aid in devising strategies for mitigating the adverse ef-
fects of pollution on ecosystems, informing conserva-
tion efforts, and facilitating sustainable resource man-
agement. In conclusion, delving into the stochastic
dynamics of the Gilpin-Ayala model in dispersed, pol-
luted environments opens up new avenues for under-
standing the intricate dynamics of ecological systems
in the face of uncertainty and external stressors. This
endeavor enhances our theoretical understanding of
ecology and offers practical implications for manag-
ing and conserving biodiversity in polluted environ-
ments.
7 Conclusion
In conclusion, investigating the stochastic dynamics
of the Gilpin-Ayala model in dispersed polluted en-
vironments has provided valuable insights into the
complex behavior of species populations and pollu-
tant concentrations. The incorporation of stochastic
elements has allowed for a more realistic represen-
tation of the inherent variability and unpredictability
in these systems. The findings have underscored the
importance of considering stochastic dynamics when
studying and managing dispersed polluted environ-
ments, contributing to a more comprehensive under-
standing of their ecological dynamics and develop-
ing effective environmental conservation and pollu-
tion control strategies.
References:
[1] R. M. May, Stability and Complexity in Model Ecosystems,
USA, Princeton University Press (2001).
[2] M. Liu, K. Wang, Persistence and extinction of a stochastic
single species model under regime switching in a polluted
environment, Journal of Theoretical Biology, vol. 264, no.
3, pp. 934–944 (2010).
[3] M. E. Gilpin, F. G. Ayala, Global models of growth and
competition, Proceedings of the National Academy of Sci-
ences of the United States of America, vol. 70, no. 3, pp.
3590–3593 (1973).
[4] T. Caraballo, A. Settati, M. El Fatini, A. Lahrouz, A. Imlahi,
Global stability and positive recurrence of a stochastic SIS
model with Lévy noise perturbation, Physica A: Statistical
Mechanics and Its Applications, 523, 677-690 (2019).
[5] A. Settati, A. Lahrouz, A. Assadouq, M. El Fatini, M. El
Jarroudi, K. Wang, The impact of nonlinear relapse and
reinfection to derive a stochastic threshold for SIRI epi-
demic model, Chaos, Solitons & Fractals, 137, 109897,
https://doi.org/10.1016/j.chaos.2020.109897 (2020).
[6] M. El Idrissi, B. Harchaoui, A. N. Brahim, I. Bouzalmat, A.
Settati, A. Lahrouz, A sufficient condition for extinction and
stability of a stochastic SIS model with random perturba-
tion, WSEAS Transactions on Systems, 21, 367–371, DOI:
10.37394/23202.2022.21.40 (2022).
[7] A. Settati, A. Lahrouz, M. Zahri, A. Tridane, M. El Fatini,
H. El Mahjour, M. Seaid, A stochastic threshold to predict
extinction and persistence of an epidemic SIRS system with
a general incidence rate, Chaos, Solitons & Fractals, 144,
110690 (2021).
[8] S. Aznague, M. El Idrissi, A. N. Brahim, B. Harchaoui,
S. Boutouil, A. Settati, A. Lahrouz, M. El Merzguioui,
J. El Amrani, A Probabilistic SIRI Epidemic Model In-
corporating Incidence Capping and Logistic Population
Expansion, Appl. Math. Inf. Sci. 17, No. 5, 773–789,
http://dx.doi.org/10.18576/amis/170505 (2023).
[9] A. El Haitami, A. Settati, A. Lahrouz, M. El Idrissi, M. El
Merzguioui, A stochastic switched SIRI epidemic model in-
tegrating nonlinear relapse phenomena, Int. J. Dynam. Con-
trol, https://doi.org/10.1007/s40435-023-01256-9 (2023).
[10] T. C. Gard, Stochastic models for toxicant-stressed popula-
tions, Bulletin of Mathematical Biology, vol. 54, no. 5, pp.
827–837 (1992).
[11] M. Liu, K. Wang, Dynamics of a non-autonomous stochastic
Gilpin-Ayala model, Journal of Applied Mathematics and
Computing, vol. 43, no. 1-2, pp. 351-368 (2013).
[12] M. Liu, K. Wang, Survival analysis of stochastic single-
species population models in polluted environments, Eco-
logical Modelling, vol. 220, no. 9, pp. 1347–1357 (2009).
[13] Z. Geng, M. Liu, Analysis of Stochastic Gilpin-Ayala Model
in Polluted Environments, IAENG International Journal of
Applied Mathematics, 45 (2) (2015).
[14] G. Strang, Linear Algebra and its Applications, Thomson
Learning, Inc, London (1988).
[15] M. Liu, K. Wang, Survival analysis of a stochastic coopera-
tion system in a polluted environment, Journal of Biological
Systems, vol. 19, no. 2, pp. 183-204 (2011).
[16] M. Liu, K. Wang, Q. Wu, Survival analysis of stochastic
competitive models in a polluted environment and stochas-
tic competitive exclusion principle, Bulletin of Mathemati-
cal Biology, vol. 73, no. 9, pp. 1969–2012 (2011).
[17] J. Dhar, K. S. Jatav, Mathematical analysis of a delayed
stage-structured predator-prey model with impulsive diffu-
sion between two predator territories, Ecol. Complex. 16,
59–67 (2013).
[18] L. J. S. Allen, Persistence, Extinction, and Critical Patch
Number for Island Populations, J. Math. Biol. 24, 617–625
(1987).
[19] X. Zou, D. Fan, K. Wang, Effects of Dispersal for a Logistic
Growth Population in Random Environments, Abstr. Appl.
Anal, Article ID 912579 (2013).
[20] L. Arnold, Stochastic Differential Equations, Theory and
Applications, John Wiley and Sons, New York, NY, USA
(1972).
[21] A. Friedman, Stochastic Differential Equations and Appli-
cations, Vol. 2, Probability and Mathematical Statistics, vol.
28, Academic Press, New York, NY, USA (1976).
[22] A. LAHROUZ, A. SETTATI, A note on stochastic Gilpin-
Ayala population model with dispersal, Differential Equa-
tions and Dynamical Systems, vol. 25, no. 3, p. 417–430
(2017).
[23] C. Zhu, G. Yin, Asymptotic properties of hybrid diffusion
systems, SIAM J. Control Optim, 46, 1155–1179 (2007).
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2023.22.67
A. Nait Brahim, B. Harchaoui, S. Boutouil,
M. El Idrissi, S. Aznague, A. Settati,
A. Lahrouz, M. El Jarroudi