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Abstract: - Let α > 1. The α-absolute convergence with speed, where the speed is defined by a monotonically
increasing positive sequence µ, has been studied in the present paper. Let lµα be the set of all α-absolutely µ-
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exists an irregular matrix, which is regular on the subspace X of c.
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1 Introduction
Let X,Y be two sequence spaces and A = (ank)
be an arbitrary matrix with real or complex entries.
Throughout this paper we assume that indices and
summation indices run from 0 to∞ unless otherwise
specified. If for each x = (xk) ∈ X the series

Anx :=
∑
k

ankxk

converge and the sequence Ax = (Anx) belongs to
Y, we say that A transformsX into Y . By (X,Y ) we
denote the set of all matrices, which transformX into
Y . Let ω be the set of all real or complex valued se-
quences. Further we need the following well-known
sub-spaces of ω: c - the space of all convergent se-
quences, c0 - the space of all sequences converging to
zero, l∞ - the space of all bounded sequences, and

lα := {x = (xn) :
∑
n

|xn|α < ∞}, α > 0.

For estimation and comparison of speeds of conver-
gence of sequences are used different methods, see,
for example, [1], [2], [3], [4], [5], [6], [7], [8]. We
use the method, introduced in [6] and [7] (see also
[1]). Let λ := (λk) be a positive (i.e.; λk > 0 for
every k) monotonically increasing sequence. Follow-
ing [6] and [7] (see also [1]), a convergent sequence
x = (xk) with

lim
k

xk := s and vk = λk (xk − s) (1)

is called bounded with the speed λ (shortly, λ-
bounded) if vk = O (1) (or (vk) ∈ l∞), and conver-
gent with the speed λ (shortly, λ-convergent) if the
finite limit

lim
k

vk := b

exists (or (vk) ∈ c). In the following we define the
notion of α-absolute convergence with speed.
Definition 1. We say that a convergent sequence
x = (xk) with the finite limit s is called α-absolutely
convergent with speed λ (or shortly, α-absolutely λ-
convergent), if (vk) ∈ lα. For α = 1 a sequence x
is said to be absolutely convergent with the speed λ
(shortly, absolutely λ-convergent).

We denote the set of all λ-bounded sequences by
lλ∞, the set of all λ-convergent sequences by cλ, and
the set of all α-absolutely λ-convergent sequences by
lλα. Moreover, let

cλ0 := {x = (xk) : x ∈ cλ and lim
k

λk(xk − s) = 0}

and
lλ∞,0 = {x = (xk) : x ∈ lλ∞ ∩ c0}.

It is not difficult to see that

lλα ⊂ cλ0 ⊂ cλ ⊂ lλ∞ ⊂ c, lλ∞,0 ⊂ lλ∞ ⊂ c.

In addition to it, for unbounded sequence λ these in-
clusions are strict. For λk = O (1), we get cλ = lλ∞ =
c.

Let e = (1, 1, ...), ek = (0, ..., 0, 1, 0, ...), where 1
is in the k-th position, and λ−1 = (1/λk). We note
that

e, ek, λ−1 ∈ cλ; e, ek ∈ lλα.

A matrix A is said to be regular if A ∈ (c, c) and
limnAnx = limn xn for every sequence x = (xn) ∈
c.
Definition 2. Let X be a subspace of c; i.e., X ⊆ c.
We say that amatrixA is regular onX , if limnAnx =
limn xn for every sequence x = (xn) ∈ X .
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Let µ := (µn) be another speed of con-
vergence; i.e., a monotonically increasing positive
sequence. Matrix transforms between the sub-
sets of c defined by the speeds λ and µ have
been studied by the authors of the present work
in several papers. For example, in [9] the sets(
lλ∞, cµ

)
,
(
lλ∞, lµ∞,0

)
,
(
lλ∞, cµ0

)
,
(
cλ, lµ∞,0

)
,
(
cλ, cµ0

)
,(

lλ∞,0, l
µ
∞

)
,
(
lλ∞,0, l

µ
∞,0

)
,
(
lλ∞,0, c

µ
)
,
(
lλ∞,0, c

µ
0

)
,(

cλ0 , l
µ
∞

)
,
(
cλ0 , l

µ
∞,0

)
,
(
cλ0 , c

µ
)

and
(
cλ0 , c

µ
0

)
have

been characterized. A short overview on the conver-
gence with speed has been presented in [1].

The boundedness and convergence with speed are
tightly connected with the problems of convergence
acceleration and improvement by matrices. These
problems have been studied by one author of the
present paper (see, for example, [1]), and by sev-
eral other authors; for example, [10], [11], [12], [13],
[14], [15], [16] and [17]. Moreover, in [16] and
[17], the λ-convergence and the λ-boundedness in
abstract spaces, considering instead of a matrix with
real or complex entries a matrix, whose elements are
bounded linear operators from a Banach spaceX into
a Banach space Y , have been studied.

We note that the results connected with con-
vergence, absolute convergence, α-absolute λ-
convergence and boundedness with speed can be
used in several applications. For example, in the
theoretical physics such results can be used for
accelerating the slowly convergent processes, a good
overview of such investigations can be found, for ex-
ample, from the sources [18] and [19]. These results
also have several applications in the approximation
theory. Besides, in [1] such results are used for the
estimation of the order of approximation of Fourier
expansions in Banach spaces.

In the present paper we describe the matrix trans-
forms related to the α-absolute λ-convergence for the
case α > 1, giving the characterization for the sets
(lλ∞, lµα), (cλ, lµα), (cλ0 , lµα), (lλ1 , lµα), and necessary and
sufficient conditions for the regularity of a matrix A
on lλ∞, cλ and cλ0 . Also we will present an example of
irregular matrix, which is regular on cλ0 and on cλ, but
not on lλ∞ for some λ. Moreover, we will prove that
this irregular matrix is regular on cλ0 , on cλ and on lλ∞
for another speed λ.

2 Auxiliary results
For the proof of main results we need some auxiliary
results.
Lemma 1 ([20], p. 44, see also [21], Proposition 12).
A matrix A = (ank) ∈ (c0, c) if and only if

there exists limits lim
n

ank := ak, (2)

∑
k

|ank| = O (1) . (3)

Moreover,
lim
n

Anx =
∑
k

akxk (4)

for every x = (xk) ∈ c0.
Lemma 2 ([20], p. 46-47, see also [21], Proposition
11 or [22], p. 17-19). A matrix A = (ank) ∈ (c, c) if
and only if conditions (2), (3) are satisfied and

there exists τ with lim
n

∑
k

ank := τ. (5)

Moreover, if limk xk = s for x = (xk) ∈ c, then

lim
n

Anx = sτ +
∑
k

(xk − s)ak.

A matrix A is regular if and only if conditions (2), (3)
and (5) are satisfied with ak = 0 and τ = 1.

Lemma 3 ([20], p. 51, see also [21], Proposition 10).
The following statements are equivalent:

(a) A = (ank) ∈ (l∞, c) .
(b) The conditions (2), (3) are satisfied and

lim
n

∑
k

|ank − ak| = 0. (6)

(c) The condition (2) holds and∑
k

|ank| converges uniformly in n. (7)

Moreover, if one of statements (a)-(c) is satisfied, then
the equation (4) holds for every x = (xk) ∈ l∞.
Lemma 4 ([21], Proposition 17 or [22], pp. 25-26).
A matrix A = (ank) ∈ (l1, c) if and only if condition
(2) is satisfied and

ank = O (1) . (8)

Moreover, the equation (4) holds for every x =
(xk) ∈ l1.
Lemma 5 ([21], Proposition 21). A matrix A =
(ank) ∈ (l∞, c0) if and only if

lim
n

∑
k

|ank| = 0.

Lemma 6 ([21], Proposition 22). A matrix A =
(ank) ∈ (c, c0) if and only if conditions (2) and (5)
with ak = 0, τ = 0, and condition (3) are satisfied.
Lemma 7 ([21], Proposition 23). A matrix A =
(ank) ∈ (c0, c0) if and only if condition (2) with
ak = 0, and condition (3) are satisfied.
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Lemma 8 ([21], Proposition 68). A matrix A =
(ank) ∈ (l1, lα) for α > 1 if and only if∑

n

|ank|α = O (1) .

Lemma 9 ([21], Proposition 63). A matrix A =
(ank) ∈ (l∞, lα) = (c, lα) = (c0, lα) for α > 1 if
and only if

∑
n

∣∣∣∣∣∣
∑
k∈K

ank

∣∣∣∣∣∣
α

= O (1)

for every finite subset K of N := {0, 1, 2, ...}, or the
series ∑

n

∣∣∣∣∣∣
∑
k∈K

ank

∣∣∣∣∣∣
α

is convergent for arbitrary subset K∗ of N.

3 Main results
3.1 Matrix transforms into the set lµα
First we prove
Theorem 1. Let λn ̸= O(1). A matrix A = (ank) ∈(
lλ∞, lµα

)
for α > 1 if and only if condition (2) is sat-

isfied, and

Ae = (τn) ∈ lµα, τn := Ane =
∑
k

ank, (9)

∑
k

|ank|
λk

= O(1), (10)

lim
n

∑
k

|ank − ak|
λk

= 0, (11)

∑
n

µα
n

∑
k∈K

ank − ak
λk

α = O(1), (12)

whereK is an arbitrary finite subset of N.

Proof. Necessity. Assume that A ∈
(
lλ∞, lµα

)
. As

e ∈ lλ∞ and ek ∈ lλ∞, then conditions (2) and (9) hold.
Since, from (1) we have

xk =
vk
λk

+ s; s := lim
k

xk, (vk) ∈ lα

for every x := (xk) ∈ lλ∞, it follows that

Anx =
∑
k

ank
λk

vk + sτn. (13)

As (τn) ∈ lµα by (9), then, from (13) we obtain that
the matrix

Aλ :=

(
ank
λk

)
transforms this sequence (vk) ∈ l∞ into c. In ad-
dition, for every sequence (vk) ∈ l∞, the sequence
(vk/λk) ∈ c0. But, for (vk/λk), there exists a conver-
gent sequence x := (xk) with s := limk xk, such that
vk/λk = xk−s. So we have proved that, for every se-
quence (vk) ∈ l∞ there exists a sequence (xk) ∈ lλ∞
such that vk = λk (xk − s). Hence Aλ ∈ (l∞, c).
This implies, by Lemma 3 ((a) and (b)), that condi-
tions (10) and (11) are satisfied, since for Aλ condi-
tions (3) and (6) take correspondingly the forms (10)
and (11), and the finite limit

ϕ := lim
n

Anx =
∑
k

ak
λk

vk + s lim
n

τn

exists for every x ∈ lλ∞. Writing

µn(Anx− ϕ) = µn

∑
k

ank − ak
λk

vk

+sµn(τn − lim
n

τn), (14)

we obtain, by (9), that the matrix Aλ,µ ∈ (l∞, lα),
where

Aλ,µ :=

(
µn

ank − ak
λk

)
.

Hence condition (12) is satisfied by Lemma 9, since
for Aλ,µ ∈ (l∞, lα) the first condition of Lemma 9
takes the form (12).
Sufficiency. Let conditions (2) and (9) - (12) be ful-
filled. Then relation (13) also holds for every x ∈ lλ∞
and (τn) ∈ lµα by (9). Hence, Aλ ∈ (l∞, c), and the
finite limit ϕ exists for every x ∈ lλ∞ by Lemma 3 ((a)
and (b)). Hence relation (14) holds for every x ∈ lλ∞.
As (12) holds, then Aλ,µ ∈ (l∞, lα) by Lemma 9.
Therefore, due to (9), A ∈

(
lλ∞, lµα

)
.

Remark 1. Conditions (10) and (11) can be replaced
by the condition

the series
∑
k

|ank|
λk

converges uniformly in n

(15)
in Theorem 1 by Lemma 3 ((a) and (c)).
Remark 2. If λn = O(1), then a matrixA = (ank) ∈(
lλ∞, lµα

)
for α > 1 if and only if conditions (2),

(9), (10) and (12) are satisfied. Indeed, in this case
(vk) ∈ c0 for every x := (xk) ∈ lλ∞. Hence instead
of Aλ ∈ (l∞, c) we get Aλ ∈ (c0, c). Therefore in-
stead of Lemma 3 ((a) and (b)) we use now Lemma
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1. Moreover, instead of Aλ,µ ∈ (l∞, c) in the present
case Aλ,µ ∈ (c0, lα). As (c0, lα) = (l∞, c), then for
Aλ,µ we can use again Lemma 9 as we did in the proof
of Theorem 1.
Corollary 1. Condition (10) can be replaced by con-
dition ∑

k

|ak|
λk

< ∞ (16)

in Theorem 1.

Proof. It is easy to see that condition (16) follows
from (2) and (10). In the same way, conditions (2),
(11) and (16) imply the validity of (10). Indeed, first
from condition (11) we obtain that

∑
k

|ank − ak|
λk

= O(1). (17)

Since
ank
λk

=
ank − ak

λk
+

ak
λk

,

then ∑
k

|ank|
λk

≤
∑
k

|ank − ak|
λk

+
∑
k

|ak|
λk

.

Moreover, the finite limits ak exist by (2). Hence the
condition (10) is satisfied by (16) and (17).

Theorem 2. A matrix A = (ank) ∈
(
cλ0 , l

µ
α

)
for α >

1 if and only if conditions (2), (9), (10) and (12) are
satisfied.

Proof is similar to the proof of Theorem 1. The
only difference is that now Aλ ∈ (c0, c) and Aλ,µ ∈
(c0, lα). Therefore instead of Lemma 3 ((a) and (b))
we use Lemma 1 (for Aλ,µ ∈ (c0, lα) we use again
Lemma 9 as in the proof of Theorem 1).

Theorem 3. A matrix A = (ank) ∈
(
lλ1 , l

µ
α

)
for α >

1 if and only if conditions (2), (9) are satisfied and

ank
λk

= O(1), (18)

1

λα
k

∑
n

[µn |ank − ak|]α = O(1). (19)

Proof is similar to the proof of Theorem 1. The
only difference is that now Aλ ∈ (l1, c) and Aλ,µ ∈
(l1, lα). Therefore instead of Lemma 3 ((a) and (b))
we use Lemma 4, and instead of Lemma 9 we use
Lemma 8, considering that for Aλ condition (8) takes
the form (18), and for Aλ,µ ∈ (l∞, lα) the condition
of Lemma 8 takes the form (19).

Corollary 2. Condition (18) can be replaced by con-
dition

ak
λk

= O(1) (20)

in Theorem 3.
Proof is similar to the proof of Corollary 1, if to con-
sider that condition (20) follows from (2) and (18),
and condition (19) implies

ank − ak
λk

= O(1).

Theorem 4. A matrix A = (ank) ∈
(
cλ, lµα

)
for α >

1 if and only if conditions (10), (12) are satisfied and

Ae ∈ lµα, Aek ∈ lµα, Aλ−1 ∈ lµα. (21)

Proof. Necessity. Suppose that A = (ank) ∈(
cλ, lµα

)
. As ek ∈ cλ, e ∈ cλ and λ−1 ∈ cλ, then

condition (21) holds. As equality (13) holds for every
x := (xk) ∈ cλ, and the finite limit

τ := lim
n

τn

exists due to Ae ∈ lµα, then the matrix Aλ transforms
this convergent sequence (vk) into c. Similar to the
proof of the necessity of Theorem 1, it is possible to
show that, for every sequence (vk) ∈ c, there exists
a sequence (xk) ∈ cλ such that vk = λk (xk − s).
HenceAλ ∈ (c, c). This implies by Lemma 2 that the
finite limits ak and

aλ := lim
n

∑
k

ank
λk

exist, and that condition (10) is satisfied. With the
help of (13), for everyx ∈ cλ, we canwrite by Lemma
2 that

ϕ := lim
n

Anx = aλb+
∑
k

ak
λk

(vk − b) + τs, (22)

where s := limk xk and b := limk vk. Now, using
(13) and (22), we obtain

µn(Anx− ϕ) = µn

∑
k

ank − ak
λk

(vk − b)

+µn (τn − τ) s+ µn

(∑
k

ank
λk

− aλ
)
b. (23)

As Ae ∈ lµα and Aλ−1 ∈ lµα by (10), then Aλ,µ ∈
(c0, lα). Therefore we can conclude by Lemma 9 that
condition (12) holds.
Sufficiency. Assume that conditions (10), (12) and
(21) are satisfied. First we notice that relation (13)
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holds for every x ∈ cλ and the finite limits ak, τ and
aλ exist by (21). As (10) also holds, then Aλ ∈ (c, c)
by Lemma 2, and therefore relations (22) and (23)
hold for every x ∈ cλ. As condition (12) holds, then
Aλ,µ ∈ (c0, lα) by Lemma 9. Moreover, Ae ∈ lµα and
Aλ−1 ∈ lµα by (21). Thus, A ∈

(
cλ, lµα

)
.

Remark 3. Condition (12) can be replaced by the
condition

∑
n

µα
n

 ∑
k∈K∗

ank − ak
λk

α < ∞ (24)

for arbitrary subset K∗ of N in Theorems 1, 2 and 4
by Lemma 9.
Example 1. Let us consider the Zweier matrix Z1/2,
defined by (ank), where (see [20], p. 14, or [1], p.
3) a00 = 1/2, ank = 1/2 if k = n − 1 or k = n for
n ≥ 1, and ank = 0 otherwise. ThemethodA = Z1/2
is regular (see [1], p. 3). Let λ be defined by

λn := (n+ 1)r, r > 0, (25)

and µ by
µn := (n+ 1)t, t > 0. (26)

Case 1: Z1/2 ∈
(
lλ∞, lµα

)
∩
(
cλ0 , l

µ
α

)
∩
(
cλ, lµα

)
for

α > 1, if r < t − 1/α. For proving it, we show that
all conditions of Theorems 1,2 and 4 hold. It is easy
to see that in this case ak = 0, τ = 1, and

Tn :=
∑
k

|ank|
λk

=
∑
k

ank
λk

.

As

T0 =
1

2λ0
, Tn =

1

2

(
1

λn−1
+

1

λn

)
, n ≥ 1, (27)

then limn Tn = aλ = 0, since λn ̸= O(1). Therefore
conditions (2), (9) - (11) and (21) hold. Also condition
(12) is satisfied. Indeed,

S :=
∑
n

µα
n

∑
k∈K

ank − ak
λk

α

≤ µ0

2λ0
+

1

2α

∞∑
n=1

µα
n

(
1

λn−1
+

1

λn

)α

for every possible K from N by (27). Hence, using
(25) and (26), we obtain

S = O(1)
∞∑
n=1

(n+ 1)rα
1

(n+ 1)tα

= O(1)
∞∑
n=1

1

(n+ 1)(t−r)α
= O(1),

if (t− r)α > 1 or r < t− 1/α. Thus, condition (12)
holds.

Case 2: Z1/2 ∈
(
lλ1 , l

µ
α

)
for α > 1, if r ≤ t. For

proving it, we show that all conditions of Theorem 3
hold. The validity of (2) and (9) are proved in Case
1 of the present example; also it is easy to see that
condition (18) is satisfied. Let

V :=
1

λα
k

∑
n

[µn |ank − ak|]α

=
1

2α
1

λα
k

(
µα
k + µα

k+1

)
.

Hence, using (25) and (26), we obtain

V = O(1)
1

(k + 1)tα
((k + 1)rα + (k + 2)rα)

= O(1)
1

(k + 1)(t−r)α
= O(1),

if r ≤ t. Thus, condition (21) also holds.
In Example 3.1 r can’t be greater than t; i.e.,

µn/λn = O(1). In the following example we con-
sider the case, where µn/λn ̸= O(1) also is possible
for some collection of parameters.
Example 2. Let A = (ank) be a lower triangular
matrix defined by ank = 1/(n+ 1)c, c > 1, and λ, µ
respectively by (25) and (26).

Case 1: A ∈
(
lλ∞, lµα

)
∩
(
cλ0 , l

µ
α

)
∩
(
cλ, lµα

)
for

α > 1, if t > 1 and r < c − 1/α. For proving it, we
show that all conditions of Theorems 1,2 and 4 hold.
It is easy to see that in this case ak = 0,

τn =
n∑

k=0

ank =
1

(n+ 1)c−1
; τ = 0,

since c > 1. Thus conditions (2) and (9) hold. As

Tn =
∑
k

|ank|
λk

=
∑
k

ank
λk

=
1

(n+ 1)c

n∑
k=0

1

(k + 1)t
,

then limn Tn = aλ = 0 (since t > 1). Hence condi-
tions (10), (11) and (21) are satisfied. As

S =
∑
n

µα
n

∑
k∈K

ank − ak
λk

α
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≤
∞∑
n=1

(n+ 1)rα
[

1

(n+ 1)c

n∑
k=0

1

(k + 1)t

]α
for every possibleK from N, then

S = O(1)
∞∑
n=1

1

(n+ 1)(c−r)α

[
n∑

k=0

1

(k + 1)t

]α

= O(1),

if (c − r)α > 1 or r < c − 1/α. Therefore condi-
tion (12) also holds. It is possible to find a collection
{α, c, r, t} with r > t satisfying conditions t > 1 and
r < c − 1/α. For example, if α = 2, c = 4 and
t = 2, then these conditions hold for r, satisfying the
relation 2 < r < 3, 5.

Case 2: A ∈
(
lλ1 , l

µ
α

)
for α > 1, if r < c − 1/α.

For proving it, we show that all conditions of Theorem
3 hold. The validity of (2) and (9) are proved in Case
1 of the present example; also it is easy to see that
condition (18) is satisfied. As

V =
1

λα
k

∑
n

[µn |ank − ak|]α

=
1

(k + 1)tα

∞∑
n=k

(n+ 1)rα
1

(n+ 1)cα

=
1

(k + 1)tα

∞∑
n=k

1

(n+ 1)(c−r)α
,

then V = O(1), if (c − r)α > 1 or r < c − 1/α.
Therefore condition (21) also holds. There exists a
collection {α, c, r, t} with r > t satisfying the condi-
tion r < c − 1/α. For example, if α = 2 and c = 4,
then for r, t, satisfying the relation 0 < t < r < 3, 5,
this condition holds.

3.2 The regularity of matrices on the sets
lλ∞, cλ0 and cλ

We present necessary and sufficient conditions for the
regularity of a matrixA on lλ∞, cλ0 , and cλ as the corol-
laries correspondingly from Theorems 1, 2 and 4.
Corollary 3. A matrix A = (ank) is regular on lλ∞ if
and only if condition (5) with τ = 1 is satisfied and

lim
n

∑
k

|ank|
λk

= 0. (28)

Proof. Necessity. Assume that A is regular on lλ∞;
i.e., limnAnx = s for every sequence x ∈ lλ∞. Then
condition (5) with τ = 1 holds, since e ∈ lλ∞, and
relation (13) holds for every x := (xk) ∈ lλ∞. This
implies thatAλ transforms every sequence (vk) ∈ l∞

into c0. Hence condition (28) is satisfied by Lemma
5.
Sufficiency. Let all the conditions of the present
corollary are satisfied. Then relation (13) also holds
for every x ∈ lλ∞. As condition (28) holds, then
Aλ ∈ (l∞, c0) by Lemma 5. Therefore limnAnx = s
for every x ∈ lλα, since τ = 1. Thus A is regular on
lλ∞.

Corollary 4. A matrix A = (ank) is regular on cλ0 if
and only if condition (2) with ak = 0, condition (5)
with τ = 1, and condition (10) are satisfied.
Proof is similar to the proof of Corollary 3, if to con-
sider that τ = 1 due to e ∈ cλ0 , and instead of Lemma
5 it is necessary to use Lemma 7, since in this case
Aλ ∈ (c0, c0).

Corollary 5. A matrix A = (ank) is regular on cλ

if and only if condition (2) with ak = 0, condition
(5) with τ = 1 and condition (10) are satisfied, and
aλ = 0.
Proof is similar to the proof of Corollary 3, if to con-
sider that τ = 1 due to e ∈ cλ, and instead of Lemma
5 it is necessary to use Lemma 6, since in this case
Aλ ∈ (c, c0).

Nowwe prove that there exists an irregular matrix,
which is regular on lλ∞, cλ0 and cλ.
Example 3. LetA = (ank) be a matrix, where ank =
n+ 1 if k = n, ank = −n if k = n+ 1, and ank = 0
otherwise. Then obviously ak = 0 and τ = 1; i.e.,
conditions (2) and (5) hold. But condition (3) does
not hold, since∑

k

|ank| = 2n+ 1 ̸= O (1) .

Thus the matrix A is not regular by Lemma 2.
Case 1: Let λ be defined by (25) with r = 1. Then

Tn =
∑
k

|ank|
λk

= 1 +
n

n+ 2
= O(1);

i.e., conditions (10) is satisfied. Hence A is regular
on cλ0 by Corollary 4. Moreover,∑

k

ank
λk

= 1− n

n+ 2
,

aλ = lim
n

(
1− n

n+ 2

)
= 0.

Therefore A is regular on cλ by Corollary 5. We note
that A is not regular on lλ∞ by Corollary 3, since con-
dition (11) does not hold.

Case 2: Let λ be defined by (25) with r = 2. Then
also condition (10) holds, aλ = 0, and in addition to
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it, limn Tn = 0. Hence condition (11) is also satisfied
and in addition to regularity on cλ0 and on cλ,A is also
regular on lλ∞ by Corollary 3.

4 Conclusion
In this paper we consider the α-absolute convergence
with speed, where the speed is defined by a monoton-
ically increasing positive sequence µ and α > 1. The
notions of ordinary convergence and boundedness
with speed are known earlier. Let λ be another speed
of convergence, and lλ∞, cλ0 , cλ and lµα be respectively
the sets of all λ-bounded, all λ-convergent to zero, all
λ-convergent and all α-absolutely µ-convergent se-
quences.

Let A be a matrix with real or complex entries.
We found necessary and sufficient conditions for the
transforms A : lλ∞ → lµα, A : cλ0 → lµα, A : cλ → lµα
and A : lλ1 → lµα for the case, when α > 1. As an ex-
ample we show that the Zweier matrix Z1/2 satisfies
these necessary and sufficient conditions for certain
speeds λ and µ.

Also we define the notion of regularity on the sub-
space X of the set of convergent sequences c, and
present necessary and sufficient conditions for a ma-
trix A to be regular on lλ∞, cλ0 and cλ. We presented
an example of irregular matrix, which is regular on cλ0
and on cλ, but not on lλ∞ for some λ. Also we proved
that this irregular matrix is regular on cλ0 , cλ and lλ∞
for another λ.

Further we intend to define the notion of α-
absolute summability with speed by a matrix (with
real or complex entries), and to study the matrix trans-
forms between the sets of sequences, α-absolutely
summable with speeds by matrices.
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Math. Z., Vol.154, No.1, 1977, pp. 1-16.

[22] S. Baron, Introduction to the theory of summa-
bility of series, Valgus, 1977 (in Russian).

Contribution of individual authors to
the creation of a scientific article
(ghostwriting policy)
Both authors equally contributed in this research, at
all stages from the formulation of the problem to the
final findings.

Sources of funding for research
presented in a scientific article or
scientific article itself
No funding was received for this study.

Conflicts of Interest
The authors have no conflicts of interest to declare.

Creative Commons Attribution
License 4.0 (Attribution 4.0
International , CC BY 4.0)
This article is published under the terms of the
Creative Commons Attribution License 4.0

https://creativecommons.org/licenses/by/4.0/deed.en_US

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2024.23.7 Ants Aasma, Pinnangudi N. Natarajan

E-ISSN: 2224-2880 67 Volume 23, 2024

https://creativecommons.org/licenses/by/4.0/deed.en_US

	Introduction
	Auxiliary results
	Main results
	Matrix transforms into the set l
	The regularity of matrices on the sets l, c0 and c

	Conclusion



