
[7] F. Zhang, Quaternions and matrices of
quternions, Lineer Algebra and Its
Applications, Vol. 251, 1997, pp. 21-57.
[8] É. Cartan, Les groupes projectifs qui ne
laissent invariante aucune multiplicite plane,
Bulletin de la Société Mathématique de
France, Vol. 41, 1913, pp. 53-96.
[9] É. Cartan, The theory of spinors, Dover
Publications, New York, 1966.
[10] G.F. Torres del Castillo, G. S. Barrales,
Spinor formulation of the differential
geometry of curves, Revista Colombiana de
Mathematicas, Vol. 38, 2004, pp. 27-34.
[11] M.D. Vivarelli, Development of spinors
descriptions of rotational mechanics from
Euler's rigid body displacement theorem,
Celestial Mechanics, Vol. 32, 1984, pp. 193-
207.
[12] P. Woit, Quantum theory, groups and
representation, Springer, 2017.
[13] P.P. Dechant, Clifford algebra unveils a
suprising geometric significance of
quaternions root system of coxeter groups,
Adv. Appl. Clifford Algebr., Vol. 23, 2013, pp.
301--321.
[14] J. Grob, G. Trenkler, S.O. Troschke,
Quaternions: further contributions to a matrix
oriented approach, Linear Algebra and its
Applications, Vol. 326, No. 1-3, 2001, pp.
205-213.
[15] İ. Kişi, M. Tosun, Spinor Darboux equations
of curves in Euclidean 3-space, Math. Morav.,
Vol. 19, No. 1, 2015, pp. 87--93.
[16] D. Ünal, I. Kişi, M. Tosun, Spinor Bishop
equation of curves in Euclidean 3-space, Adv.
in Appl. Cliff. Algebr., Vol. 23, No. 3, 2013,
pp. 757-765.
[17] T. Erişir and K. Eren, Spinor representation of
directional q-frame, Sigma J. Eng. Nat. Sci.,
in press, 2023.
[18] O. Z. Okuyucu, O.G. Yıldız, M. Tosun,
Spinor frenet equations in three dimensional
Lie groups, Adv. Appl. Clifford Algebr., Vol.
26, 2016, pp. 1341-1348.
[19] T. Erişir, N.C. Kardağ, Spinor representations
of involute evolute curves in E3, Fundam J.
Math Appl., Vol. 2, No. 2, 2019, pp. 148--155.
[20] T. Erişir, On spinor construction of Bertrand
curves, AIMS Mathematics, Vol. 6, No. 4,
2021, pp. 3583-3591.
[21] T. Erişir, H. Köse Öztaş Spinor equations of
successor curves, Univers. J. Math. Appl.,
Vol. 5, No, 1, 2022, pp. 32-41.
[22] Y. Balcı, T. Erişir and M.A. Güngör,
Hyperbolic spinor Darboux equations of
spacelike curves in Minkowski 3-space,
Journal of the Chungcheong Mathematical
Society, Vol. 28, No.4, 2015, pp. 525-535.
[23] T. Erişir, M.A. Güngör, M. Tosun, Geometry
of the hyperbolic spinors corresponding to
alternative frame, Adv. in Appl. Cliff. Algebr,
Vol. 25, No. 4, 2015, pp. 799--810.
[24] Z. Ketenci, T. Erişir, M.A. Güngör, A
construction of hyperbolic spinors according
to Frenet frame in Minkowski space, Journal
of Dynamical Systems and Geometric
Theories, Vol. 13, No. 2, 2015, pp. 179--193.
[25] M. Tarakçıoğlu, T. Erişir, M A. Güngör, M.
Tosun, The hyperbolic spinor representation
of transformations in R^3_1 by means of split
quaternions, Adv. in Appl. Cliff. Algebr., Vol.
28, No, 1, 2018, pp. 26.
[26] H.H. Hacısalihoğlu, Motion geometry and
theory of quaternions, Science and Art
Faculty of Gazi University Press, Ankara,
1983.
[27] J.P. Ward, Quaternions and Cayley numbers,
algebra and applications, Kluwer Academic
Publishes, Boston, 1997.
[28] D.H. Delphenich, The representation of
physical motions by various types of
quaternions, 2012,
https://doi.org/10.48550/arXiv.1205.4440
[29] H. Goldstein, Classical mechanics, 2nd
edition, Addison-Wesley Series in Physics,
Boston, 1980.
[30] D.H. Sattinger, O.L. Weaver, Lie groups and
algebras with applications to physics,
Geometry and Mechanics, Springer-Verlag,
Newyork, 1986.
[31] G.F. Torres del Castillo, 3-D spinors, spin-
weighted functions and their applications,
Birkhäuser, Cambridge, NA, 2003.
[32] B. Artman, The concept of number: from
quaternions to monads and topological fields,
Ellis Horward, Chicester, UK, 1988.
[33] S. Yüce, Numbers and geometry, (Pegem
Akademi, Ankara, 2020.
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2023.22.93
Tülay Eri
şi
r, Emrah Yildirim