Proof. By 4.2, ε(A)is a subsemigroup of A. Let a=
nb, where n∈N,a∈ε(A)and b∈Nm
0. Since Ais
pure, we have b∈A. Moreover, if c∈Ais such that
c−b∈Nm
0then nc −a=n(c−b)∈Nm
0, and so
n(c−b)∈A, since a∈ε(A). Using again the fact
that Ais pure, we get c−b∈A. Thus b∈ε(A)and
ε(A)is pure.
Lemma 6.4. Let n∈N,a1, . . . , an∈Aand
q1, . . . , qn∈Q+be such that a=Pqiai∈Nm
0.
Then a∈A.
Proof. We have qi=ri/sifor some ri, si∈N. If
s=s1· · · snthen sqi∈N,bi=sqiai∈Aand
sa =Pbi∈A. Now, a∈Aby 6.1.
Lemma 6.5. If a∈Nm
0and a/∈α(A)then a∈A.
Proof. By 3.3, a6= 0. If b∈Athen there are
r, s ∈Q+with ra −sb ∈cone(A)and we get ra ∈
cone(A) + sb ⊆cone(A). Thus a∈cone(A)∩Nm
0
and a∈Aby 6.4.
Proposition 6.6. (i) cone(A)∩Nm
0=A∪ {0}.
(ii) If 0∈Athen A=cone(A)∩Nm
0.
(iii) If cone(A) = (Q+
0)mthen A∪ {0}=Nm
0.
(iv) α(A)∩Nm
0= (Nm
0\A)∪δ(A).
(v) Nm
0= (α(A)∩Nm
0)∪A.
(vi) ξ(A, a) = ψ(A, a)for every a∈A.
Proof. (i), (ii) and (iii). Use 6.4.
(iv) and (v). Use 6.5.
(vi) If (n−1)a+nc ∈Athen n(a+c)∈Aand
a+c∈A. Thus ψ(A, a)⊆ϕ(A, a)and ξ(A, a) =
ψ(A, a).
Remark 6.7. Let k∈Nand a, b1, . . . , bk∈Nm
0be
such that a+bi∈Afor every i= 1, . . . , k (e.g.,
a∈Aand bi∈ϕ(A, a)). Furthermore, assume that
there are ni∈Nsuch that (ni−1)a+nibi∈Afor
every i(e.g., a∈Aand bi∈ψ(A, a)). If n∈N,
n≥max(ni)then (n−1)a+nbi∈Afor all i.
In particular, if ti∈N0are such that t=Pti≥
max(ni)then (t−1)a+tbi∈Aand (t−1)a+
Ptibi=P((ti/t)((t−1)a+tbi),(t−1)a+Ptibi∈
Nm
0. Now, by 6.4, we get (t−1)a+Ptibi∈A.
Lemma 6.8. If a∈Aand b∈Nm
0are such that
a+b/∈α(A)then a+b∈Aand b∈ξ(A, a).
Proof. Since a+b/∈α(A),a+b∈Aby 6.6(v) and
there are r, s ∈Q+such that r(a+b)−sa ∈cone(A).
We have r=k/n,s=l/nfor suitable k, l, n ∈N
and c/n=r(a+b)−sa ∈cone(A), where c= (k−
l)a+kb. Then c∈Zm∩cone(A) = Zm∩(Q+
0)m∩
cone(A) = Nm
0∩cone(A) = A∪ {0}(see 6.6(i)), so
that c∈A∪{0}and d= (k−1)a+kb =c+(l−1)a∈
A∪ {0}. If d6= 0 then d∈Aand b∈ξ(A, a)(see
6.6(vi)). If d= 0 then b= 0 ∈ξ(A, a).
Lemma 6.9. Let a∈Abe such that b∈ψ(A, a)for
every b∈Nm
0with a+b∈δ(A)(then b∈α(A)).
Then ϕ(A, a) = ψ(A, a) = ξ(A, a).
Proof. We have ψ(A, a) = ξ(A, a)⊆ϕ(A, a)by
6.6(vi). If b∈ϕ(A, a)then a+b∈Aand if a+b/∈
α(A)then b∈ξ(A, a)by 6.8. On the other hand, if
a+b∈α(A)then a+b∈α(A)∩A=δ(A)and
b∈ψ(A, a)by assumption.
Lemma 6.10. Let a∈Abe such that δ(A)⊆Qa.
Then ϕ(A, a) = ψ(A, a) = ξ(A, a).
Proof. In view of 6.9, if b∈Nm
0is such that a+b∈
δ(A)then a+b∈Qa,b∈Qaand b∈ψ(A, a)by
4.7(iii).
Lemma 6.11. The following conditions are equiva-
lent for all a∈Aand b∈Nm
0:
(i) b∈ψ(A, a)(b∈ξ(A, a), resp.).
(ii) r(a+b)−sa =Pk
i=1 qiaifor some r, s ∈Q,
k∈N,ai∈Aand qi∈Q+.
Proof. See the proof of 6.8.
Construction 6.12. Let Abe a subsemigroup of
Nm
0(+). Put p(A) = Nm
0∩Sn∈NA/n. It is
easy to check that p(A)is a pure subsemigroup of
Nm
0(+). It is the smallest pure subsemigroup con-
taining A. Clearly, A⊆p(A)⊆cone(A), and so
cone(p(A)) = cone(A). Now, according to 5.4, p(A)
is finitely generated if and only if Ais so. Finally, no-
tice that Nm
0∩Sn∈Nε(A)/n⊆ε(p(A)). In partic-
ular, ε(A)⊆ε(p(A)), and so ε(p(A)) 6=∅, provided
that ε(A)6=∅.
8Conclusion
In this paper, the properties of subsemigroups and
pure subsemigroups of Nm
0(+) (=N0(+)m) are in-
vestigated. A theoretical and reference basis for fur-
ther research in this area has been established. It
can be used for further research of finitely gener-
ated cones, e.g. in connection with the investigation
of context-free languages. Our further research will
be directed to a deeper description of pure subsemi-
groups of Nm
0for a finite m, in particular m= 2.
References:
[1] R. Hemmecke, A. Takemura, R. Yoshida, Com-
puting holes in semigroups and its application to
transportation problems, Contribution to Discrete
Mathematics America Vol. 1, No. 4, 2009
[2] J. Ježek, V. Kala, T. Kepka, Finitely generated
algebraic structures with various divisibility con-
ditions, Forum Mathematicum, Vol. 24, 2012, pp.
379–397.
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2023.22.85
Barbora Batíková, Antonín Jančařík, Petr Němec, Tomáš Kepka