
Abstract: Let G be a simple graph with a vertex set V (G) and edge set E(G). Given a vertex labeling fV :
V (G) → {0, 2, 4, . . . , 2kv} and an edge labelings fE : E(G) → {1, 2, 3, . . . , 2ke}. Define a function f by
f(x) = fV (x) if x ∈ V (G) and f(x) = fE(x) if x ∈ E(G). We call f be the total k-labeling where k =
max{ke, kv}. A total k-labeling f is called an edge irregular reflexive k-labeling of G if every two distinct edge
xy and x′y′, we have wtf (xy)

̸

= wtf (x
′y′) where wtf (uv) = f(u) + f(uv) + f(v) if uv is an edge of G. The

reflexive edge strength of G, denoted by res(G) is the minimum k for G which has an edge irregular reflexive
k-labeling. In this paper, we give the exact value of res(Cn+ e) where Cn+ e is a cycle of order n plus one edge
which contains a triangle.

Key-Words: Reflexive edge strength, edge irregular reflexive, total labeling, graph, label, cycle
Received: May 23, 2022. Revised: November 18, 2023. Accepted: December 17, 2023. Published: January 10, 2024.  

1 Introduction
Throughout this paper we consider finite, simple

and undirected graphs. Notations and terminologies
not defined here are followed from [1].

A labeling is a one-to-one mapping that carries a
set of graph elements into a set of non negative inte-
gers, called labels. If a domain is the vertex (or edge)
set, the labeling is called a vertex (or edge) labeling,
respectively. If the domain is both vertex and edge
sets, then the labeling is call a total labeling.

Graph labelings were introduced for the first time
by [2] in 1963. The most complete recent survey of
graph labeling can be found in the Survey of Graph
Labeling written by [3]. The topics of graph labelings
have been studied by a lot of mathematicians in area
of graph theory. The applications of graph labelings
are the benefits indicate in some branch of science,
for examples, coding theory, X-ray, circuit design and
communication network design etc, see [4].

The notation of the irregularity strength of graphs
was introduced in 1988. Then the idea of irregularity
strength was extended to irregular total k-labeling by
[5], [6]. Some previous results of vertex or edge irreg-
ular total k-labeling can be found in [7], [8], [9] and
[10]. After that they extend the concept into an edge
irregular reflexive k-labeling, the complete definition
is defined as the following.

LetG = (V,E) be a simple graph. Given a vertex
labeling fV : V (G) → {0, 2, 4, . . . , 2kv} and an
edge labeling fE : E(G) → {1, 2, 3, . . . , 2ke}.

Define a function f by f(x) = fV (x) if x ∈ V (G)
and f(x) = fE(x) if x ∈ E(G). We call f be the total
k-labeling where k = max{ke, kv}. Let wtf (uv) be
the weight of the edge uv where wtf (uv) = f(u) +
f(uv)+f(v). A total k-labeling f is called an edge ir-
regular reflexive k-labeling ofG if every two distinct
edge xy and x′y′, we have wtf (xy) ̸= wtf (x

′y′).
If G has an edge irregular reflexive k-labeling then
the minimum number of k is called reflexive edge
strength of G, denoted by res(G).

In 2017, [11] determined the exact value of res(G)
where G is a wheel, prism, basket, and fan graph.
Then [12] determined the exact value of res(G)
where G is a cycle, cartesian product of two cycles,
and join graph of the path and cycle with 2K2 in 2019.
Somemore relevant results are found in [13] and [14].

In [12], the value of reflexive edge strength of a
cycle Cn was found. We would like to know that if
we add one edge to a cycle, then the value of its re-
flexive edge strength is whether same or not. We use
the notation Cn+ e for a graph by adding one edge to
a cycle Cn. In this paper, we will determine the exact
value of res(Cn+e)whereCn+e contains a triangle.

2 Main Result

The following lemma, proved in [15], shows the
lower bound of the reflexive edge strength for any
graphs.
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Lemma 2.1. For every graph G,

res(G) ≥


⌈ |E(G)|

3 ⌉ if |E(G)| ≡ 0, 1, 4, 5 (mod 6),

⌈ |E(G)|
3 ⌉+ 1 if |E(G)| ≡ 2, 3 (mod 6).

Lemma 2.1 gives us the lower bound for Cn + e
that will be used in the proof of Theorem 2.3. To
investigate the value of reflexive edge strength of the
grpah Cn + e for n ≥ 4, we first consider the graphs
C4 + e and C5 + e are as follows.

Proposition 2.2. res(C4 + e) = res(C5 + e) = 3.

Proof. The graphs C4 + e and C5 + e have edge
irregular reflexive 3-labelings as follow (Figure 1).
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Figure 1: Edge irregular reflexive 3-labelings of
C4 + e and C5 + e

Thus res(C4 + e) ≤ 3 and res(C5 + e) ≤ 3.
Suppose that there is an edge irregular reflexive 2-

labeling f of C4 + e. If there is an induced subgraph
P3 of C4 + e such that all its vertices are labeled by
the same number (see Figure 2), then we have three
remaining edges of C4 + e incident to v where v ∈
V (C4 + e) \ V (P3). Since edges of C4 + e must be
labeled by 1 or 2, by pigeonhole principle, there are
two edges which their weight are not different. This
contradicts the assumption.

Figure 2: An induced subgraph P3 of C4 + e

Assume that there is no an induced subgraph P3

of C4 + e such that all its vertices are labeled by the
same number. Then there are three edges ofC4+e that
their two endpoints are labeled in the sameway. Since
edges of C4 + e must be labeled by 1 or 2, there are

two edges which their weight are not different. This
contradicts the assumption. Hence res(C4 + e) ≥ 3.

For the graph C5+ e, we can consider in the same
way ofC4+e, and thenwe have res(C5+e) ≥ 3.

We give the exact value of reflexive edge strength
of the graph Cn + e which contains a triangle in the
next theorem.

Theorem 2.3. For positive integer n, n ≥ 4. Let G
be a graph Cn + e which contains a triangle. Then

res(G) =


3 if n = 4, 5,⌈
n+1
3

⌉
if n ≡ 0, 3, 4, 5 (mod 6)

and n ≥ 6,⌈
n+1
3

⌉
+ 1 if n ≡ 1, 2 (mod 6).

Proof. By Proposition 2.2, we have res(C4 + e) =
res(C5 + e) = 3.

Assume n ≥ 6. By Lemma 2.1 and |E(G)| =
n+ 1, we have

res(G) ≥


⌈
n+1
3

⌉
if n ≡ 0, 3, 4, 5 (mod 6)

and n ≥ 6,⌈
n+1
3

⌉
+ 1 if n ≡ 1, 2 (mod 6).

Case 1 : n ≡ 0, 1, 2, 3 (mod 6).
LetG be a graphCn = (x1, x2, ..., xn, x1) add the

edge x⌈n

2 ⌉x⌈n

2 ⌉+2. Define the total labeling f of G
by

f(xi) = 2

(⌈
i+ 1

3

⌉
− 1

)
, i = 1, 2, ...,

⌈n
2

⌉
,

f(xn−i+1) = 2

⌈
i− 1

3

⌉
, i = 1, 2, ...,

⌊n
2

⌋
− 1,

f(x⌈n

2 ⌉+1) =

{
2
⌈
n
6

⌉
n ≡ 0, 2, 3 (mod 6),

2
⌊
n
6

⌋
n ≡ 1 (mod 6),

f(xixi+1) = 2

⌈
i

3

⌉
− 1, i = 1, 2, ...,

⌈n
2

⌉
− 1,

f(xn−ixn−i+1) = 2

⌈
i+ 1

3

⌉
, i = 1, 2, ...,

⌊n
2

⌋
− 2,

f(xnx1) = 2,

f(x⌈n

2 ⌉x⌈n

2 ⌉+1) =

{
2
⌈
n
6

⌉
+ 1 n ≡ 0 (mod 6),

2
⌈
n
6

⌉
− 1 n ≡ 1, 2, 3 (mod 6),

f(x⌈n

2 ⌉+1x⌈n

2 ⌉+2) =

{
2
⌈
n
6

⌉
n ≡ 0, 1, 3 (mod 6),

2
⌊
n
6

⌋
n ≡ 2 (mod 6),

f(x⌈n

2 ⌉x⌈n

2 ⌉+2) =

{
2
⌊
n+3
6

⌋
n ≡ 1, 3 (mod 6),

2
⌈
n
6

⌉
− 1 n ≡ 0, 2 (mod 6).
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Note that max(f [V (G) ∪ E(G)])

=

{⌈
n+1
3

⌉
if , n ≡ 0, 3 (mod 6),⌈

n+1
3

⌉
+ 1 if , n ≡ 1, 2 (mod 6).

For case n ≡ 0 (mod 6), the weights of the edges
in Cn + e under the labeling f are the following.

For i = 1, 2, ...,
⌈
n
2

⌉
− 1,

wtf (xixi+1) = f(xi) + f(xixi+1) + f(xi+1)

= 2

(⌈
i+ 1

3

⌉
− 1

)
+ 2

(⌈
i

3

⌉
− 1

)
+ 2

(⌈
i+ 2

3

⌉
− 1

)
= 2

(⌈
i+ 1

3

⌉
+

⌈
i

3

⌉
+

⌈
i+ 2

3

⌉)
− 5

= 2(i+ 2)− 5

= 2i− 1.

For i = 1, 2, ...,
⌊
n
2

⌋
− 2,

wtf (xn−ixn−i+1)

= f(xn−i) + f(xn−1xn−i+1) + f(xn−i+1)

= 2

⌈
i

3

⌉
+ 2

⌈
i+ 1

3

⌉
+ 2

⌈
i− 1

3

⌉
= 2

(⌈
i− 1

3

⌉
+

⌈
i

3

⌉
+

⌈
i+ 1

3

⌉)
= 2i+ 2.

wtf (xnx1) = f(xn) + f(xnx1) + f(x1) = 2.

wtf (x⌈n

2 ⌉x⌈n

2 ⌉+1)

= f(xn

2
) + f(xn

2
xn

2
+1) + f(xn

2
+1)

= 2

(⌈ n
2 + 1

3

⌉
− 1

)
+
(
2
⌈n
6

⌉
+ 1
)
+ 2
⌈n
6

⌉
= 2

(n
6

)
+ 4

(n
6

)
+ 1

= n+ 1.

wtf (x⌈n

2 ⌉+1x⌈n

2 ⌉+2)

= f(xn

2
+1) + f(xn

2
+1xn

2
+2) + f(xn

2
+2)

= 2
⌈n
6

⌉
+ 2
⌈n
6

⌉
+ f(xn−(n

2
−1)+1)

= 4
⌈n
6

⌉
+ 2

⌈(
n
2 − 1

)
− 1

3

⌉
=

4n

6
+

2n

6
= n.

wtf (x⌈n

2 ⌉x⌈n

2 ⌉+2)

= f(xn

2
) + f(xn

2
xn

2
+2) + f(xn

2
+2)

= 2

(⌈ n
2 + 1

3

⌉
− 1

)
+
(
2
⌈n
6

⌉
− 1
)
+ f(xn−(n

2
−1)+1)

=
2n

6
+

(
2n

6
− 1

)
+

2n

6

= n− 1.

An example of the total labeling f of C12 + e is
shown in Figure 3.
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Figure 3: An edge irregular reflexive 5-labeling of
C12 + e

The weights of the edges in case n ≡ 1, 2, 3
(mod 6) can be considered similarly.

For case n ≡ 1, 3 (mod 6), we have that
wtf (xixi+1) = 2i− 1 for i = 1, 2, . . . ,

⌈
n
2

⌉
− 1,

wtf (xn−ixn−i+1) = 2i+2 for i = 1, 2, . . . ,
⌊
n
2

⌋
−2,

wtf (xnx1) = 2,
wtf (x⌈n

2 ⌉x⌈n

2 ⌉+1) = n,

wtf (x⌈n

2 ⌉+1x⌈n

2 ⌉+2) = n+ 1,

wtf (x⌈n

2 ⌉x⌈n

2 ⌉+2) = n− 1.

For case n ≡ 2 (mod 6), we have that
wtf (xixi+1) = 2i− 1 for i = 1, 2, . . . ,

⌈
n
2

⌉
− 1,

wtf (xn−ixn−i+1) = 2i+2 for i = 1, 2, . . . ,
⌊
n
2

⌋
−2,

wtf (xnx1) = 2,
wtf (x⌈n

2 ⌉x⌈n

2 ⌉+1) = n+ 1,

wtf (x⌈n

2 ⌉+1x⌈n

2 ⌉+2) = n,

wtf (x⌈n

2 ⌉x⌈n

2 ⌉+2) = n− 1.

We have that the weights of edges inG are distinct
numbers from the set {1, 2, ..., n+ 1}.

Hence f is an edge irregular reflexive
⌈
n+1
3

⌉
-

labeling of G for case n ≡ 0, 3 (mod 6) and an edge
irregular reflexive

(⌈
n+1
3

⌉
+ 1
)
-labeling of G for

case n ≡ 1, 2 (mod 6).
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Case 2 : n ≡ 4, 5 (mod 6).
Let G be a graph Cn = (x1, x2, ..., xn, x1) with

adding the edge x⌈n

2 ⌉+1x⌈n

2 ⌉+3.
Define the total labeling f of G by

f(xi) = 2

(⌈
i+ 1

3

⌉
− 1

)
, i = 1, 2, ...,

⌈n
2

⌉
,

f(xn−i+1) = 2

⌈
i− 1

3

⌉
, i = 1, 2, ...,

⌊n
2

⌋
− 2,

f(x⌈n

2 ⌉+1) = f(x⌈n

2 ⌉+2) =

⌈
n+ 1

3

⌉
,

f(xixi+1) = 2

⌈
i

3

⌉
− 1,

f(xn−ixn−i+1) = 2

⌈
i+ 1

3

⌉
,

f(xnx1) = 2,

f(x⌈n

2 ⌉+1x⌈n

2 ⌉+3) =

⌈
n+ 1

3

⌉
− 2.

Note that max(f [V (G) ∪ E(G)]) =
⌈
n+1
3

⌉
.

For case n ≡ 4 (mod 6), the weights of the edges
in Cn + e under the labeling f are the following.

For i = 1, 2, . . . ,
⌈
n
2

⌉
,

wtf (xixi+1)

= f(xi) + f(xixi+1) + f(xi+1)

=

(
2

⌈
i+ 1

3

⌉
− 1

)
+

(
2

⌈
i

3

⌉
+ 1

)
+

(
2

⌈
i+ 2

3

⌉
− 1

)
= 2

(⌈
i

3

⌉
+

⌈
i+ 1

3

⌉
+

⌈
i+ 2

3

⌉)
− 5

= 2i− 1.

For i = 1, 2, . . . ,
⌊
n
2

⌋
− 3,

wtf (xn−ixn−i+1)

= f(xn−i) + f(xn−ixn−i+1) + f(xn−i+1)

= 2

⌈
i

3

⌉
+ 2

⌈
i+ 1

3

⌉
+ 2

⌈
i− 1

3

⌉
= 2

(⌈
i− 1

3

⌉
+

⌈
i

3

⌉
+

⌈
i+ 1

3

⌉)
= 2i+ 2.

wtf (xnx1) = f(xn) + f(xnx1) + f(x1) = 2.

wtf (x⌈n

2 ⌉+1x⌈n

2 ⌉+2)

= f(x⌈n

2 ⌉+1) + f(x⌈n

2 ⌉+1x⌈n

2 ⌉+2) + f(x⌈n

2 ⌉+2)

= 2

(⌈⌈
n
2

⌉
+ 2

3

⌉
− 1

)
+

⌊
n+ 1

3

⌋
+

⌈
n+ 1

3

⌉
= 2

(⌈ n
2 + 2

3

⌉
− 1

)
+

n− 1

3
+

n+ 2

3

= 2

(⌈
n+ 4

6

⌉
− 1

)
+

2n+ 1

3

= 2

(
n+ 2

6

)
+

2n+ 1

3

= n+ 1.

wtf (x⌈n

2 ⌉+1x⌈n

2 ⌉+3)

= f(x⌈n

2 ⌉+1) + f(x⌈n

2 ⌉+1x⌈n

2 ⌉+3) + f(x⌈n

2 ⌉+3)

= 2

(⌈
n+ 4

6

⌉
− 1

)
+

n− 4

3
+ 2

⌈
n− 6

6

⌉
=

n+ 8

3
− 2 +

n− 4

3
+

n− 4

3
= n− 2.

wtf (x⌈n

2 ⌉+2x⌈n

2 ⌉+3)

= wtf (x⌈n

2 ⌉+2xn−(⌊n

2 ⌋−2)+1)

= f(x⌈n

2 ⌉+2) + f(x⌈n

2 ⌉+2x⌈n

2 ⌉+3) + f(xn−(⌊n

2 ⌋−2)+1)

=

⌈
n+ 1

3

⌉
− 1 +

⌈
n+ 1

3

⌉
+ 2

⌈⌊
n
2

⌋
− 2− 1

3

⌉

=
2n+ 4

3
+ 2

⌈
n− 6

6

⌉
=

2n+ 4

3
+

n+ 2

3
− 2

= n.

For case n ≡ 5 (mod 6), we can compute in the
same way of case n ≡ 4 (mod 6). Then
wtf (xixi+1) = 2i− 1 for i = 1, 2, . . . ,

⌈
n
2

⌉
,

wtf (xn−ixn−i+1) = 2i+2 for i = 1, 2, . . . ,
⌊
n
2

⌋
−3,

wtf (xnx1) = 2,
wtf (x⌈n

2 ⌉+1x⌈n

2 ⌉+2) = n+ 1,

wtf (x⌈n

2 ⌉+1x⌈n

2 ⌉+3) = n− 3,

wtf (x⌈n

2 ⌉+2x⌈n

2 ⌉+3) = n− 1.

We have that the weights of edges inG are distinct
numbers from the set {1, 2, ..., n+ 1}. Hence f is an
edge irregular reflexive

⌈
n+1
3

⌉
-labeling of G.
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3 Conclusion
In this paper, we obtained the exact values of the

reflexive edge strength ofCn+e containing a triangle
for all n ≥ 4. In general when we added an edge to
a cycle, the graph might not be contained a triangle,
this issue is still an open problem.
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