
ν−1 ◦ φν

)
(Ek)

⇒ ν−1

(
φν

(⋃
k

Ek

))
= ν−1

(⋃
k

φν(Ek)

)

⇒ φν

(⋃
k

Ek

)
=
⋃
k

φν(Ek).

c) Since ν−1

(⋂
k

Ek

)
=
⋂
k

ν−1(Ek) and ν−1 ◦φν ◦ν

is an isometry, we have

⇒
(
ν−1 ◦ φν ◦ ν

)(
ν−1

(⋂
k

Ek

))
=
⋂
k

(
ν−1 ◦ φν ◦ ν

) (
ν−1(Ek)

)
⇒
(
ν−1 ◦ φν

)(⋂
k

Ek

)
=
⋂
k

(
ν−1 ◦ φν

)
(Ek)

⇒ ν−1

(
φν

(⋂
k

Ek

))
= ν−1

(⋂
k

φν(Ek)

)

⇒ φν

(⋂
k

Ek

)
=
⋂
k

φν(Ek).

d) Since ν−1 ◦ φν ◦ ν is an isometry, we get

⇒
(
ν−1 ◦ φν ◦ ν

)
(E0) = E0

⇒ φν (ν(E0)) = ν(E0)

⇒ φν(E0) = E0.

Example 2. Consider the geometric arithmetic gen-
erated by the function ν(x) = ex. If φν is a
ν−isometry for x, c ∈ R+, then either

φν(x) = x+̇c = x.c

or
φν(x) = c−̇x =

c

x
.

Proof. Let φν(1) = c. Then for every x,

• If φν(x) = x.c then
|φν(x)−̇φν(1)|N = |x.c−̇c|N

= |ν
{
ν−1(x.c)− ν−1(c)

}
|N

= | exp {lnx} |N
= | exp {lnx− ln 1} |N
= |x−̇1|N

and
• If φν(x) =

c
x then we have

|φν(x)−̇φν(1)|N =
∣∣∣ c
x
−̇c
∣∣∣
N

=
∣∣∣ν {ν−1

( c
x

)
− ν−1(c)

}∣∣∣
N

=

∣∣∣∣exp{ln 1

x

}∣∣∣∣
N

= | exp {ln 1− lnx} |N
= | exp {lnx− ln 1} |N
= |x−̇1|N .

Let define the following function;

φν(x) = x(−1)σ(x)

.c [σ(x) = 0, 1].

Let take x and y such that x ̸= 1,y ̸= 1 and x ̸= y.
Thus, we have

φν(x)−̇φν(y) = x(−1)σ(x)

.c−̇y(−1)σ(y)

.c

= ν
{
ν−1

(
x(−1)σ(x)

.c
)
− ν−1

(
y(−1)σ(y)

.c
)}

= exp
{
ln
(
x(−1)σ(x)

.c
)
− ln

(
y(−1)σ(y)

.c
)}

= exp

{
ln

x(−1)σ(x)

y(−1)σ(y)

}

=
x(−1)σ(x)

y(−1)σ(y)

=

(
x

yp

)(−1)σ(x)

Here, since p = (−1)σ(y)−σ(x), p = −1or1.
By the last equality, we get∣∣∣∣∣

(
x

yp

)(−1)σ(x)
∣∣∣∣∣
N

= |x−̇y|N

and

exp

{∣∣∣∣∣ln
(

x

yp

)(−1)σ(x)
∣∣∣∣∣
}

= exp
{∣∣∣∣(−1)σ(x). ln

x

yp

∣∣∣∣}
= exp

{∣∣∣∣ln x

yp

∣∣∣∣} .
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Also, we have

exp
{∣∣∣∣ln x

yp

∣∣∣∣} = exp
{∣∣∣∣ln x

y

∣∣∣∣}∣∣∣∣ln x

yp

∣∣∣∣ = ∣∣∣∣ln x

y

∣∣∣∣
and so we get

ln
x

yp
= ln

x

y

or
ln

x

yp
= − ln

x

y
.

But the second equality is impossible since

⇒ lnx− ln yp = − lnx+ ln y
⇒ 2 lnx = ln yp + ln y
⇒ lnx2 = ln yp+1.

which gives if p = −1, x = y and if p = 1,
x = y which is a contradiction. Thus; we get

⇒ (−1)σ(y)−σ(x) = 1

⇒ σ(y)− σ(x) = 0

⇒ σ(x) = σ(y)

Therefore, the function σ(x) be as follows;

σ(x) = σ (σ = 0, 1), foreveryx ̸= 1

Finally, since

φν(x) = x(−1)σ .c

and φν(1) = c we get x = 1.

Theorem 6. Let x ∈ Rν and let φν be a ν−isometry.
Then, there are some c ∈ Rν such that

φν(x) = x+̇c

or
φν(x) = c−̇x .

Proof. Since φν is a ν−isometry, then the func-
tion ν−1 ◦ φν ◦ ν is a isometry. Thus, we
have

(
ν−1 ◦ φν ◦ ν

)
(ν−1(x)) = ν−1(x) + d or(

ν−1 ◦ φν ◦ ν
)
(ν−1(x)) = −ν−1(x) + d for some

d ∈ R. Let d = ν−1(c). Then, we get

⇒
(
ν−1 ◦ φν ◦ ν

)
(ν−1(x)) = ν−1(x) + ν−1(c)

⇒
(
ν−1 ◦ φν

)
(x) = ν−1(x) + ν−1(c)

⇒ ν
((
ν−1 ◦ φν

)
(x)
)
= ν

{
ν−1(x) + ν−1(c)

}
⇒ φν(x) = x+̇c

or

⇒
(
ν−1 ◦ φν ◦ ν

)
(ν−1(x)) = −ν−1(x) + ν−1(c)

⇒
(
ν−1 ◦ φν

)
(x) = ν−1(c)− ν−1(x)

⇒ ν
((
ν−1 ◦ φν

)
(x)
)
= ν

{
ν−1(c)− ν−1(x)

}
⇒ φν(x) = c−̇x

which completes the proof.

Theorem 7. If the functionφν is an ν− isometry, then
its inverse is an ν− isometry.

Proof. Since φν is a ν−isometry, then ν−1 ◦ φν ◦ ν
is an isometry. Since the inverse of isometry is also
isometry;

(
ν−1 ◦ φν ◦ ν

)−1
= ν−1 ◦ φ−1

ν ◦ ν is an
isometry. Thus, we get φ−1

ν is a ν−isometry.

Theorem 8. Under a ν−isometry the following is
true;

a) Every ν−open interval maps to an ν−-open inter-
val of the same measure, and the endpoints of the im-
age interval are images of the endpoints of the origi-
nal interval.

b) The image of a ν−-bounded set is a ν−-bounded
set.

Proof.

a) Let ∆ = (a, b)N be a ν−open inter-
val. Let φν(x) = x+̇c. Then, we have
φν(∆) = (a+̇c, b+̇c)N . Thus, we get

mNφν(∆) = mN (a+̇c, b+̇c)N

= (b+̇c)−̇(a+̇c)

= ν{ν−1(b+̇c)− ν−1(a+̇c)}
= ν{ν−1(ν(ν−1(b) + ν−1(c)))

− ν−1(ν(ν−1(b) + ν−1(c)))}
= ν{ν−1(b) + ν−1(c)− ν−1(a)− ν−1(c)}
= ν{ν−1(b)− ν−1(a)}
= b−̇a

= mn∆.

Let φν(x) = c−̇x. Then φν(∆) = (c−̇b, c−̇a)N .
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thus, we get

mNφν(∆) = mN (c−̇b, c−̇a)N

= (c−̇a)−̇(c−̇b)

= ν{ν−1(c−̇a)− ν−1(c−̇b)}
= ν{ν−1(ν(ν−1(c)− ν−1(a)))

− ν−1(ν(ν−1(c)− ν−1(b)))}
= ν{ν−1(c)− ν−1(a)− ν−1(c) + ν−1(b)}
= ν{ν−1(b)− ν−1(a)}
= b−̇a

= mn∆.

In both cases, we get

mNφν(∆) = b−̇a = mn∆ .

b) Let E be a ν−bounded set and let ∆ be a ν−open
interval contaning the set E. Then, we have

φν(E) ⊂ φν(∆)

and so the set φν(E) is a ν−bounded. Indeed, Since
E is ν−bounded, we have |x|N <̇k for every x ∈ E.
Then, for every y ∈ φν(E), if φν(x) = x+̇c, then

|y|N = |x+̇c|N <̇|x|N +̇|c|N < k+̇|c|N

and if φν(x) = c−̇x, then

|y|N = |c−̇x|N = |x−̇c|N <̇|x|N +̇|c|N < k+̇|c|N .

which gives that the set φν(E) is ν−bounded.

Theorem 9. Under a ν−isometry the following prop-
erties are true;
a) The image of a ν−-closed set is a ν−-closed set.
b) The image of a ν−-open set is a ν−-open set.

Proof.
a) Let φν(F ) be the image of ν−closed set F . Let y0
be a ν−limit point of the set φν(F ) and let yn be a
sequence such that

ν lim yn = y0 yn ∈ φν(fν).

Also, let define

x0 = φ−1
ν (y0), xn = φ−1

ν (yn)

and so (xn) ⊂ F .
Sinceφν is a ν−isometry,φ−1

ν is a ν−isometry. Thus,
we have

⇒ |xn−̇x0|N = |φ−1
ν (yn)−̇φ−1

ν (y0)|N
⇒ |xn−̇x0|N = |yn−̇y0|N

and so
xn

ν→ x0.

Since F is a ν−closed, x0 ∈ F and thus

y0 = φν(x0) ∈ φν(F ).

which completes the proof.
b) Let G be a ν−open set and let define

F = Gc.

Then, F is a ν−closed set and

G ∪ F = Rν , G ∩ F = ∅.

Thus, we get

φν(G ∪ fν) = φν(Rν), φν(G ∩ fν) = φν(∅)

φν(G) ∪ φν(fν) = Rν , φν(G) ∩ φν(fν) = ∅.
which shows that φν(G) is complemet of φν(F )
ν−closed. This completes the proof.

Theorem 10. The ν−measure of a ν−bounded open
set is invariant under all ν−isometries.
Proof. LetG be a ν−bounded open set. Then, φν(G)
is a ν−bounded open set. Let δk = (ak, bk)N (k =
1, 2, · · · ) and let define

G =
⋃
k

δk.

Thus, we have

φν(G) = φν

(⋃
k

δk

)
=
⋃
k

φν(δk).

Therefore, we get

mNφν(G) =N

∑
k

mN (φν(δk))

=N

∑
k

mNφν((ak, bk)N )

=N

∑
k

bk−̇ak

=N

∑
k

mNδk

= mNG.

This gives that

mNφν(G) =N

∑
k

mNφν(δk)

=N

∑
k

mNδk

= mNG.
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Theorem 11. ν−isometries do not change the
ν−outer and ν−inner measures of a ν−bounded set.
Proof.
a) Let E be a ν−bounded set. For every ϵ>̇0̇, there is
a ν−bounded open set G such that

G ⊂ E, mNG<̇m∗
NE+̇ϵ.

Then, φν(G) is ν−bounded open set containing the
set φν(E). Thus, we get

m∗
Nφν(E)≤̇mNφν(G) = mNG<̇m∗

NE+̇ϵ

which gives
m∗

Nφν(E)≤̇m∗
NE.

This shows that the ν−outer measure of a ν−-
bounded set does not increase under a ν−isometry.
Otherwise, the ν−inverse isometry is non-decreasing
since it leads to an increase in the ν−outer measure.
Therefore we get

m∗
Nφν(E) = m∗

NE.

b) Let ∆ be a ν−open interval contaning E. Then,
φν(∆) is a ν−open interval contaning φν(E). Let

A = CE
∆.

Since
E ∪A = ∆, E ∩A = ∅

we have
φν(E) ∪ φν(A) = φν(∆), φν(E) ∩ φν(A) = ∅.
Thus, we write

m∗
Nφν(A)+̇m∗Nφν(E) = mNφν(∆)

and so
m∗

NA+̇m∗Nφν(E) = mN∆

This shows that
m∗Nφν(E) = mN∆−̇m∗

N

[
CE
∆

]
.

Finally, we get

⇒ m∗Nφν(E) = m∗
N

[
CE
∆

]
+̇m∗NE−̇m∗

N

[
CE
∆

]
⇒ m∗Nφν(E) = m∗NE.

3 Conclusion
In this article, we have introduced ν−isometry and

gave some of its properties using examples. First, we
showed that the necessary and sufficient condition for
the function φν to be a ν−isometry is that the func-
tion ν−1 ◦ φν ◦ ν is a real isometry. Using this the-
orem, we showed that the inverse of a ν−isometry is
a ν−isometry. Finally, we show that the ν−measure
of ν−measurable sets is invariant for every generator
under ν−isometries.
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