[8] M. Kuba, On evaluations of infinite double sums
and Tornheim’s double series, Sém. Lothar.
Combin. 58 (2008), art. B58d (13 pp).
[9] Q. Tian, L. Ding, and Y. Mei, Evaluation of
a class of double L-values of Tornheim’s type,
Adv. Math. (China) 42 (2013), pp. 655–664.
[10] D. M. Bradley and X. Zhou, On Mordell–
Tornheim sums and multiple zeta values, Ann.
Sci. Math. Québec 34 (2010), pp. 15–23.
[11] D. Zagier, Values of zeta function and their ap-
plications, in: Proc. First European Congress of
Mathematics, Vol. 2, pp. 497–512, 1994.
[12] J. I. Burgos Gil and J. Fresán, Multiple Zeta Val-
ues: from Nmbers to Motives, Clay Mathemat-
ics Proceedings, to appear.
[13] J. Zhao, Multiple Zeta Functions, Multiple Poly-
logarithms and Their Special Values, Series on
Number Theory and Its Applications, vol. 12,
World Scientific Publishing Co. Pte. Ltd., 2016.
[14] M. E. Hoffman, References on multiple zeta val-
ues and Euler sums, http://www.usna.edu/
Users/math/meh/biblio.html, last accessed
on Feb. 14, 2024.
[15] J. Blümlein, D.J. Broadhurst and J.A.M. Ver-
maseren, The multiple zeta value data mine,
Comput. Phys. Commun. 181 (2010), pp. 582–
625,
[16] K. Matsumoto, T. Nakamura and H. Tsumura,
Functional relations and special values of
Mordell–Tornheim triple zeta and L-functions,
Proc. Amer. Math. Soc. 136(3) (2008), pp.
2135–2145.
[17] J. Zhao, A note on colored Tornheim’s double
series, Integers 10 (2010), A59.
[18] C. Ji, A simple proof of a curious congruence
by Zhao, Proc. Amer. Math. Soc. 133 (2005), pp.
3469–3472.
[19] K. Chen and J. Zhao, Super congruences involv-
ing multiple harmonic sums and Bernoulli num-
bers. J. Integer Sequences,20 (2017), Article
17.6.8.
[20] Z. Shen and T. Cai, Congruences for alternating
triple harmonic sums, Acta Math. Sinica (Chin.
Ser.) 55 (2012), pp. 737–748.
[21] B. Xia and T. Cai, Bernoulli numbers and con-
gruences for harmonic sums, Int. J. Number
Theory 6(2010), pp. 849–855.
[22] X. Zhou and T. Cai, A generalization of a curious
congruence on harmonic sums, Proc. of Amer.
Math. Soc. 135 (2007), pp. 1329–1333.
[23] P. Yang and T. Cai, Super congruences on har-
monic sums, Intl. J. Number Theory 13 (2017),
pp. 2569–2582.
[24] G. H. Hardy and S. Ramanujan, Asymptotic
formulae in combinatory analysis, Proc. Lon-
don Math. Soc., Second Series 17 pp. 75–115.
Reprinted in Collected papers of S. Ramanujan,
Amer. Math. Soc. (2000), pp. 276–309.
[25] G.E. Andrews, The Theory of Partitions, Cam-
bridge University Press, 1976.
[26] T. Terasoma, Mixed Tate motives and multiple
zeta values, Inv. Math. 149 (2002), pp. 339–369.
[27] P. Deligne and A. Goncharov, Groupes fonda-
mentaux motiviques de Tate mixte (in French),
Ann. Sci. Ecole Norm. S. 38(1) (2005), pp. 1–56.
[28] F. Brown, Mixed Tate motives over Spec(Z),
Ann. Math. 175(2) (2012), pp. 949–976.
[29] H. Bachmann, Y. Takeyama, and K. Tasaka, Fi-
nite and symmetric Mordell-Tornheim multiple
zeta values, J. Math. Soc. Japan 73(4) (2021),
pp. 1129–1158. arxiv:2001.10694.
[30] P. Deligne, The fundamental group of Gm−µN,
pour N=2, 3, 4, 6 or 8 (Le groupe fondamental
de la Gm−µN, pour N=2, 3, 4, 6 ou 8), Publ.
Math. Inst. Hautes Etudes Sci. 112 (2010), pp.
101–141.
Contribution of individual authors.
Jianqiang Zhao wrote the paper after several discus-
sions with Crystal Wang.
Sources of funding.
Jianqiang Zhao was supported partially by the Jacobs
Prize from The Bishop’s School.
Creative Commons Attribution
License 4.0 (Attribution 4.0
International , CC BY 4.0)
This article is published under the terms of the
Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US
Conflict of Interest
The authors have no conflicts of interest to declare
that are relevant to the content of this article.
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2023.22.107
Crystal Wang, Jianqiang Zhao