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1  Introduction 
Integral equations often arise in various 
applications. Many problems of astrophysics, 
mechanics, viscoelasticity, elasticity, vibrations, 
plasticity, hydrodynamics, electrodynamics, nuclear 
physics, biomechanics, geology, medicine problems, 
and many other problems are formulated in terms of 
integral equations. The mathematical model for 
many problems arising in different natural science 
industries is formulated using differential and 
integral equations. The investigation of these 
equations is conducted with the help of the 
numerical integration theory, [1]. Mathematics and 
physics problems are often reduced to solving 
integral or integro-differential equations. This is 
noted in the following papers. Hypoxy induced 
angiogenesis processes can be described by 
coupling an integro-differential kinetic equation of 
the Fokker-Planck type with a diffusion equation for 
the angiogenic factor, [2]. The charged particle 
motion for certain configurations of oscillating 
magnetic fields can be simulated by a Volterra 
integro-differential equation of the second order 
with time-periodic coefficients, [3]. In paper, [4], 
the Fourier integral transform has been employed to 
reduce the problem of determining the stress 
component under the contact region of a punch in 

solving dual integral equations. In the paper, [5], the 
method of integral equations is proposed for some 
electrical engineering (current density, radiative heat 
transfer, heat conduction) problems. The presented 
models lead respectively to a system of Fredholm 
integral equations, integro-differential equations, or 
Volterra-Fredholm integral equations. 
      When solving integral equations, splines and 
wavelets are often used. The B-spline basis and the 
Hartree–Fock integro-differential equations are 
reduced to a computationally eigenvalue problem, 
[6]. In paper, [7], the Legendre wavelet functions 
were used to solve the Fredholm integral equation. 
In paper, [8], an efficient modification of the 
wavelets method to solve a new class of Fredholm 
integral equations of the second kind with a non-
symmetric kernel is introduced. In paper, [9], the 
tension spline approximation to obtain the numerical 
solution of Volterra–Fredholm integral equation was 
developed. In paper, [10], a general spline 
maximum entropy method for the approximation of 
solutions for solving Fredholm integral equations 
was described. In paper, [11], the description of 
fuzzy Bezier splines is presented. An iterative 
numerical method for approximating the solution of 
fuzzy functional integral equations of the Fredholm 
type is proposed. In paper, [12], the non-polynomial 
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spline functions were used to obtain the numerical 
solutions of the Fredholm integral equations of the 
second kind. In paper, [13], the wavelet-Galerkin 
method for the numerical solution of the Fredholm 
linear integral equations and the second-order 
integro-differential equations are discussed. A 
construction of a quadratic spline-wavelet basis on 
the unit interval, such that the wavelets have three 
vanishing moments and the shortest support among 
such wavelets was proposed, [13]. In paper, [14], a 
new collocation technique for the numerical solution 
of the Fredholm, Volterra, and mixed Volterra-
Fredholm integral equations of the second kind is 
introduced, and a numerical integration formula on 
the basis of the linear Legendre multi-wavelets is 

also developed. The linear Legendre multi-wavelets 
basis for the proposed method is used. In this 
technique, the unknown function is approximated by 
the truncated linear Legendre multi-wavelets series, 
[14]. 
     Good results are obtained by using the 
Chebyshev polynomials. Paper, [15], focused on 
fuzzy Fredholm integral equations of the second 
kind. Using the Chebyshev polynomials due to their 
smoothness and reasonable behavior near 
boundaries, a new method is proposed to solve the 
fuzzy Fredholm integral equation.  In paper, [16], 
the approximate solution of linear Fredholm integral 
equations of the second type on a closed interval is 
studied. The Galerkin method enhanced with the 
Chebyshev polynomials was used to improve the 
approximate solution.  
     We also note the following papers. In paper, 
[17], the authors have used the advanced multistep 
and hybrid methods to solve the Volterra integral 
equation. In paper, [18], the forward-jumping 
methods of the hybrid type are used for the 
construction of the methods with a high order of 
accuracy. In paper, [19], the Half-Sweep Gauss-
Seidel iteration, which was used to find the 
approximate solution of the fuzzy Fredholm integral 
equations of the second kind, was applied. In paper, 
[20], linear Volterra–Fredholm integral equations of 
the second kind were considered in reproducing 
kernel space. A new scheme with a high 
convergence order for solving the approximate 
solutions to oscillation and non-oscillation of exact 
solutions was proposed.  
     In paper, [21], a new technique is offered to 
solve three types of linear integral equations of the 
2nd kind, including the Volterra-Fredholm integral 
equations (as a general case), the Volterra integral 
equations, and the Fredholm integral equations (as 
special cases). The new technique depends on 

approximating the solution to a polynomial of 
degree (𝑚 − 1) is described. 
     This work is a continuation of a series of works 
on the use of continuous local polynomial splines 
for solving interpolation problems and for solving 
integral equations, [22], [23]. This paper is devoted 
to the investigation of the stability of the solution of 
the integral equation using these local splines. As is 
known, the solution of integral equations of the 
second kind is reduced to finding the frame of the 
approximate solution. This means that we find 
approximations to the values of the function at the 
nodes of the grid (grid function). Usually, the 
integral equation is replaced by some difference 
scheme with a given order of accuracy. The 
approximate values of the function is converged to 
the values of the function at the grid nodes if the 
two conditions are fulfilled. These conditions are as 
follows: an approximation of the equation with a 
difference scheme, and the difference scheme is 
stable. Let for an approximate solution of the 
integral equation be 

𝐴𝑢 = 𝑓 

a difference scheme is constructed 

𝐴ℎ𝑢ℎ = 𝑓ℎ. 

This scheme approximates the original equation 
with some order of accuracy. Suppose a linear 
normed space of functions defined on the grid is 
considered. The operator 𝐴ℎ maps the space 𝑈ℎ to 
the space 𝐹ℎ. A difference scheme is said to be 
stable on the right-hand side if, for any 𝑓ℎ ∈ 𝐹ℎ, the 
equation 

𝐴ℎ𝑢ℎ = 𝑓ℎ 

has a unique solution 𝑢ℎ ∈ 𝑈ℎ and  

∥  𝑢ℎ  ∥𝑈ℎ
≤ 𝐶 ∥  𝑓ℎ  ∥𝐹ℎ

 . 

Here 𝐶 is a constant. Next, consider the definition  

∥  𝑢ℎ  ∥𝑈ℎ
= max

𝑖
|𝑢ℎ(𝑥𝑖) | . 

Thus, the convergence of the approximate 
solution to the values of the function at the grid 
nodes follows from the approximation of the 
original equation and the stability of the solution. 

      In the works of, [24], conditions for the stability 
of the solution of the Fredholm integral equation of 
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the second kind using the trapezoidal method were 
obtained. Thus, the convergence of the obtained 
approximate solution of the Fredholm integral 
equation of the second kind to the values of the 
function at the grid nodes was proved. 

Next, we construct a numerical scheme to solve 
the Fredholm integral equation of the second kind. 

This paper discusses the stability of the solution 
when we use the local splines of the second and 
seventh order of approximation. We use these 
splines if the kernel and the right side are 
sufficiently smooth functions. To construct an 
approximate solution at the points between the grid 
nodes, we use the interpolation of the same local 
splines or the integral equation with an obtained 
solution at the nodes. 
 

 

2   Problem Formulation 
Let {𝑥𝑗} be a grid of ordered nodes on the interval 
[𝑎, 𝑏]: 𝑎 = 𝑥0 < …< 𝑥𝑛 = 𝑏. Note that the 
approximations with the splines are constructed 
separately for each grid interval [𝑥𝑗, 𝑥𝑗+1].     Let us 
assume that the values of the function 𝑢(𝑥) are 
given at the grid nodes. The approximation using 
basis splines is built separately on each grid interval 
as the sum of the products of the values of the 
function 𝑢 at the grid nodes and the basis splines 𝜔𝑗. 
      Let 𝑟, 𝑟1,𝑚, be integers, 𝑟 + 𝑟1 = 𝑚 + 1, 𝑟 ≥
1, 𝑟1 ≥ 1, and the spline  𝜔𝑘 be such that supp 𝜔𝑘 =
[𝑥𝑘−𝑟, 𝑥𝑘+𝑟1

]. Following the methodology 
developed by Professor S.G. Mikhlin, we find the 
basis functions by solving the system of 
approximation relations 

∑ 𝑥𝑗
𝑠𝜔𝑗(𝑥)

𝑘+𝑟

𝑗=𝑘+1−𝑟1

= 𝑥𝑠, 𝑥 ∈ [𝑥𝑘,𝑥𝑘+1],

𝑠 = 0,1, … , 𝑚.                             (1)  
 
2.1 Polynomial Splines of the Second Order 

of Approximation 
Let 𝑟 = 1, 𝑟1 = 1. The support of the basis splines 
of the second order of approximation occupies two 
grid intervals. These splines are convenient to use 
on a finite interval, both on a uniform grid of nodes 
and on a non-uniform grid of nodes. The 
approximation of the function on a finite interval of 
interpolation does not have a boundary layer. When 
solving the Fredholm integral equation of the 
second kind, the minimum number of the grid nodes 
is two. We set the support of the basis spline as 
follows: supp 𝜔𝑗 =  [𝑥𝑗−1, 𝑥𝑗+1]. On the interval 

[𝑥𝑗, 𝑥𝑗+1] we approximate the function 𝑢(𝑥) by the 
following expression: 

𝑢̃(𝑥) = 𝑢(𝑥𝑗)𝜔𝑗(𝑥) + 𝑢(𝑥𝑗+1)𝜔𝑗+1(𝑥),   
𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1], 

where the basis splines 𝜔𝑗(𝑥), 𝜔𝑗+1(𝑥) are as 
follows: 

𝜔𝑗(𝑥) =
𝑥 − 𝑥𝑗+1

𝑥𝑗 − 𝑥𝑗+1
 ,          𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1], 

𝜔𝑗+1(𝑥) =
𝑥 − 𝑥𝑗

𝑥𝑗+1 − 𝑥𝑗
  ,      𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1]. 

These splines are the interpolation splines of the 
second order of approximation as well as the first 
degree. The approximation using these splines is the 
continuous approximation.  
     Note that the minimum number of grid intervals 
is one, and the minimum number of grid nodes is 
two. 
     The following statement is valid for the 
approximation error. 
     Let ℎ = 𝑥𝑗+1 − 𝑥𝑗. In the case of the splines of 
the first degree, it is easy to obtain an estimate of the 
approximation error on the interval    [𝑥𝑗, 𝑥𝑗+1], [22], 
[23] 

|𝑢(𝑥) − 𝑢̃(𝑥)| ≤
ℎ2

8
max

[𝑥𝑗,𝑥𝑗+1]
|𝑢′′(𝑥)| ,      

 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1]. 

In the case of an uneven grid of nodes, we take the 
length of the maximum grid interval as the value of 
ℎ. 

     Further, we will use the norm of the form: 

∥ 𝑢 ∥𝐶[𝑎,𝑏]= max
𝑥∈[𝑎,𝑏]

| 𝑢(𝑥)| . 

      Consider the solution of the Fredholm integral 
equation of the second kind 

(𝐴𝑢)(𝑥) ≡ 𝑢(𝑥) − ∫ 𝐾(𝑥, 𝑠)𝑢(𝑠) 𝑑𝑠 = 𝑓(𝑥),   

𝑏

𝑎

 

 𝑥 ∈ [𝑎, 𝑏]. 

Here, and further, we assume that the kernel 
𝐾(𝑥, 𝑠) and the right side of the equation 𝑓(𝑥) are 
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continuous. In addition, we assume that the equation 
is uniquely solvable and the estimate for the norm of 
the inverse operator in space 𝐶 is known:  

∥ 𝐴−1 ∥≤ 𝐵. 
Suppose |𝐾(𝑥, 𝑠)| < 𝜌 < 1, when 0 ≤ 𝑥 ≤ 1, 0 ≤
𝑠 ≤ 1. 
We construct the set of nodes 𝑥𝑘, 𝑘 = 0,1, … 𝑛, on 
the interval [𝑎, 𝑏]. We have the relation 

∫ 𝐾(𝑥, 𝑠)𝑢(𝑠) 𝑑𝑠

𝑏

𝑎

= ∑ ∫ 𝐾(𝑥, 𝑠)𝑢(𝑠) 𝑑𝑠

𝑥𝑘+1

𝑥𝑘

𝑛−1

𝑘=0

 . 

On each interval [𝑥𝑘 , 𝑥𝑘+1] we replace 𝑢(𝑠) with 
approximation 𝑢̃(𝑥). 
Now we have the integral equation in the form: 

𝑢(𝑥) − ∑ ∫ 𝐾(𝑥, 𝑠)(𝑢𝑘𝜔𝑘(𝑠)

𝑥𝑘+1

𝑥𝑘

𝑛−1

𝑘=0

+ 𝑢𝑘+1𝜔𝑘+1(𝑠)) 𝑑𝑠 = 𝑓(𝑥). 
From here we get the system of equation in the form 

𝑢(𝑥) − ∑(𝑢𝑘𝐴𝑘(𝑥)

𝑛−1

𝑘=1

+ 𝑢𝑘+1𝐴𝑘+1(𝑥)) = 𝑓(𝑥), 

where  

𝐴𝑘(𝑥) = ∫ 𝐾(𝑥, 𝑠)𝜔𝑘(𝑠) 𝑑𝑠

𝑥𝑘+1

𝑥𝑘

, 

𝐴𝑘+1(𝑥) = ∫ 𝐾(𝑥, 𝑠)𝜔𝑘+1(𝑠) 𝑑𝑠

𝑥𝑘+1

𝑥𝑘

. 

Next, we take 𝑥𝑗 instead of 𝑥 and we have to solve 
the system of linear algebraic equations: 

𝑢𝑗
ℎ − ∑(𝑢𝑘

ℎ𝐴𝑘(𝑥𝑗) + 𝑢𝑘+1
ℎ 𝐴𝑘+1(𝑥𝑗))

𝑛−1

𝑘=0

= 𝑓𝑗
ℎ, 

𝑗 = 0, 1, 2, … , 𝑛 − 1 . 
We assume that the integral ∫ 𝐾(𝑥, 𝑠)𝜔𝑘(𝑠)𝑑𝑠

𝑥𝑘+1

𝑥𝑘
  

can be computed exactly. Otherwise, we can use 
quadrature formulas. 
     Now, we suppose that 𝑎 = 0, 𝑏 = 1, and ℎ =
const. Let 𝑢𝑗 be one of those components of the 
solution, whose absolute value is the largest. 
Therefore, the execution for this component of the 
solution is |𝑢𝑗| = max

𝑘
|𝑢𝑘|. 

We consider on the interval [𝑥𝑘,𝑥𝑘+1] the 
approximation of the function with splines of the 
second order of approximation 

𝑢̃(𝑥) = 𝑢𝑘𝜔𝑘(𝑥) + 𝑢𝑘+1𝜔𝑘+1(𝑥). 
Now we have 

|𝑓(𝑥𝑗) |=| 𝑢(𝑥𝑗) − ∫ 𝐾(𝑥𝑗, 𝑠)

1

0

𝑢(𝑠)𝑑𝑠| ,  

where 

  ∫ 𝐾(𝑥𝑗, 𝑠)

1

0

𝑢(𝑠)𝑑𝑠 

≈ ∑ ∫ 𝐾(𝑥𝑗, 𝑠)(𝑢𝑘𝜔𝑘(𝑠) + 𝑢𝑘+1𝜔𝑘+1(𝑠))𝑑𝑠.

𝑥𝑘+1

𝑥𝑘

𝑛−1

𝑘=0

 

We assume that ℎ = 𝑥𝑘+1 − 𝑥𝑘. It is easy to 
calculate the integrals  ∫ 𝜔𝑘(𝑠)𝑑𝑠 =

𝑥𝑘+1

𝑥𝑘
ℎ/

2,   ∫ 𝜔𝑘+1(𝑠)𝑑𝑠 =
𝑥𝑘+1

𝑥𝑘
ℎ/2. 

Now using the mean value theorem of integral 
calculus, we obtain 

∫ 𝐾(𝑥𝑗, 𝑠)𝜔𝑘(𝑠)𝑑𝑠 = 𝐾(𝑥𝑗 , 𝜂𝑘)

𝑥𝑘+1

𝑥𝑘

∫ 𝜔𝑘(𝑠)𝑑𝑠

𝑥𝑘+1

𝑥𝑘

= 𝐾(𝑥𝑗, 𝜂𝑘)
ℎ

2
.  𝜂𝑘 ∈ [𝑥𝑘 , 𝑥𝑘+1]. 

Similarly, we get 

∫ 𝐾(𝑥𝑗, 𝑠)𝜔𝑘+1(𝑠)𝑑𝑠 = 𝐾(𝑥𝑗 , 𝜉𝑘)

𝑥𝑘+1

𝑥𝑘

ℎ

2
. 

𝜉𝑘 ∈ [𝑥𝑘 , 𝑥𝑘+1]. 
 

Finally, we obtain the inequality 
|𝑓(𝑥𝑗)| ≥ (1 − 𝜌)|𝑢(𝑥𝑗)|. 

Thus, we have the estimation 

|𝑢(𝑥𝑗)| ≤
1

1 − 𝜌
  |𝑓(𝑥𝑗)| . 

In particular, we can take 𝑓 = 0. This implies that 
the system is uniquely solvable. The last inequality 
means the stability of the solution depends on the 
right side of the equation with the constant 𝐶 = 

1

1−𝜌
. 

2.2 Polynomial Splines of the Seventh Order 

of Approximation 
Now we consider the application of splines of the 
seventh order of approximation to solve the 
Fredholm integral equations of the second kind. 
Different modifications of the splines of the seventh 
order of approximation are used at the beginning, in 
the middle and at the end of the interpolation 
interval [𝑎, 𝑏]. The support of the basis spline 
occupies seven grid intervals.  
     First, consider the approximation properties of 
polynomial splines of the seventh order of 
approximation. 
     Let 𝑟, 𝑟1 be integers, 𝑟 + 𝑟1 = 7, 𝑟 ≥ 1, 𝑟1 ≥
1, and the spline  𝜔𝑘 be such that supp 𝜔𝑘 =
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[𝑥𝑘−𝑟, 𝑥𝑘+𝑟1
]. We find the basis functions by 

solving the system of approximation relations 

∑ 𝑥𝑗
𝑠𝜔𝑗(𝑥)

𝑘+𝑟

𝑗=𝑘+1−𝑟1 

= 𝑥𝑠 , 𝑥 ∈ [𝑥𝑘,𝑥𝑘+1],

𝑠 = 0,1, … ,6.                      
With different values of the parameters 𝑟, 𝑟1, we get 
basis splines suitable for th approximation at the 
beginning of the interpolation interval (the right 
basis splines), in the middle of the interpolation 
interval (the middle basis splines), or at the end of 
the interpolation interval (the left basis splines). 
      With 𝑟1 = 4 and 𝑟 = 3 we get the middle 
splines. On the interval [𝑥𝑘 , 𝑥𝑘+1], we construct the 
approximation with the middle splines at a distance 
of three grid intervals from the ends of the interval 
[𝑎, 𝑏] in the form: 

𝑢̃𝑀(𝑥) = ∑ 𝑢(𝑥𝑗)𝜔𝑗
𝑀(𝑥) , 𝑥 ∈ [𝑥𝑘,𝑥𝑘+1],

𝑘+3

𝑗=𝑘−3

   

where the middle basis splines 𝜔𝑗
𝑀(𝑥) have the 

form: 
𝜔𝑘−3

𝑀 (𝑥) = 𝑐𝑘−3(𝑥)/𝑑𝑘−3 , 
 

where 
 
𝑐𝑘−3(𝑥) = (𝑥 − 𝑥𝑘+3)(𝑥 − 𝑥𝑘+2)(𝑥 − 𝑥𝑘+1) 
× (𝑥 − 𝑥𝑘)(𝑥 − 𝑥𝑘−1)(𝑥 − 𝑥𝑘−2), 
𝑑𝑘−3 = (𝑥𝑘−3 − 𝑥𝑘+3)(𝑥𝑘−3 − 𝑥𝑘+2) 
× (𝑥𝑘−3 − 𝑥𝑘+1)(𝑥𝑘−3 − 𝑥𝑘) 
× (𝑥𝑘−3 − 𝑥𝑘−1)(𝑥𝑘−3 − 𝑥𝑘−2); 

  

 

𝜔𝑘−2
𝑀 (𝑥) =

𝑐𝑘−2(𝑥)

𝑑𝑘−2
, 

𝑐𝑘−2(𝑥) = (𝑥 − 𝑥𝑘+3)(𝑥 − 𝑥𝑘+2)(𝑥 − 𝑥𝑘+1) 
× (𝑥 − 𝑥𝑘)(𝑥 − 𝑥𝑘−1)(𝑥 − 𝑥𝑘−3), 
𝑑𝑘−2 = (𝑥𝑘−2 − 𝑥𝑘+3)(𝑥𝑘−2 − 𝑥𝑘+2) 
× (𝑥𝑘−2 − 𝑥𝑘+1)(𝑥𝑘−2 − 𝑥𝑘) 
× (𝑥𝑘−2 − 𝑥𝑘−1)(𝑥𝑘−2 − 𝑥𝑘−3); 

 

𝜔𝑘−1
𝑀 (𝑥) =

𝑐𝑘−1(𝑥)

𝑑𝑘−1
, 

𝑐𝑘−1 = (𝑥 − 𝑥𝑘+3)(𝑥 − 𝑥𝑘+2)(𝑥 − 𝑥𝑘+1) 
× (𝑥 − 𝑥𝑘)(𝑥 − 𝑥𝑘−2)(𝑥 − 𝑥𝑘−3), 
𝑑𝑘−1 = (𝑥𝑘−1 − 𝑥𝑘+3)(𝑥𝑘−1 − 𝑥𝑘+2) 
× (𝑥𝑘−1 − 𝑥𝑘+1)(𝑥𝑘−1 − 𝑥𝑘) 
× (𝑥𝑘−1 − 𝑥𝑘−2)(𝑥𝑘−1 − 𝑥𝑘−3); 

 

 

𝜔𝑘
𝑀(𝑥) =

𝑐𝑘  (𝑥)

𝑑𝑘
, 

𝑐𝑘(𝑥) = (𝑥 − 𝑥𝑘+3)(𝑥 − 𝑥𝑘+2)(𝑥 − 𝑥𝑘+1) 
× (𝑥 − 𝑥𝑘−1)(𝑥 − 𝑥𝑘−2)(𝑥 − 𝑥𝑘−3), 
𝑑𝑘 = (𝑥𝑘 − 𝑥𝑘+3)(𝑥𝑘 − 𝑥𝑘+2)(𝑥𝑘 − 𝑥𝑘+1) 

 

× (𝑥𝑘 − 𝑥𝑘−1)(𝑥𝑘 − 𝑥𝑘−2)(𝑥𝑘 − 𝑥𝑘−3); 
 

𝜔𝑘+1
𝑀 (𝑥) =

𝑐𝑘+1(𝑥)

𝑑𝑘+1
, 

𝑐𝑘+1(𝑥) = (𝑥 − 𝑥𝑘+3)(𝑥 − 𝑥𝑘+2)(𝑥 − 𝑥𝑘) 
× (𝑥 − 𝑥𝑘−1)(𝑥 − 𝑥𝑘−2)(𝑥 − 𝑥𝑘−3), 
𝑑𝑘+1 = (𝑥𝑘+1 − 𝑥𝑘+3)(𝑥𝑘+1 − 𝑥𝑘+2) 
× (𝑥𝑘+1 − 𝑥𝑘)(𝑥𝑘+1 − 𝑥𝑘−1) 
× (𝑥𝑘+1 − 𝑥𝑘−2)(𝑥𝑘+1 − 𝑥𝑘−3); 

 

 

𝜔𝑘+2
𝑀 (𝑥) =

𝑐𝑘+2(𝑥)

𝑑𝑘+2
, 

𝑐𝑘+2(𝑥) = (𝑥 − 𝑥𝑘+1)(𝑥 − 𝑥𝑘)(𝑥 − 𝑥𝑘−1) 
× (𝑥 − 𝑥𝑘−2)(𝑥 − 𝑥𝑘−3)(𝑥 − 𝑥𝑘+3), 
𝑑𝑘+2 = (𝑥𝑘+2 − 𝑥𝑘+1)(𝑥𝑘+2 − 𝑥𝑘) 
× (𝑥𝑘+2 − 𝑥𝑘−1)(𝑥𝑘+2 − 𝑥𝑘−2) 
× (𝑥𝑘+2 − 𝑥𝑘−3)(𝑥𝑘+2 − 𝑥𝑘+3). 

 

 

Approximations with these basis splines can be 
constructed on the grid intervals [𝑥𝑘,𝑥𝑘+1], 𝑘 =
3, … , 𝑛 − 3. 
 
      Let us consider the approximation with the left 
basis splines. We get the left basis splines when 
 𝑟1 = 6, 𝑟 = 1. In this case, formula (1) on the 
interval [𝑥𝑘 , 𝑥𝑘+1] takes the form: 
 

𝑢̃𝐿(𝑥) = ∑ 𝑢(𝑥𝑗)𝜔𝑗
𝐿(𝑥) , 𝑥 ∈ [𝑥𝑘,𝑥𝑘+1].

𝑘+1

𝑗=𝑘−5

   

 
where the basis splines 𝜔𝑘

𝐿(𝑥) have the form 
 

𝜔𝑘−5
𝐿 (𝑥) = 𝑐𝑘−5(𝑥)/𝑑𝑘−5, 

𝑐𝑘−5(𝑥) = (𝑥 − 𝑥𝑘+1)(𝑥 − 𝑥𝑘)(𝑥 − 𝑥𝑘−1) 
× (𝑥 − 𝑥𝑘−2)(𝑥 − 𝑥𝑘−3)(𝑥 − 𝑥𝑘−4), 
𝑑𝑘−5 = (𝑥𝑘−5 − 𝑥𝑘+1)(𝑥𝑘−5 − 𝑥𝑘) 
× (𝑥𝑘−5 − 𝑥𝑘−1)(𝑥𝑘−5 − 𝑥𝑘−2) 
× (𝑥𝑘−5 − 𝑥𝑘−3)(𝑥𝑘−5 − 𝑥𝑘−4); 

 

 

𝜔𝑘−4
𝐿 (𝑥) =

𝑐𝑘−4(𝑥)

𝑑𝑘−4
, 

𝑐𝑘−4(𝑥) = (𝑥 − 𝑥𝑘+1)(𝑥 − 𝑥𝑘)(𝑥 − 𝑥𝑘−1) 
× (𝑥 − 𝑥𝑘−2)(𝑥 − 𝑥𝑘−3)(𝑥 − 𝑥𝑘−5), 
𝑑𝑘−4 = (𝑥𝑘−4 − 𝑥𝑘+1)(𝑥𝑘−4 − 𝑥𝑘) 
× (𝑥𝑘−4 − 𝑥𝑘−1)(𝑥𝑘−4 − 𝑥𝑘−2) 
× (𝑥𝑘−4 − 𝑥𝑘−3)(𝑥𝑘−4 − 𝑥𝑘−5); 

 

 

𝜔𝑘−3
𝐿 (𝑥) =

𝑐𝑘−3(𝑥)

𝑑𝑘−3
, 

𝑐𝑘−3(𝑥) = (𝑥 − 𝑥𝑘+1)(𝑥 − 𝑥𝑘)(𝑥 − 𝑥𝑘−1) 
× (𝑥 − 𝑥𝑘−2)(𝑥 − 𝑥𝑘−4)(𝑥 − 𝑥𝑘−5), 
𝑑𝑘−3 = (𝑥𝑘−3 − 𝑥𝑘+1)(𝑥𝑘−3 − 𝑥𝑘) 
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× (𝑥𝑘−3 − 𝑥𝑘−1)(𝑥𝑘−3 − 𝑥𝑘−2) 
× (𝑥𝑘−3 − 𝑥𝑘−4)(𝑥𝑘−3 − 𝑥𝑘−5); 
 

𝜔𝑘−2
𝐿 (𝑥) =

𝑐𝑘−2(𝑥)

𝑑𝑘−2
, 

𝑐𝑘−2(𝑥) = (𝑥 − 𝑥𝑘+1)(𝑥 − 𝑥𝑘)(𝑥 − 𝑥𝑘−1) 
× (𝑥 − 𝑥𝑘−3)(𝑥 − 𝑥𝑘−4)(𝑥 − 𝑥𝑘−5), 
𝑑𝑘−2 = (𝑥𝑘−2 − 𝑥𝑘+1)(𝑥𝑘−2 − 𝑥𝑘) 
× (𝑥𝑘−2 − 𝑥𝑘−1)(𝑥𝑘−2 − 𝑥𝑘−3) 
× (𝑥𝑘−2 − 𝑥𝑘−4)(𝑥𝑘−2 − 𝑥𝑘−5); 

 

 

𝜔𝑘−1
𝐿 (𝑥) =

𝑐𝑘−1(𝑥)

𝑑𝑘−1
, 

𝑐𝑘−1(𝑥) = (𝑥 − 𝑥𝑘+1)(𝑥 − 𝑥𝑘)(𝑥 − 𝑥𝑘−2) 
× (𝑥 − 𝑥𝑘−3)(𝑥 − 𝑥𝑘−4)(𝑥 − 𝑥𝑘−5), 
𝑑𝑘−1 = (𝑥𝑘−1 − 𝑥𝑘+1)(𝑥𝑘−1 − 𝑥𝑘) 
× (𝑥𝑘−1 − 𝑥𝑘−2)(𝑥𝑘−1 − 𝑥𝑘−3) 
× (𝑥𝑘−1 − 𝑥𝑘−4)(𝑥𝑘−1 − 𝑥𝑘−5); 

 

 

𝜔𝑘
𝐿(𝑥) =

𝑐𝑘(𝑥)

𝑑𝑘
, 

𝑐𝑘(𝑥) = (𝑥 − 𝑥𝑘+1)(𝑥 − 𝑥𝑘−1)(𝑥 − 𝑥𝑘−2) 
(𝑥 − 𝑥𝑘−3)(𝑥 − 𝑥𝑘−4)(𝑥 − 𝑥𝑘−5), 
𝑑𝑘 = (𝑥𝑘 − 𝑥𝑘+1)(𝑥𝑘 − 𝑥𝑘−1)(𝑥𝑘 − 𝑥𝑘−2) 
(𝑥𝑘 − 𝑥𝑘−3)(𝑥𝑘 − 𝑥𝑘−4)(𝑥𝑘 − 𝑥𝑘−5); 

 

 

𝜔𝑘+1
𝐿 (𝑥) =

𝑐𝑘+1(𝑥)

𝑑𝑘+1
, 

𝑐𝑘+1(𝑥) = (𝑥 − 𝑥𝑘)(𝑥 − 𝑥𝑘−1)(𝑥 − 𝑥𝑘−2) 
× (𝑥 − 𝑥𝑘−3)(𝑥 − 𝑥𝑘−4)(𝑥 − 𝑥𝑘−5), 
𝑑𝑘+1 = (𝑥𝑘+1 − 𝑥𝑘)(𝑥𝑘+1 − 𝑥𝑘−1) 
× (𝑥𝑘+1 − 𝑥𝑘−2)(𝑥𝑘+1 − 𝑥𝑘−3) 
× (𝑥𝑘+1 − 𝑥𝑘−4)(𝑥𝑘+1 − 𝑥𝑘−5). 

 

 
Approximations with these basis splines can be 
applied on the next grid interval [𝑥𝑘,𝑥𝑘+1], 𝑘 =
5, … , 𝑛 − 1. 
 
      Let us consider the approximation with the left-
right basis splines. We get the left basis splines 
when  𝑟1 = 5, 𝑟 = 2. In this case, formula (1) on 
the interval [𝑥𝑘 , 𝑥𝑘+1] takes the form 

 

𝑢̃𝐿𝑅(𝑥) = ∑ 𝑢(𝑥𝑗)𝜔𝑗
𝐿𝑅(𝑥) , 𝑥 ∈ [𝑥𝑘,𝑥𝑘+1],

𝑘+2

𝑗=𝑘−4

 

 
where the basis splines 𝜔𝑘

𝐿𝑅(𝑥) have the form 
 

𝜔𝑘−4
𝐿𝑅 (𝑥) = 𝑐𝑘−4(𝑥)/𝑑𝑘−4, 

𝑐𝑘−4(𝑥) = (𝑥 − 𝑥𝑘+2)(𝑥 − 𝑥𝑘+1)(𝑥 − 𝑥𝑘) 
× (𝑥 − 𝑥𝑘−1)(𝑥 − 𝑥𝑘−2)(𝑥 − 𝑥𝑘−3), 
𝑑𝑘−4 = (𝑥𝑘−4 − 𝑥𝑘+2)(𝑥𝑘−4 − 𝑥𝑘+1) 

 

× (𝑥𝑘−4 − 𝑥𝑘)(𝑥𝑘−4 − 𝑥𝑘−1) 
× (𝑥𝑘−4 − 𝑥𝑘−2)(𝑥𝑘−4 − 𝑥𝑘−3); 
 

𝜔𝑘−3
𝐿𝑅 (𝑥) =

𝑐𝑘−3(𝑥)

𝑑𝑘−3
, 

𝑐𝑘−3(𝑥) = (𝑥 − 𝑥𝑘+2)(𝑥 − 𝑥𝑘+1)(𝑥 − 𝑥𝑘) 
× (𝑥 − 𝑥𝑘−1)(𝑥 − 𝑥𝑘−2)(𝑥 − 𝑥𝑘−4), 
𝑑𝑘−3 = (𝑥𝑘−3 − 𝑥𝑘+2)(𝑥𝑘−3 − 𝑥𝑘+1) 
× (𝑥𝑘−3 − 𝑥𝑘)(𝑥𝑘−3 − 𝑥𝑘−1) 
× (𝑥𝑘−3 − 𝑥𝑘−2)(𝑥𝑘−3 − 𝑥𝑘−4); 

 

 

𝜔𝑘−2
𝐿𝑅 (𝑥) =

𝑐𝑘−2(𝑥)

𝑑𝑘−2
, 

𝑐𝑘−2(𝑥) = (𝑥 − 𝑥𝑘+2)(𝑥 − 𝑥𝑘+1)(𝑥 − 𝑥𝑘) 
× (𝑥 − 𝑥𝑘−1)(𝑥 − 𝑥𝑘−3)(𝑥 − 𝑥𝑘−4), 
𝑑𝑘−2 = (𝑥𝑘−2 − 𝑥𝑘+2)(𝑥𝑘−2 − 𝑥𝑘+1) 
× (𝑥𝑘−2 − 𝑥𝑘)(𝑥𝑘−2 − 𝑥𝑘−1) 
× (𝑥𝑘−2 − 𝑥𝑘−3)(𝑥𝑘−2 − 𝑥𝑘−4); 

 

 

𝜔𝑘−1
𝐿𝑅 (𝑥) =

𝑐𝑘−1(𝑥)

𝑑𝑘−1
, 

𝑐𝑘−1(𝑥) = (𝑥 − 𝑥𝑘+2)(𝑥 − 𝑥𝑘+1)(𝑥 − 𝑥𝑘) 
× (𝑥 − 𝑥𝑘−2)(𝑥 − 𝑥𝑘−3)(𝑥 − 𝑥𝑘−4), 
𝑑𝑘−1 = (𝑥𝑘−1 − 𝑥𝑘+2)(𝑥𝑘−1 − 𝑥𝑘+1) 
× (𝑥𝑘−1 − 𝑥𝑘)(𝑥𝑘−1 − 𝑥𝑘−2) 
× (𝑥𝑘−1 − 𝑥𝑘−3)(𝑥𝑘−1 − 𝑥𝑘−4); 

 

 

𝜔𝑘
𝐿𝑅(𝑥) =

𝑐𝑘(𝑥)

𝑑𝑘
, 

𝑐𝑘(𝑥) = (𝑥 − 𝑥𝑘+2)(𝑥 − 𝑥𝑘+1)(𝑥 − 𝑥𝑘−1) 
× (𝑥 − 𝑥𝑘−2)(𝑥 − 𝑥𝑘−3)(𝑥 − 𝑥𝑘−4), 
𝑑𝑘 = (𝑥𝑘 − 𝑥𝑘+2)(𝑥𝑘 − 𝑥𝑘+1) 
× (𝑥𝑘 − 𝑥𝑘−1)(𝑥𝑘 − 𝑥𝑘−2) 
× (𝑥𝑘 − 𝑥𝑘−3)(𝑥𝑘 − 𝑥𝑘−4); 

 

 

𝜔𝑘+1
𝐿𝑅 (𝑥) =

𝑐𝑘+1(𝑥)

𝑑𝑘+1
, 

𝑐𝑘+1(𝑥) = (𝑥 − 𝑥𝑘+2)(𝑥 − 𝑥𝑘)(𝑥 − 𝑥𝑘−1) 
× (𝑥 − 𝑥𝑘−2)(𝑥 − 𝑥𝑘−3)(𝑥 − 𝑥𝑘−4), 
𝑑𝑘+1 = (𝑥𝑘+1 − 𝑥𝑘+2)(𝑥𝑘+1 − 𝑥𝑘) 
× (𝑥𝑘+1 − 𝑥𝑘−1)(𝑥𝑘+1 − 𝑥𝑘−2) 
× (𝑥𝑘+1 − 𝑥𝑘−3)(𝑥𝑘+1 − 𝑥𝑘−4); 

 

 

𝜔𝑘+2
𝐿𝑅 (𝑥) =

𝑐𝑘+2(𝑥)

𝑑𝑘+2
, 

𝑐𝑘+2(𝑥) = (𝑥 − 𝑥𝑘+1)(𝑥 − 𝑥𝑘)(𝑥 − 𝑥𝑘−1) 
× (𝑥 − 𝑥𝑘−2)(𝑥 − 𝑥𝑘−3)(𝑥 − 𝑥𝑘−4), 
𝑑𝑘+2 = (𝑥𝑘+2 − 𝑥𝑘−1)(𝑥𝑘+2 − 𝑥𝑘) 
× (𝑥𝑘+2 − 𝑥𝑘−1)(𝑥𝑘+2 − 𝑥𝑘−2) 
× (𝑥𝑘+2 − 𝑥𝑘−3)(𝑥𝑘+2 − 𝑥𝑘−4). 
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Approximations with these basis splines can be 
applied on the next grid intervals [𝑥𝑘,𝑥𝑘+1], 𝑘 =
4, … , 𝑛 − 2. 
 
      Consider the approximation with the right basis 
splines. Let 𝑟1 = 1, 𝑟 = 6. In this case, formula (1) 
takes the next form on the interval [𝑥𝑘 , 𝑥𝑘+1]: 
 

𝑢̃𝑅(𝑥) = ∑ 𝑢(𝑥𝑗)𝜔𝑗
𝑅(𝑥), 𝑥 ∈ [𝑥𝑘 , 𝑥𝑘+1]

𝑘+6

𝑗=𝑘

 ,  

where the right basis splines 𝜔𝑗
𝑅(𝑥) have the form: 

𝜔𝑘
𝑅(𝑥) =

𝑐𝑘(𝑥)

𝑑𝑘
, 

𝑐𝑘(𝑥) = (𝑥 − 𝑥𝑘+6)(𝑥 − 𝑥𝑘+5)(𝑥 − 𝑥𝑘+4) 
× (𝑥 − 𝑥𝑘+3)(𝑥 − 𝑥𝑘+2)(𝑥 − 𝑥𝑘+1), 

𝑑𝑘 = (𝑥𝑘 − 𝑥𝑘+6)(𝑥𝑘 − 𝑥𝑘+5)(𝑥𝑘 − 𝑥𝑘+4) 
× (𝑥𝑘 − 𝑥𝑘+3)(𝑥𝑘 − 𝑥𝑘+2)(𝑥𝑘 − 𝑥𝑘+1); 

 

 

𝜔𝑘+1
𝑅 (𝑥) =

𝑐𝑘+1(𝑥)

𝑑𝑘+1
, 

𝑐𝑘+1(𝑥) = (𝑥 − 𝑥𝑘+6)(𝑥 − 𝑥𝑘+5)(𝑥 − 𝑥𝑘+4) 
× (𝑥 − 𝑥𝑘+3)(𝑥 − 𝑥𝑘+2)(𝑥 − 𝑥𝑘), 
𝑑𝑘+1 = (𝑥𝑘+1 − 𝑥𝑘+6)(𝑥𝑘+1 − 𝑥𝑘+5) 
× (𝑥𝑘+1 − 𝑥𝑘+4)(𝑥𝑘+1 − 𝑥𝑘+3) 
× (𝑥𝑘+1 − 𝑥𝑘+2)(𝑥𝑘+1 − 𝑥𝑘); 

 

 

𝜔𝑘+2
𝑅 (𝑥) =

𝑐𝑘+2(𝑥)

𝑑𝑘+2
, 

𝑐𝑘+2(𝑥) = (𝑥 − 𝑥𝑘+6)(𝑥 − 𝑥𝑘+5)(𝑥 − 𝑥𝑘+4) 
× (𝑥 − 𝑥𝑘+3)(𝑥 − 𝑥𝑘+1)(𝑥 − 𝑥𝑘), 
𝑑𝑘+2 = (𝑥𝑘+2 − 𝑥𝑘+6)(𝑥𝑘+2 − 𝑥𝑘+5) 
× (𝑥𝑘+2 − 𝑥𝑘+4)(𝑥𝑘+2 − 𝑥𝑘+3) 
× (𝑥𝑘+2 − 𝑥𝑘+1)(𝑥𝑘+2 − 𝑥𝑘); 

 

 

𝜔𝑘+3
𝑅 (𝑥) =

𝑐𝑘+3(𝑥)

𝑑𝑘+3
, 

𝑐𝑘+3 (𝑥) = (𝑥 − 𝑥𝑘+6)(𝑥 − 𝑥𝑘+5)(𝑥 − 𝑥𝑘+4) 
× (𝑥 − 𝑥𝑘+2)(𝑥 − 𝑥𝑘+1)(𝑥 − 𝑥𝑘), 
𝑑𝑘+3 = (𝑥𝑘+3 − 𝑥𝑘+6)(𝑥𝑘+3 − 𝑥𝑘+5) 
× (𝑥𝑘+3 − 𝑥𝑘+4)(𝑥𝑘+3 − 𝑥𝑘+2) 
× (𝑥𝑘+3 − 𝑥𝑘+1)(𝑥𝑘+3 − 𝑥𝑘); 

 

 

𝜔𝑘+4
𝑅 (𝑥) =

𝑐𝑘+4(𝑥)

𝑑𝑘+4
, 

𝑐𝑘+4(𝑥) = (𝑥 − 𝑥𝑘+6)(𝑥 − 𝑥𝑘+5)(𝑥 − 𝑥𝑘+3) 
× (𝑥 − 𝑥𝑘+2)(𝑥 − 𝑥𝑘+1)(𝑥 − 𝑥𝑘), 
𝑑𝑘+4 = (𝑥𝑘+4 − 𝑥𝑘+6)(𝑥𝑘+4 − 𝑥𝑘+5) 
× (𝑥𝑘+4 − 𝑥𝑘+3)(𝑥𝑘+4 − 𝑥𝑘+2) 
× (𝑥𝑘+4 − 𝑥𝑘+1)(𝑥𝑘+4 − 𝑥𝑘); 

 

 

𝜔𝑘+5
𝑅 (𝑥) =

𝑐𝑘+5(𝑥)

𝑑𝑘+5
, 

𝑐𝑘+5(𝑥) = (𝑥 − 𝑥𝑘+6)(𝑥 − 𝑥𝑘+4)(𝑥 − 𝑥𝑘+3) 
× (𝑥 − 𝑥𝑘+2)(𝑥 − 𝑥𝑘+1)(𝑥 − 𝑥𝑘), 
𝑑𝑘+5 = (𝑥𝑘+5 − 𝑥𝑘+6)(𝑥𝑘+5 − 𝑥𝑘+4) 
× (𝑥𝑘+5 − 𝑥𝑘+3)(𝑥𝑘+5 − 𝑥𝑘+2) 

× (𝑥𝑘+5 − 𝑥𝑘+1)(𝑥𝑘+5 − 𝑥𝑘); 

 

 

𝜔𝑘+6
𝑅 (𝑥) =

𝑐𝑘+6(𝑥)

𝑑𝑘+6
, 

𝑐𝑘+6(𝑥) = (𝑥 − 𝑥𝑘+5)(𝑥 − 𝑥𝑘+4)(𝑥 − 𝑥𝑘+3) 
× (𝑥 − 𝑥𝑘+2)(𝑥 − 𝑥𝑘+1)(𝑥 − 𝑥𝑘), 
𝑑𝑘+6 = (𝑥𝑘+6 − 𝑥𝑘+5)(𝑥𝑘+6 − 𝑥𝑘+4) 
× (𝑥𝑘+6 − 𝑥𝑘+3)(𝑥𝑘+6 − 𝑥𝑘+2) 
× (𝑥𝑘+6 − 𝑥𝑘+1)(𝑥𝑘+6 − 𝑥𝑘). 

 

 
Approximations with these basis splines can be 
applied on the next grid intervals [𝑥𝑘,𝑥𝑘+1], 𝑘 =
0, … , 𝑛 − 6. 
 
      Consider the approximation with the right-left 
basis splines. Let 𝑟1 = 2, 𝑟 = 5, in this case, on the 
interval [𝑥𝑘 , 𝑥𝑘+1] formula (1) takes the form: 
 

𝑢̃𝑅𝐿(𝑥) = ∑ 𝑢(𝑥𝑗)𝜔𝑗
𝑅𝐿(𝑥), 𝑥 ∈ [𝑥𝑘 , 𝑥𝑘+1]

𝑘+5

𝑗=𝑘−1

 ,  

where the right-left basis splines 𝜔𝑗
𝑅(𝑥) have the 

form: 

𝜔𝑘+5
𝑅𝐿 (𝑥) =

𝑐𝑘+5(𝑥)

𝑑𝑘+5
, 

𝑐𝑘+5(𝑥) = (𝑥 − 𝑥𝑘+4)(𝑥 − 𝑥𝑘+3)(𝑥 − 𝑥𝑘+2) 
× (𝑥 − 𝑥𝑘+1)(𝑥 − 𝑥𝑘)(𝑥 − 𝑥𝑘−1), 
𝑑𝑘+5 = (𝑥𝑘+5 − 𝑥𝑘+4)(𝑥𝑘+5 − 𝑥𝑘+3) 
× (𝑥𝑘+5 − 𝑥𝑘+2)(𝑥𝑘+5 − 𝑥𝑘+1) 

× (𝑥𝑘+5 − 𝑥𝑘)(𝑥𝑘+5 − 𝑥𝑘−1); 

 

 

𝜔𝑘+4
𝑅𝐿 (𝑥) =

𝑐𝑘+4(𝑥)

𝑑𝑘+4
, 

𝑐𝑘+4(𝑥) = (𝑥 − 𝑥𝑘+5)(𝑥 − 𝑥𝑘+3)(𝑥 − 𝑥𝑘+2) 
× (𝑥 − 𝑥𝑘+1)(𝑥 − 𝑥𝑘)(𝑥 − 𝑥𝑘−1), 
𝑑𝑘+4 = (𝑥𝑘+4 − 𝑥𝑘+5)(𝑥𝑘+4 − 𝑥𝑘+3) 
× (𝑥𝑘+4 − 𝑥𝑘+2)(𝑥𝑘+4 − 𝑥𝑘+1) 
× (𝑥𝑘+4 − 𝑥𝑘)(𝑥𝑘+4 − 𝑥𝑘−1); 
 

𝜔𝑘+3
𝑅𝐿 (𝑥) =

𝑐𝑘+3(𝑥)

𝑑𝑘+3
, 

𝑐𝑘+3(𝑥) = (𝑥 − 𝑥𝑘+5)(𝑥 − 𝑥𝑘+4)(𝑥 − 𝑥𝑘+2) 
× (𝑥 − 𝑥𝑘+1)(𝑥 − 𝑥𝑘)(𝑥 − 𝑥𝑘−1), 
𝑑𝑘+3 = (𝑥𝑘+3 − 𝑥𝑘+5)(𝑥𝑘+3 − 𝑥𝑘+4) 
× (𝑥𝑘+3 − 𝑥𝑘+2)(𝑥𝑘+3 − 𝑥𝑘+1) 
× (𝑥𝑘+3 − 𝑥𝑘)(𝑥𝑘+3 − 𝑥𝑘−1); 
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𝜔𝑘+2
𝑅𝐿 (𝑥) =

𝑐𝑘+2(𝑥)

𝑑𝑘+2
, 

𝑐𝑘+2(𝑥) = (𝑥 − 𝑥𝑘+5)(𝑥 − 𝑥𝑘+4)(𝑥 − 𝑥𝑘+3) 
× (𝑥 − 𝑥𝑘+1)(𝑥 − 𝑥𝑘)(𝑥 − 𝑥𝑘−1), 
𝑑𝑘+2 = (𝑥𝑘+2 − 𝑥𝑘+5)(𝑥𝑘+2 − 𝑥𝑘+4) 
× (𝑥𝑘+2 − 𝑥𝑘+3)(𝑥𝑘+2 − 𝑥𝑘+1) 
× (𝑥𝑘+2 − 𝑥𝑘)(𝑥𝑘+2 − 𝑥𝑘−1); 
 

𝜔𝑘+1
𝑅𝐿 (𝑥) =

𝑐𝑘+1(𝑥)

𝑑𝑘+1
, 

𝑐𝑘+1(𝑥) = (𝑥 − 𝑥𝑘+5)(𝑥 − 𝑥𝑘+4)(𝑥 − 𝑥𝑘+3) 
× (𝑥 − 𝑥𝑘+2)(𝑥 − 𝑥𝑘)(𝑥 − 𝑥𝑘−1), 
𝑑𝑘+1 = (𝑥𝑘+1 − 𝑥𝑘+5)(𝑥𝑘+1 − 𝑥𝑘+4) 
× (𝑥𝑘+1 − 𝑥𝑘+3)(𝑥𝑘+1 − 𝑥𝑘+2) 
× (𝑥𝑘+1 − 𝑥𝑘)(𝑥𝑘+1 − 𝑥𝑘−1); 
 

𝜔𝑘
𝑅𝐿(𝑥) =

𝑐𝑘(𝑥)

𝑑𝑘
, 

𝑐𝑘(𝑥) = (𝑥 − 𝑥𝑘+5)(𝑥 − 𝑥𝑘+4)(𝑥 − 𝑥𝑘+3) 
× (𝑥 − 𝑥𝑘+2)(𝑥 − 𝑥𝑘+1)(𝑥 − 𝑥𝑘−1), 
𝑑𝑘 = (𝑥𝑘 − 𝑥𝑘+5)(𝑥𝑘 − 𝑥𝑘+4) 
× (𝑥𝑘 − 𝑥𝑘+3)(𝑥𝑘 − 𝑥𝑘+2) 
× (𝑥𝑘 − 𝑥𝑘+1)(𝑥𝑘 − 𝑥𝑘−1); 
 

𝜔𝑘−1
𝑅𝐿 (𝑥) =

𝑐𝑘−1(𝑥)

𝑑𝑘−1
, 

𝑐𝑘−1(𝑥) = (𝑥 − 𝑥𝑘+5)(𝑥 − 𝑥𝑘+4)(𝑥 − 𝑥𝑘+3) 
× (𝑥 − 𝑥𝑘+2)(𝑥 − 𝑥𝑘+1)(𝑥 − 𝑥𝑘), 
𝑑𝑘−1 = (𝑥𝑘−1 − 𝑥𝑘+5)(𝑥𝑘−1 − 𝑥𝑘+4) 
× (𝑥𝑘−1 − 𝑥𝑘+3)(𝑥𝑘−1 − 𝑥𝑘+2) 
× (𝑥𝑘−1 − 𝑥𝑘+1)(𝑥𝑘−1 − 𝑥𝑘). 
 
Approximations with these basis splines can be 
applied on the next grid intervals [𝑥𝑘,𝑥𝑘+1], 𝑘 =
1, … , 𝑛 − 5. 
 
      Consider the approximation with the right-left-
left basis splines. Let 𝑟1 = 3, 𝑟 = 4. In this case, on 
the interval [𝑥𝑘 , 𝑥𝑘+1] formula (1) takes the form: 
 

𝑢̃𝑅𝐿𝐿(𝑥) = ∑ 𝑢(𝑥𝑗)𝜔𝑗
𝑅𝐿𝐿(𝑥),

𝑘+4

𝑗=𝑘−2

𝑥 ∈ [𝑥𝑘 , 𝑥𝑘+1] ,  
where the right-left-left basis splines 𝜔𝑗

𝑅𝐿𝐿(𝑥) have 
the form: 

𝜔𝑘+4
𝑅𝐿𝐿 (𝑥) =

𝑐𝑘+4(𝑥)

𝑑𝑘+4
, 

𝑐𝑘+4(𝑥) = (𝑥 − 𝑥𝑘+3)(𝑥 − 𝑥𝑘+2)(𝑥 − 𝑥𝑘+1) 
× (𝑥 − 𝑥𝑘)(𝑥 − 𝑥𝑘−1)(𝑥 − 𝑥𝑘−2), 
𝑑𝑘+4 = (𝑥𝑘+4 − 𝑥𝑘+3)(𝑥𝑘+4 − 𝑥𝑘+2) 

 

× (𝑥𝑘+4 − 𝑥𝑘+1)(𝑥𝑘+4 − 𝑥𝑘) 
× (𝑥𝑘+4 − 𝑥𝑘−1)(𝑥𝑘+4 − 𝑥𝑘−2); 

 

𝜔𝑘+3
𝑅𝐿𝐿 (𝑥) =

𝑐𝑘+3(𝑥)

𝑑𝑘+3
, 

𝑐𝑘+3(𝑥) = (𝑥 − 𝑥𝑘+4)(𝑥 − 𝑥𝑘+2)(𝑥 − 𝑥𝑘+1) 
× (𝑥 − 𝑥𝑘)(𝑥 − 𝑥𝑘−1)(𝑥 − 𝑥𝑘−2), 
𝑑𝑘+3 = (𝑥𝑘+3 − 𝑥𝑘+4)(𝑥𝑘+3 − 𝑥𝑘+2) 
× (𝑥𝑘+3 − 𝑥𝑘+1)(𝑥𝑘+3 − 𝑥𝑘) 
× (𝑥𝑘+3 − 𝑥𝑘−1)(𝑥𝑘+3 − 𝑥𝑘−2); 
 

𝜔𝑘+2
𝑅𝐿𝐿 (𝑥) =

𝑐𝑘+2(𝑥)

𝑑𝑘+2
, 

𝑐𝑘+2(𝑥) = (𝑥 − 𝑥𝑘+4)(𝑥 − 𝑥𝑘+3)(𝑥 − 𝑥𝑘+1) 
× (𝑥 − 𝑥𝑘)(𝑥 − 𝑥𝑘−1)(𝑥 − 𝑥𝑘−2), 
𝑑𝑘+2 = (𝑥𝑘+2 − 𝑥𝑘+4)(𝑥𝑘+2 − 𝑥𝑘+3) 
× (𝑥𝑘+2 − 𝑥𝑘+1)(𝑥𝑘+2 − 𝑥𝑘) 
× (𝑥𝑘+2 − 𝑥𝑘−1)(𝑥𝑘+2 − 𝑥𝑘−2); 
 

𝜔𝑘+1
𝑅𝐿𝐿 (𝑥) =

𝑐𝑘+1(𝑥)

𝑑𝑘+1
, 

𝑐𝑘+1(𝑥) = (𝑥 − 𝑥𝑘+4)(𝑥 − 𝑥𝑘+3)(𝑥 − 𝑥𝑘+2) 
× (𝑥 − 𝑥𝑘)(𝑥 − 𝑥𝑘−1)(𝑥 − 𝑥𝑘−2), 
𝑑𝑘+1 = (𝑥𝑘+1 − 𝑥𝑘+4)(𝑥𝑘+1 − 𝑥𝑘+3) 
× (𝑥𝑘+1 − 𝑥𝑘+2)(𝑥𝑘+1 − 𝑥𝑘) 
× (𝑥𝑘+1 − 𝑥𝑘−1)(𝑥𝑘+1 − 𝑥𝑘−2); 
 

𝜔𝑘
𝑅𝐿𝐿(𝑥) =

𝑐𝑘(𝑥)

𝑑𝑘
, 

𝑐𝑘(𝑥) = (𝑥 − 𝑥𝑘+4)(𝑥 − 𝑥𝑘+3)(𝑥 − 𝑥𝑘+2) 
× (𝑥 − 𝑥𝑘+1)(𝑥 − 𝑥𝑘−1)(𝑥 − 𝑥𝑘−2), 
𝑑𝑘 = (𝑥𝑘 − 𝑥𝑘+4)(𝑥𝑘 − 𝑥𝑘+3) 
× (𝑥𝑘 − 𝑥𝑘+2)(𝑥𝑘 − 𝑥𝑘+1) 
× (𝑥𝑘 − 𝑥𝑘−1)(𝑥𝑘 − 𝑥𝑘−2); 
 

𝜔𝑘−1
𝑅𝐿𝐿 (𝑥) =

𝑐𝑘−1(𝑥)

𝑑𝑘−1
, 

𝑐𝑘−1(𝑥) = (𝑥 − 𝑥𝑘+4)(𝑥 − 𝑥𝑘+3)(𝑥 − 𝑥𝑘+2) 
× (𝑥 − 𝑥𝑘−1)(𝑥 − 𝑥𝑘)(𝑥 − 𝑥𝑘−2), 
𝑑𝑘−1 = (𝑥𝑘−1 − 𝑥𝑘+4)(𝑥𝑘−1 − 𝑥𝑘+3) 
× (𝑥𝑘−1 − 𝑥𝑘+2)(𝑥𝑘−1 − 𝑥𝑘+1) 
× (𝑥𝑘−1 − 𝑥𝑘)(𝑥𝑘−1 − 𝑥𝑘−2); 
 

𝜔𝑘−2
𝑅𝐿𝐿 (𝑥) =

𝑐𝑘−2(𝑥)

𝑑𝑘−2
, 

𝑐𝑘−2(𝑥) = (𝑥 − 𝑥𝑘+4)(𝑥 − 𝑥𝑘+3)(𝑥 − 𝑥𝑘+2) 
× (𝑥 − 𝑥𝑘+1)(𝑥 − 𝑥𝑘)(𝑥 − 𝑥𝑘−1), 
𝑑𝑘−2 = (𝑥𝑘−2 − 𝑥𝑘+4)(𝑥𝑘−2 − 𝑥𝑘+3) 
× (𝑥𝑘−2 − 𝑥𝑘+2)(𝑥𝑘−2 − 𝑥𝑘+1) 
× (𝑥𝑘−2 − 𝑥𝑘)(𝑥𝑘−2 − 𝑥𝑘−1). 
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Approximations with these basis splines can be 
applied on the next grid intervals [𝑥𝑘,𝑥𝑘+1], 𝑘 =
2, … , 𝑛 − 4. 
 
      When approximating a function with the splines 
of the 7th order of approximation, the next Theorem 
is valid.  
 
Theorem. If supp 𝜔𝑘 = [𝑥𝑘−1, 𝑥𝑘+6], then the 
following inequality is valid: 
 

|𝑢(𝑥) − 𝑢̃𝐿(𝑥)|𝑥∈[𝑥𝑘,𝑥𝑘+1]

≤ ℎ7
95.842

7!
 ∥ 𝑢(7) ∥𝐶[𝑥𝑘−5,𝑥𝑘+1]. 

If supp 𝜔𝑘 = [𝑥𝑘−2, 𝑥𝑘+5], then the following 
inequality is valid: 
 

|𝑢(𝑥) − 𝑢̃𝐿𝑅(𝑥)|𝑥∈[𝑥𝑘,𝑥𝑘+1]

≤ ℎ7
23.149

7!
 ∥ 𝑢(7) ∥𝐶[𝑥𝑘−4,𝑥𝑘+2]. 

 
 If supp 𝜔𝑘 = [𝑥𝑘−3, 𝑥𝑘+4], then the following 
approximation estimate is valid: 
 

|𝑢(𝑥) − 𝑢̃𝑀(𝑥)|𝑥∈[𝑥𝑘,𝑥𝑘+1]

≤ ℎ7
12.359

7!
∥ 𝑢(7) ∥𝐶[𝑥𝑘−3,𝑥𝑘+3]. 

 
If supp 𝜔𝑘 = [𝑥𝑘−4, 𝑥𝑘+3], then the following 
approximation estimate is valid: 
 

|𝑢(𝑥) − 𝑢̃𝑅𝐿𝐿(𝑥)|𝑥∈[𝑥𝑘,𝑥𝑘+1]

≤ ℎ7
12.359 

7!
∥ 𝑢(7) ∥𝐶[𝑥𝑘−2,𝑥𝑘+4]. 

 
If supp 𝜔𝑘 = [𝑥𝑘−5, 𝑥𝑘+2], then the following 
approximation estimate is valid: 
 

|𝑢(𝑥) − 𝑢̃𝑅𝐿(𝑥)|𝑥∈[𝑥𝑘,𝑥𝑘+1]

≤ ℎ7
23.149 

7!
∥ 𝑢(7) ∥𝐶[𝑥𝑘−1,𝑥𝑘+5]. 

 
If supp 𝜔𝑘 = [𝑥𝑘−6, 𝑥𝑘+1], then the following 
approximation estimate is valid: 
 

|𝑢(𝑥) − 𝑢̃𝑅(𝑥)|𝑥∈[𝑥𝑘,𝑥𝑘+1]

≤ ℎ7
95.842 

7!
∥ 𝑢(7) ∥𝐶[𝑥𝑘,𝑥𝑘+6]. 

 
Proof. In the case of approximating the function 𝑢 
on the interval [𝑥𝑘 , 𝑥𝑘+1] near the left end of the 
interval [𝑎, 𝑏], we use the right basis splines 
 

𝑢̃(𝑥) = ∑ 𝑢(𝑥𝑗)𝜔𝑗
𝑅

𝑘+6

𝑗=𝑘

(𝑥)𝑑𝑥 , 𝑥 ∈ [𝑥𝑘 , 𝑥𝑘+1] . 

First, we estimate the approximation error on the 
interval [𝑥𝑘 , 𝑥𝑘+1] when the right basis splines are 
used. Using the formula of the remainder term of the 
interpolation polynomial that solves the Lagrange 
interpolation problem, we obtain the relation 

𝑢(𝑥) − 𝑢̃(𝑥) =
1

7!
(𝑥 − 𝑥𝑘) … (𝑥 − 𝑥𝑘+6) 𝑢(7)(𝜉) , 

𝜉 ∈  [𝑥𝑘−5, 𝑥𝑘+1]. 
There is a product (𝑥 − 𝑥𝑘) … (𝑥 − 𝑥𝑘+6) in the 
error estimate. Let the ordered grid of nodes {𝑥𝑘} be 
uniform with step ℎ. Let us estimate the product of 
factors (𝑥 − 𝑥𝑘) … (𝑥 − 𝑥𝑘+6). 
Thus, estimating the maximum of the expression 
 1

7!
(𝑥 − 𝑥𝑘) … (𝑥 − 𝑥𝑘+6) 𝑢(7)(𝜉), where 𝜉 ∈

[𝑥𝑘 , 𝑥𝑘+6],  we obtain 
 

∥ 𝑢(𝑥) − 𝑢̃(𝑥) ∥C[𝑥𝑘,𝑥𝑘+1] ≤ 
𝐾 ℎ7  ∥ 𝑢(7) ∥C[𝑥𝑘, 𝑥𝑘+6]  . 

 
Similarly, we obtain an approximation estimate on 
the grid interval [𝑥𝑘 , 𝑥𝑘+1]  with the left and middle 
splines.  
    This completes the proof of the theorem. 
 
    Remark 1. The approximation on the interval. 
      If the interval [𝑎, 𝑏]  is divided into 6 grid 
intervals, then it is possible to construct an 
approximation on the entire interval using the 
previously presented approximations on the 
intervals [𝑥𝑘,𝑥𝑘+1], as follows:  
for 𝑘 = 0  we apply the approximation 𝑢̃𝑅(𝑥); 
for 𝑘 = 1  we apply the approximation 𝑢̃𝑅𝐿(𝑥); 
for 𝑘 = 2  we apply the approximation 𝑢̃𝑅𝐿𝐿(𝑥); 
for 𝑘 = 3  we apply the approximation 𝑢̃𝑀(𝑥); 
for 𝑘 = 4  we apply the approximation 𝑢̃𝐿𝑅(𝑥); 
for 𝑘 = 5  we apply the approximation 𝑢̃𝐿(𝑥). 
 
Remark 2. The stability. 
      Let 𝑎 = 0, 𝑏 = 1, and 𝑥𝑘+1 − 𝑥𝑘 = ℎ = 𝑐𝑜𝑛𝑠𝑡. 
Suppose |𝐾(𝑥, 𝑠)| < 𝜌 < 1, when 0 ≤ 𝑥 ≤ 1, 0 ≤
𝑠 ≤ 1. The constant in the stability inequality in the 
case of splines of the seventh order of 
approximation is calculated in the same way as it 
was done for the splines of the second order of 
approximation. To calculate the constant in the 
stability inequality, we need the following values: 

∑ ∫ |𝜔𝑗
𝑅𝐿𝐿(𝑥) |𝑑𝑥 ≈ 1.321

𝑥𝑘+1

𝑥𝑘

𝑘+4

𝑗=𝑘−2

 ℎ , 
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∑ ∫ |𝜔𝑗
𝑅𝐿(𝑥) |𝑑𝑥 ≈ 1.635

𝑥𝑘+1

𝑥𝑘

𝑘+5

𝑗=𝑘−1

 ℎ, 

∑ ∫ |𝜔𝑗
𝑅(𝑥) |𝑑𝑥 ≈ 3.233

𝑥𝑘+1

𝑥𝑘

𝑘+6

𝑗=𝑘

 ℎ , 

∑ ∫ |𝜔𝑗
𝑀(𝑥) |𝑑𝑥 ≈ 1.321

𝑥𝑘+1

𝑥𝑘

𝑘+3

𝑗=𝑘−3

ℎ , 

∑ ∫ |𝜔𝑗
𝐿𝑅(𝑥) |𝑑𝑥 ≈ 1.635ℎ,

𝑥𝑘+1

𝑥𝑘

𝑘+2

𝑗=𝑘−4

 

∑ ∫ |𝜔𝑗
𝐿(𝑥) |𝑑𝑥 ≈ 3.233

𝑥𝑘+1

𝑥𝑘

𝑘+1

𝑗=𝑘−5

ℎ . 

 

Taking into account the inequalities given above, we 
obtain the constants 

𝑠1 = ( 2 ∙ 3.233ℎ + (𝑛 − 2) ∙ 1.321ℎ)/𝑛, 
 

𝑠2 = (3.233ℎ + 1.635ℎ + 1.321ℎ) ∙ 2 
+(𝑛 − 6) ∙ 1.321)/𝑛 . 
 

Thus, we have the estimations 

|𝑢(𝑥𝑗)| ≤
1

1 − 𝜌 𝑠𝑖
  |𝑓(𝑥𝑗)| ,

𝑗 = 0, … , 𝑛, 𝑖 = 1, 2. 
Suppose that |𝜌 𝑠𝑖| < 1. In this case, taking into 
account the approximation theorem and the 
inequalities given above, we can see that the 
approximate solution obtained with the splines of 
the seventh order of approximation tends to the 
solution to the Fredholm equation. 
 

 

3  Problem Solution 
In this section, we discuss the solution of the 
integral equation of the second kind 

𝐴𝑢 ≡ 𝑢(𝑥) − ∫ 𝐾(𝑥, 𝑠)𝑢(𝑠)𝑑𝑠 = 𝑓(𝑥)

𝑏

𝑎

,  

𝑥 ∈ [𝑎, 𝑏], 
with the local splines of the seventh order of 
approximation. 
 Let us choose an integer 𝑛 ≥ 7. We build ga rid of 
nodes {𝑠𝑗}.  
The function 𝑔(𝑠) = 𝐾(𝑥, 𝑠)𝑢(𝑠), 𝑠 ∈ [𝑠𝑘, 𝑠𝑘+1], 
can be approximated with the expression: 𝑔(𝑠) ≈

𝑔̃(𝑠) = 𝐾(𝑥, 𝑠)𝑢̃(𝑠). Let us denote  𝑐𝑗 = 𝑢(𝑠𝑗).  

      We represent the integral in the form 

∫ 𝑔(𝑠)𝑑𝑠 = ∑ ∫ 𝑔(𝑠)𝑑𝑠
𝑠𝑘+1

𝑠𝑘

𝑛−1

𝑘=0

𝑏

𝑎

 . 

Using the results from the second section, we can 
reduce the integral equation to the solution of a 
system of linear algebraic equations. To do this, we 
put 𝑥 = 𝑥𝑚, 𝑚 = 0, … , 𝑛 − 1, in the equation  

𝑢(𝑥) − ∑ ∑ 𝑐𝑗

𝑘+6

𝑗=𝑘

∫ 𝐾(𝑥, 𝑠)𝜔𝑗
𝑅(𝑠)𝑑𝑠

𝑠𝑘+1

𝑠𝑘

2

𝑘=0

  

− ∑ ∑ 𝑐𝑗

𝑘+3

𝑗=𝑘−3

∫ 𝐾(𝑥, 𝑠)𝜔𝑗
𝑀(𝑠)𝑑𝑠

𝑠𝑘+1

𝑠𝑘

𝑛−3

𝑘=3

 

− ∑ ∑ 𝑐𝑗

𝑛−1

𝑗=𝑛−3

∫ 𝐾(𝑥, 𝑠)𝜔𝑗
𝐿(𝑠)𝑑𝑠 = 𝑓(𝑥).

𝑠𝑘+1

𝑠𝑘

𝑛−1

𝑘=𝑛−2

  

 
And now we have to solve the system of linear 
algebraic equations 

𝑢(𝑥𝑚) − ∑ ∑ 𝑐𝑗

𝑘+6

𝑗=𝑘

∫ 𝐾(𝑥𝑚, 𝑠)𝜔𝑗
𝑅(𝑠)𝑑𝑠 +

𝑠𝑘+1

𝑠𝑘

2

𝑘=0

  

∑ ∑ 𝑐𝑗

𝑘+3

𝑗=𝑘−3

∫ 𝐾(𝑥𝑚, 𝑠)𝜔𝑗
𝑀(𝑠)𝑑𝑠 +

𝑠𝑘+1

𝑠𝑘

𝑛−2

𝑘=3

 

∑ ∑ 𝑐𝑗

𝑛−1

𝑗=𝑛−3

∫ 𝐾(𝑥𝑚, 𝑠)𝜔𝑗
𝐿(𝑠)𝑑𝑠 = 𝑓(𝑥𝑚)

𝑠𝑘+1

𝑠𝑘

𝑛−1

𝑘=𝑛−2

, 

𝑚 = 0, . . . , 𝑛. 

We can also apply a more detailed approximation 
(as shown in sections 2.2.1-2.2.6) on the grid 
intervals adjacent to the boundaries of the interval 
[𝑎, 𝑏]. We assume that the integral ∫ 𝑣(𝑠)𝑑𝑠

𝑠𝑘+1

𝑠𝑘
=

∫ 𝐾(𝑥, 𝑠)𝜔𝑗(𝑠)𝑑𝑠
𝑠𝑘+1

𝑠𝑘
 can be computed exactly. 

Otherwise, we can use quadrature formulas. In this 
case, it is necessary to take into account the error of 
the applied quadrature formula. We can use, for 
example, the Simpson's compound formula: 

∫ 𝑣(𝑥)𝑑𝑥 =

𝑠𝑘+1

𝑠𝑘

 

=
(𝑠𝑘+1 − 𝑠𝑘)

3𝑁
(𝑣0 + 4(𝑣1 + 𝑣3 + ⋯ + 𝑣𝑁−1) 

+2(𝑣2 + 𝑣4 + ⋯ + 𝑣𝑁−2) + 𝑣𝑁) + 𝑅𝑁(𝑣). 
Here 𝑁 is even, 𝑁 ≥ 2. 
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   The formula for the remainder of the Simpson's 
compound quadrature rule is well known. In the 
case of the interval [𝑠𝑘, 𝑠𝑘+1], it has the form  

𝑅𝑛(𝑣) =
−(𝑠𝑘+1 − 𝑠𝑘)5

180𝑁4
𝑣(𝐼𝑉)(𝜉), 

𝜉 ∈ [𝑠𝑘, 𝑠𝑘+1]. 
Proceeding from this formula and taking into 
account the approximation theorem for the splines 
of the seventh order, it is easy to get a priori 
estimation of the number of nodes of the Simpson's 
quadrature formula. 
Let us calculate the integral from the Runge 
function ∫ 𝑣(𝑥)𝑑𝑥,

0.4

0
 where 𝑣(𝑥) =

1

1+25𝑥2.  
We can obtain 

max
𝑥∈[0,0.4]

|𝑣(𝐼𝑉) (𝑥)| ≤ 15000, 

max
𝑥∈[0,0.4]

|𝑣(𝑉𝐼𝐼) (𝑥)| < 0.344 ∙ 109 . 

 
We can easily calculate 𝑁 = 2, and |𝑅2(𝑣)| ≤

0.46 ∙ 10−6. Note that this number is less than the 
theoretical error of integration (which follows from 
the Theorem). We can easily obtain that the 
theoretical error of the integration is about 0.43 ∙
10−4. 
 
    After the approximate solution at the grid nodes is 
obtained, we can use the expressions 
 

𝑢(𝑥) = ∑ ∑ 𝑐𝑗

𝑘+6

𝑗=𝑘

∫ 𝐾(𝑥, 𝑠)𝜔𝑗
𝑅(𝑠)𝑑𝑠

𝑠𝑘+1

𝑠𝑘

2

𝑘=0

  

+ ∑ ∑ 𝑐𝑗

𝑘+3

𝑗=𝑘−3

∫ 𝐾(𝑥, 𝑠)𝜔𝑗
𝑀(𝑠)𝑑𝑠

𝑠𝑘+1

𝑠𝑘

𝑛−3

𝑘=3

 

+ ∑ ∑ 𝑐𝑗

𝑛−1

𝑗=𝑛−3

∫ 𝐾(𝑥, 𝑠)𝜔𝑗
𝐿(𝑠)𝑑𝑠 + 𝑓(𝑥).

𝑠𝑘+1

𝑠𝑘

𝑛−1

𝑘=𝑛−2

 

to solve the problems that arise further, for example, 
the construction of a plot of the solution. 

Let us consider two examples of the application 
of splines of the seventh order of approximation and 
splines of the second order of approximation to 
solve the Fredholm integral equation of the second 
kind.  
 
Example 1. Consider the equation 
 

𝑢(𝑥) − 0.1 ∫ sin (
𝑥s

5
) 𝑢(𝑠)𝑑𝑠 = 𝑥 exp (𝑥),

1

0

 

 𝑥 ∈ [0,1]. 

First, let us construct an ordered grid of nodes 
𝑥𝑗 with step ℎ = 1/𝑛 (𝑛 = 10) on the interval 
[𝑎, 𝑏]. Using splines of the seventh order of 
approximation, we calculate the approximate values 
of the solution at these nodes. Next, we construct a 
sequence of refining grids on the interval [𝑎, 𝑏] as 
follows: we divide each grid interval in half. The 
division points are added to the nodes of the 
previous grid. 
     Thus, we get a new grid of nodes. We compare 
the values of the approximate solution at some grid 
nodes. 
     Table 1 presents the approximate values of the 
solution at some grid nodes when using splines of 
the seventh order of approximation when 𝑛 =
10, 20. Table 2 presents the approximate values of 
the solution at the same grid nodes when using 
splines of the second order of approximation when 
𝑛 = 10, 20, 50. 
 

Table 1. The Approximate Values of the Solution 
when Splines of the Seventh Order of 

Approximation were used 

𝒙𝒋 

 Splines of the Seventh Order of 

Approximation 

𝒏 = 𝟏𝟎 𝒏 = 𝟐𝟎 

0 0 0 
0.2 0.24717242 0.24717241 
0.4 0.60251062 0.60251061 
0.6 1.10193492 1.10193491 
0.8 1.79197032 1.79197030 
1.0 2.73268142 2.73268140 
 

Table 2. The Approximate Values of the Solution 
when Splines of the Second Order of 

Approximation were used 

𝒙𝒋 

 Splines of the Second Order of 

Approximation 

𝒏 = 𝟏𝟎 𝒏 = 𝟐𝟎 𝒏 = 𝟓𝟎 

0 0 0 0 
0.2 0.24717235 0.24717240 0.24717241 
0.4 0.60251051 0.60251059 0.60251061 
0.6 1.10193482 1.10193489 1.10193490 
0.8 1.79197029 1.79197031 1.79197030 
1.0 2.73268156 2.73268145 2.73268140 

 
Having solved the system of linear algebraic 

equations, we obtain the framework of an 
approximate solution. The obtained values of the 
approximate solution at the grid nodes are marked 
with circles. Further, using the integral equation and 
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the found approximate values of the function, we 
connect the found values with a line. The Maple 
package was used in the calculations. The plot of the 
approximate solution with the splines of the second 
order of approximation when 𝑛 = 10 is given in 
Figure 1. The nodes are marked along the abscissa 
axis. 
 

 
Fig. 1: The plot of the approximate solution when 𝑛 =
10. 
 

Example 2. Consider the equation 

𝑢(𝑥) − 0.7 ∫ sin(𝑥 + s/5) 𝑢(𝑠)𝑑𝑠 = sin(𝑥) .

1

0

 

As is known, in order to obtain an approximate 
solution of the integral equation, it is necessary to 
apply different methods and calculate with a 
different number of grid nodes. Let us start with 
calculations using splines of the second order of 
approximation. Table 3 presents the approximate 
values of the solution at grid nodes when using 
splines of the second order of approximation when 
𝑛 = 10, 20. Table 4 presents the approximate values 
of the solution at the same grid nodes when using 
splines of the second order of approximation when 
𝑛 = 40, 80. Table 5 presents the approximate 
values of the solution at the grid nodes when splines 
of the second order of approximation when 𝑛 =
640 and splines of the seventh order of 
approximation when 𝑛 = 640 were used. Table 6 
shows the approximate values of the solution when 
splines of the seventh order of approximation were 
used (𝑛 = 20, 𝑛 = 40). 
 
 
 
 
 
 
 
 
 
 
 

Table 3. The Approximate Values of the Solution 
when Splines of the Second Order of 

Approximation were used 

𝒙𝒋 

 Splines of the Second Order of 

Approximation 

𝒏 = 𝟏𝟎 𝒏 = 𝟐𝟎 

0 0.06744487 0.06763105 
0.2 0.36908780 0.36939306 
0.4 0.65601636 0.65642854 
0.6 0.91679162 0.91729428 
0.8 1.14101729 1.14159039 
1.0 1.31975420 1.32037489 

 
Table 4. The Approximate Values of the Solution 

when Splines of the Second Order of 
Approximation were used 

𝒙𝒋 

 Splines of the Second Order of 

Approximation 

𝒏 = 𝟒𝟎 𝒏 = 𝟖𝟎 

0 0.06767764 0.06768929 
0.2 0.36946943 0.36948853 
0.4 0.65653166 0.65655744 
0.6 0.91742003 0.91745147 
0.8 1.14173376 1.14176961 
1.0 1.32053017 1.32056899 

 
Table 5. The Approximate Values of the Solution 

when Splines of the second order of approximation 
and the seventh of Approximation were used 

𝒙𝒋 

 Splines  

Splines of the Second 

Order of Approximation 

𝒏 = 𝟔𝟒𝟎 

Splines of the 

Seventh Order of 

Approximation 

𝒏 = 𝟏𝟎 

0 0.067693111 0.06769317 
0.2 0.36949480 0.36949490 
0.4 0.65656590 0.65656604 
0.6 0.91746179 0.91746195 
0.8 1.14178137 1.14178156 
1.0 1.32058173 1.32058194 
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Table 6. The Approximate Values of the Solution 
when Splines of the Seventh Order of 

Approximation were used 

𝒙𝒋 
 Splines of the Seventh Order of 

Approximation 

𝒏 = 𝟐𝟎 𝒏 = 𝟒𝟎 

0 0.06769317 0.067689317 
0.2 0.36949490 0.36949490 
0.4 0.65656603 0.65656604 
0.6 0.91746195 0.91746195 
0.8 1.14178156 1.14178156 
1.0 1.32058194 1.32058194 
 

The absolute values of the differences between 
the solution found on the grid of nodes (𝑛 = 10) 
and the solution found on the grid of nodes (𝑛 =
20) are shown in Figure 2 (blue line); absolute 
values of the differences between the solution found 
on the grid (𝑛 = 20) and the solution found on the 
grid (𝑛 = 40) are shown in Figure 2 (green line).  
 

 
Fig. 2: The absolute values of the differences 
between the solution found on the grid of nodes 
(𝑛 = 10) and the solution found on the grid of 
nodes (𝑛 = 20) (blue line); absolute values of the 
differences between the solution found on the grid 
(𝑛 = 20) and the solution found on the grid  (𝑛 =
40) (green line). 

 
Figure 3 shows the absolute values of the 
differences of the solution found on the grid (𝑛 =
10) and the solution found on the grid (𝑛 = 20) 
when the splines of the seventh order of 
approximation were used. 

 
Fig. 3: The absolute values of the differences of the 
solution found on the grid (𝑛 = 10) and the solution 
found on the grid (𝑛 = 20) when the splines of the 
seventh order of approximation were used. 

Figure 4 shows the absolute values of the 
differences of the solution found on the grid (𝑛 =
20) and the solution found on the grid (𝑛 = 40) 
when the splines of the seventh order of 
approximation were used. 

Figure 5 shows the plot of the approximate solution 
when the splines of the seventh order of 
approximation were used and 𝑛 = 40. 
     The calculation results show that splines of the 
seventh order of approximation give an approximate 
solution at the grid nodes with eight correct digits in 
the mantissa when 𝑛 = 20. 
 

 
Fig. 4: The absolute values of the differences of the 
solution found on the grid (𝑛 = 20) and the solution 
found on the grid (𝑛 = 40) when the splines of the 
seventh order of approximation were used. 
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Fig. 5: The plot of the approximate solution when 
the splines of the seventh order of approximation 
were used (𝑛 = 40). 
 
      Comparing the results in the second and third 
columns of Table 5, we see that the spline of the 
second order of approximation provides five correct 
digits in the mantissa when we use 640 grid nodes. 
At the same time, to achieve the same accuracy 
using splines of the seventh order of approximation, 
it is enough to use 10 grid nodes. 
 
 

4 Conclusion 
In this paper, we consider the stability of the 
solution of the integral equations of the second kind 
using splines of the second and the seventh order of 
approximation. It should be noted that with the same 
number of grid nodes, polynomial splines of the 
seventh order of approximation provide a smaller 
error compared to splines of the second order of 
approximation. When using splines of the seventh 
order of approximation, a large number of nodes is 
not recommended. 
       In the future, numerical schemes for integro-
differential equations will be constructed. 
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