New results on contractive type in cone 2-metric space
ABDALLAH M.M. BADR1,2,, BASEL HARDAN3, AHMED A. HAMOUD4, BADR SALEH AL-ABDI5,
FAISAL A.M. ALI6, JAYASHREE PATIL7, ALAA A. ABDALLAH8
1Department of Administration, College of Business, King Khalid University, SAUDI ARABIA.
2Department of Statistics, College of Commerce, Al-Azhar University, EGYPT.
3Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, INDIA.
4Department of Mathematics, Taiz University, Taiz P.O. Box 6803, YEMEN.
5Department of Administration, College of Business, King Khalid University, SAUDI ARABIA.
6Department of Data Sciences and Technology, College of Administrative Sciences, Taiz University, YEMEN.
7Department of Mathematics, Vasantrao Naik Mahavidyalaya, Cidco, Aurangabad, INDIA.
8Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, INDIA.
Abstract: - The common fixed point for self-contractive mappings in cone 2-metric spaces over Banach algebra
is established in this study. The acquired results enhance and generalise the corresponding conclusions from the
literature. A numerical example and a counterexample were then provided at the end.
Key-Words: - Metric spaces; contraction principle; fixed point; contractive mapping.
Received: January 8, 2023. Revised: June 14, 2023. Accepted: July 8, 2023. Published: August 2, 2023.
1 Introduction
The principle of 2-metric space (2-MS) was estab-
lished in [1] and [2], using generalizing the metric
space(MS) and showed numerous fixed point theo-
rems (FPTs) in such space. Many papers have in-
vestigated the necessary factors for the existence /
uniqueness of FPT for contraction mappings in 2-MS,
[3], [4], [5], [6], [7], [8]. On another hand, [9], in-
troduced sundry FPTs in cone 2-MS. The authors in
[9], [10], [11], [12], [13], established various FPTs in
new MSs for an ordered Banach space (BS) in the co-
domain. Over Banach algebras, [14] and [15], worked
on cone MS. [16] presented cone 2-MS generaliz-
ing both 2-MS and cone MS and proved some FPTs
for self-mappings satisfying certain contractive con-
ditions, [16], [17], [18]. The analysis of the existence
/ uniqueness of coincide /common points of diverse
operators in the context of MS is also one of the most
alluring research topics in FPTs, [19], [20], [21], [22].
Banach contraction principle to prove the exist a FP
for a given space was introduced by Banach [23]. The
method of FP development is either developing a type
of used space or a type of contractive mapping. The
development of space depends on decrease or chang-
ing the metric conditions. Consider that abusing or
debilitating a portion of the metric conditions rise to
the loss of some topological advantages, thus getting
hard in proving some FPTs. Hardy-Rogers’ theory
(H-R) [24], is one of the most main findings that de-
veloped the Banach contraction principle by contrac-
tive type, many researchers have developed various
FPTs on this important finding, [25], [26], [27], [28].
For this reason, we have seen generalize some FPTs
in a cone 2-MS by using H-R’ mappings, which opens
the entrance to a similar study on cone n-MS.
2 Preliminaries
Definition 2.1. [29] Suppose Gbe a Banach algebra
(BG), then u1,u2,u3G, α R:
(i) (u1u2)u3=u1(u2u3);
(ii) u1(u2+u3) = u1u2+u1u3and (u1+u2)u3=
u1u3+u2u3;
(iii) α(u1u2) = (αu1)u2=u1(αu2);
(iv) u1u2 u1∥∥u2.
In this work, a BG has a unit e:eu1=u1e=u1
u1G, where u1if there is an inverse element, then
is said to be invertible. u2G,u1u2=u2u1=e.
u1s inverse is represented by u1
1. see [31] for
further information. The set {u1,u2,· · · ,un} Gis
commute if uiuj=ujuii, j {1,2,· · · , n}.
Definition 2.2. [30] Suppose that Ube a non-
empty set and the mapping δ:U × U × U G
satisfies
(i) δ(u1,u2,u3)= 0 for every pair u1=u2 U, and
u3 U,
(ii) δ(u1,u2,u3)0for all u1,u2,u3 U and
δ(u1,u2,u3)=0if and only if at least two of
u1,u2,u3are equal,
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2023.22.66
Abdallah M. M. Badr, Basel Hardan,
Ahmed A. Hamoud, Badr Saleh Al-Abdi,
Faisal A. M. Ali, Jayashree Patil, Alaa A. Abdallah
E-ISSN: 2224-2880
601
Volume 22, 2023
(iii) δ(u1,u2,u3) = δ(p(u1,u2,u3)) for all
u1,u2,u3 U and for all permutations
p(u1,u2,u3)of (u1,u2,u3),
(iv) δ(u1,u2,u3)δ(u1,u2,u4) + δ(u1,u4,u3) +
δ(u4,u2,u3), for all u1,u2,u3,u4 U.
Then δis called a cone 2-M on Uand (U, δ)is called
a cone 2-MS.
Definition 2.3. [30] Suppose (U, δ)be a cone 2-
MS. Let u U and {un}be a sequence in U. Then
(i) {un}is convergence sequence if unuwhen-
ever for every cGwith 0c, there is a natu-
ral number Nsuch that
δ(un,u,u3)c, for all u3 U and n N .
(ii) {un}is a Cauchy sequence if for every cG
with 0c, there is a natural number Nsuch that
δ(un,uk,u3)c, for all u3 U and n, k N .
(iii) (U, δ)is a complete cone 2-MS if every Cauchy
sequence is convergent in U.
Proposition 2.4. [31] Let Gbe a BG with a unite
eand uG. If the spectral radius r(u)<1, which
implies that
r(u) = lim
n→∞ un1
n=inf
n→∞ un1
n<1.
Then (eu)is invertible. Actually, (eu)1=
+
i=0 ui.
Remark 2.5.
(i) r(u) ufor any uG, refer [31].
(ii) In Proposition 2.4, if r(u)<1is replaced by
u<1then the conclusion remains true.
Lemma 2.6. [33] If Gis a real BS with a solid
cone Pand if un 0as n , then for any
0c, there exists n1 N such that for all n>n1,
we have unc.
3 Main Results
In this section, we will prove the uniqueness of the
common FP in con 2-MS using H-R contractive self
mappings of BG.
Theorem 3.1. Let (U, δ)be a complete cone 2-
MS on a BG Gand Pthe underlying cone. Assume
that, T, F are self-mappings of Usatisfying the con-
dition
δ(Tki
iu1, T kj
ju2,u3)
α1δ(Fki
iu1, F kj
ju2,u3) + α2δ(Fki
iu1, T ki
iu1,u3)
+α3δ(Fkj
ju2, T kj
ju2,u3) + α4δ(Fki
iu1, T kj
ju2,u3)
+α5δ(Fkj
ju2, T ki
iu1,u3),(1)
where α1, α2, α3, α4, α5 P, for all u1,u2,u3 U.
If α1, α2, α3, α4, α5are commute and r(α1)+r(α2)+
r(α3) + r(α4) + r(α5)<1. Then {Tki
i}
i=1 and
{Fki
i}
i=1 have a unique common FP.
Proof. Consider Tki
i=hiand Fki
i=fi, for all i
N. Inequality (1) it will become
δ(hiu1,hju2,u3)
α1δ(fiu1,fju2,u3) + α2δ(fiu1,hiu1,u3)
+α3δ(fju2,hju2,u3) + α4δ(fiu1,hju2,u3)
+α5δ(fju2,hiu1,u3).(2)
Let u0 U be arbitrary and define the sequence un
as un=hn(un1) = fnun, for all n N . Now we
prove that {un}is a Cauchy sequence in U. Take
δ(un+1,un,u3)
=δ(hn+1un,hnun1,u3)
α1δ(fnun,fnun1,u3) + α2δ(fnun,hnun,u3)
+α3δ(fnun1,hnun1,u3) + α4δ(fnun,hnun1,u3)
+α5δ(fnun1,hnun,u3)
α1δ(un,un1,u3) + α2δ(un,un+1,u3) + α3δ(un1,un,u3)
+α4δ(un,un,u3) + α5δ(un1,un+1,u3)
α1δ(un,un1,u3) + α2δ(un,un+1,u3) + α3δ(un1,un,u3)
+α5[δ(un1,un,u3) + δ(un,un+1,u3)]
α1δ(un,un1,u3) + α2δ(un,un+1,u3) + α3δ(un1,un,u3)
+α5δ(un1,un,u3) + α5δ(un,un+1,u3)
(eα2α5)1(α1+α3+α5)δ(un1,un,u3)
η1δ(un1,un,u3),
where
η1= (eα2α5)1(α1+α3+α5) P.
By symmetrical probability of cone 2-MS, we have
δ(un+1,un,u3)
=δ(un,un+1,u3)
=δ(hnun1,hn+1un,u3)
α1δ(fnun1,fnun,u3) + α2δ(fnun1,hnun1,u3)
+α3δ(fnun,hnun,u3) + α4δ(fnun1,hnun,u3)
+α5δ(fnun,hnun1,u3)
α1δ(un1,un,u3) + α2δ(un1,un,u3) + α3δ(un,un+1,u3)
+α4δ(un1,un+1,u3) + α5δ(un,un,u3)
α1δ(un1,un,u3) + α2δ(un1,un,u3) + α3δ(un,un+1,u3)
+α4[δ(un1,un,u3) + δ(un,un+1,u3)]
α1δ(un1,un,u3) + α2δ(un1,un,u3) + α3δ(un,un+1,u3)
+α4δ(un1,un,u3) + α4δ(un,un+1,u3)
(eα3α4)1(α1+α2+α4)δ(un1,un,u3)
η2δ(un1,un,u3),
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2023.22.66
Abdallah M. M. Badr, Basel Hardan,
Ahmed A. Hamoud, Badr Saleh Al-Abdi,
Faisal A. M. Ali, Jayashree Patil, Alaa A. Abdallah
E-ISSN: 2224-2880
602
Volume 22, 2023
where
η2= (eα3α4)1(α1+α2+α4) P.
We pretend that, either r(η1)<1or r(η2)<1. If
r(η1)>1, we obtain
r(α1) + r(α3) + r(α5)1r(α2)r(α5)1
r(η1)>1.
Which leads to,
r(α1) + r(α2) + r(α3)+2r(α5)>1.(3)
If r(η2)>1, we obtain
r(α1) + r(α2) + r(α4)1r(α3)r(α4)1
r(η2)>1.
Which implies
r(α1) + r(α2) + r(α3)+2r(α4)>1.(4)
By adding (3) and (4), we have r(α1)+r(α2)+r(α3)+
r(α4) + r(α5)>1. Which is a contradiction. Hence
our pretension is correct.
δ(un+1,un,u3)αδ(un,un1,u3),(5)
for all n1and r(α)<1. Jointly with Proposition
2.4 we have
δ(un+1,un,u3)αδ(un,un1,u3)
α2δ(un1,un2,u3)
.
.
.
αnδ(u1,u0,u3),
where
α=η1, when r(η1)<1,
η2, when r(η2)<1,
η1or η2when r(η1)<1and r(η2)<1.
Then α P and r(α)<1. For all τ < n we have
δ(un,un1,uτ)αδ(un1,un2,uτ)
α2δ(un2,un3,uτ)
.
.
.
αnτ1δ(uτ+1,uτ,uτ).
Therefore, for all τ < n, we obtain δ(un,un1,uτ) =
0. Now, for such n > s we have
δ(un, us,u3)
δ(un,us,un1) + δ(un,un1,u3) + δ(un1,us,u3)
αn1δ(u1,u0,u3) + δ(un1,us,un2)
+δ(un1,un2,u3) + δ(un2,us,u3)
(αn1+αn1)δ(u1,u0,u3) + δ(un2,us,u3)
(αn1+αn1+· · · +αs+1)δ(u1,u0,u3)
+δ(us+1,us,u3)
(αn1+αn1+· · · +αs+1 +αs)δ(u1,u0,u3)
=(e+α+· · · +αns+1)αsδ(u1,u0,u3)
i=1
αiαsδ(u1,u0,u3)
=αs(eα)1δ(u1,u0,u3).
From Lemma 2.6 and the actuality
αs(eα)1δ(u1,u0,u3)= 0, as n .
We get for any βGwith 0β, there exist n N .
Such that for all n, s > N, we get
δ(un, us,u3)αs(eα)1δ(u1,u0,u3)β.
Which proves that, {un}is a Cauchy sequence in U.
There exists u U such that unuas n since
Uis complete. We pretend that uis common FP of
{Tki
i}
i=1 and {Fki
i}
i=1 for all i N . Inequality (2)
become,
δ(hnun,hmum,u)
α1δ(fnun,fmum,u) + α2δ(fnun,hnun,u)
+α3δ(fmum,hmum,u)
+α4δ(fnun,hmum,u) + α5δ(fmum,hnun,u)
α1δ(un,um,u) + α2δ(un,un+1,u) + α3δ(um,um+1,u)
+α4δ(un,um+1,u) + α5δ(um,un+1,u).
Hence, δ(hnun,hmum,u)0. By (ii) in Defini-
tion 2.1 we have: hnun=hnu=uwhen n
or hmun=hmu=uwhen m . Which mean u
is common FP of hn={Tki
i}
i=1. Also, we can see
that, fnun=fu =u. From this we conclude that uis
a common FP of {Tki
i}
i=1 and {Fki
i}
i=1 on U. As-
sume That, wis any another common FP of hnand fn
on U, such that w=ufor all n N . Then by (2) we
obtain,
δ(w, u,u3)
=δ(hnun,hmum,u3)
α1δ(fnun,fmum,u3) + α2δ(fnun,hnun,u3)
+α3δ(fmum,hmum,u3)
+α4δ(fnun,hmum,u3) + α5δ(fmum,hnun,u3)
0.
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2023.22.66
Abdallah M. M. Badr, Basel Hardan,
Ahmed A. Hamoud, Badr Saleh Al-Abdi,
Faisal A. M. Ali, Jayashree Patil, Alaa A. Abdallah
E-ISSN: 2224-2880
603
Volume 22, 2023
This implies that w=uwhich proven the uniqueness
of a common FP uof {Tki
i}
i=1 and {Fki
i}
i=1 on U.
The next conclusions can be gained from our
main result.
Corollary 1. Let (U, δ)be a complete cone 2-MS
in a BG Gand Pthe underlying cone. Assume that
T, F are self-mappings of Usatisfying the condition
δ(Tki
iu1, T kj
ju2,u3)
α1δ(Fki
iu1, F kj
ju2,u3) + α2δ(Fki
iu1, T ki
iu1,u3)
+α3δ(Fkj
ju2, T kj
ju2,u3),(6)
where α1, α2, α3 P, for all u1,u2,u3 U. If
α1, α2, α3are commute and r(α1) + r(α2) + r(α3)<
1, then {Tki
i}
i=1 and {Fki
i}
i=1 have a unique com-
mon FP.
The above FPT is development and generalization
for Wang’s result in [30].
Corollary 2. Let (U, δ)be a complete cone 2-MS
in a BG Gand Pthe underlying cone. Assume that,
T, F are self-mappings of Usatisfying the condition
δ(Tki
iu1, T kj
ju2,u3)(7)
αδ(Fki
iu1, T ki
iu1,u3) + δ(Fkj
ju2, T kj
ju2,u3),
where α P, for all u1,u2,u3 U. If r(α)<1/2,
then {Tki
i}
i=1 and {Fki
i}
i=1 have a unique common
FP.
Corollary 3. Let (U, δ)be a complete cone 2-MS
in a BG Gand Pthe underlying cone. Assume that
T, F are self-mappings of Usatisfying the condition
δ(Tki
iu1, T kj
ju2,u3)
αδ(Fki
iu1, T kj
ju2,u3) + δ(Fkj
ju2, T ki
iu1,u3),
where α P, for all u1,u2,u3 U. If r(α)<1/2,
then {Tki
i}
i=1 and {Fki
i}
i=1 have a unique common
FP.
The result of Mlaiki of FP [32] can be developed and
generalized as follows.
Corollary 4. Let (U, δ)be a complete cone 2-MS
in a BGa Gand Pthe underlying cone. Assume that
T, F are self-mappings of Usatisfying the condition
δ(Tki
iu1, T kj
ju2,u3)
αmax δ(Fki
iu1, T kj
ju1,u3), δ(Fkj
ju2, T ki
iu2,u3),
where, α P, for all u1,u2,u3 U. If r(α)(0,1),
then {Tki
i}
i=1 and {Fki
i}
i=1 have a unique common
FP.
Example 1. Suppose that G=R2and (u1,u2)
Gsuch that u1,u2=|u1|+|u2|. Consider the mul-
tiplication as
uw= (u1.u2)(w1, w2) = κ1w1+κ2w2
Then Gis a BG with unite e= (1,0). Assume that
P={(u1,u2) R2|u1,u2,0}. Then Pis a cone
on G. Let, U={(α, 0) R2|0α < 1}∪{(0, α)
R2|0α < 1}.
Define the metric as
δ(u1,u2,u3) = δ(µ1, µ2),
where, u1,u2,u3 U and µ1, µ2(u1,u2,u3). Such
that
µ1µ2=min{∥u1u2,u2u3,u3u1∥},
and,
δ1(α, 0),(u,0)=|αu|,5
4|αu|,
δ1(0, α),(0,u)=3
4|αu|,|αu|,
δ1(α, 0),(0,u)=δ1(0,u),(α, 0)
=α+3
4u,5
4α+u.
Thus, (U, δ)is a complete cone 2-MS on the BG G.
Define Ti, Fi:U U where i N as
Ti(Fiα, 0)=0,3i
2
1
i
1
221
2
i
2
i
1
2α,
and
Ti(0, Fiα)=3i
2
1
i
1
221
2
i
2
i
1
2α, 0.
Therefore, T2i1
i(F2i1
iα, 0) = (0,1
12 α)and
T2i1
i(0, F 2i1
iα) = ( 1
18 α, 0). Thus, it con-
cludes that Ti, Fiachieves the contractive condition
(1), where Ki = 2i1, α1= ( 1
4,0), α2=
α3=α4=α5= (1
6,0). Furthermore,
r(α1) = 1
4,r(α2) = r(α3) = r(α4) = r(α5) = 1
6.
Hence, by Theorem 3.1, we get (0,0) is a unique FP
for Ti, Fion Ufor all i1.
We will show that the normality condition of cone
2- metric is necessary to ensure the existence of a
common FP in our result.
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2023.22.66
Abdallah M. M. Badr, Basel Hardan,
Ahmed A. Hamoud, Badr Saleh Al-Abdi,
Faisal A. M. Ali, Jayashree Patil, Alaa A. Abdallah
E-ISSN: 2224-2880
604
Volume 22, 2023
Example 2. Suppose that G=C1
R[0,1],
and (u1,u2)Gwith (u, v)=(u1,u2)+
(u1,u2), then Gis a BG with unite e= (1,0).
Let, P={u1,u2G:u(t)0,u2(t)
0, t [0,1]}be a non-normal solid cone. Consider,
Tu1n(t) = tn
nand Fu1n(t) = 1
n, then Fu1n
Tu1n0and lim
n→∞ Fu1n= 0, but u1n=
maxt[0,1] |tn
n|+maxt[0,1] ||tn1|=1
n+ 1 >1.
Thus, undoes not converges to 0. Hence, Tand F
does not have common FP.
4 Conclusion
Thus, in this work, we have obtained a unique
common fixed point result in cone 2-metric space on
Banach algebras. Also, we have generalized some
fixed point theorems in the literature. Using the idea
of n-inner product spaces on n-normed metric spaces
we will make an analog study concerning the unique
common fixed point of Hardy-Rogers contraction
type in cone n-metric spaces over a Banach Algebra.
Acknowledgment: Their authors extend their ap-
preciation to the Deanship of Scientific Research
at King Khalid University for funding this work
through Larg Groups. (Project under grant number
(1/371/43).
References:
[1] Gahler, S. 2-metrische Raume und ihre topologi
sche strukuren, Math. Nachr. vol.26, no.1-4,
(1963), pp. 115–148.
[2] Gahler, S. Uberdie Uniformisierbarkeit 2-metric
sche Raume, Math. Nachr. vol.28 no.3-4, (1965),
pp. 235–244.
[3] Debnath, P. and Mohan, H. New extensions of
Kannan’s and Reich’s fixed point theorems for
multivalued maps using Wardowski’s technique
with application to integral equation, Symmetry,
vol.12 no.7, (2020), pp. 10-19.
[4] Goswami, N. and Haokip, N. Some fixed point
theorems for generalized Kannan type mappings
in b-metric spaces, Antofagasta, vol.38, no.4
(2019), pp. 763–782.
[5] Jaroslaw, G. Fixed point theorems for Kanna type
mappings, journal of fixed point theory and appli-
cations, vol.19, no.3 (2017), pp. 2145–2152.
[6] Kumar, S. and Kumar, H. A generalized fixed
point theorem in 2-metric space, International
Journal of applied Engineering Research, vol.13,
no.9 (2018), pp. 6935–6937.
[7] Oztunc, S. and Mutla, A. Some Kannan type fixed
point results in rectangular soft metric space and
an application of fixed point for thermal science
problem, Supp. vol.23, no.1 (2019), pp. 215–225.
[8] Pourmoslemi, A., Rezaei, S., Nazari, T. and
Sailmi, M. Generalizations of Kannan and Reich
fixed point theorems using sequentially conver-
gent mappings and subadditive altering distance
functions, E mathematics, vol.8, no.9 (2020), p.
1432.
[9] Rhoades, B. Contraction type mappings on a 2-
metric space, Math. Nachr. vol.91, no. 1 (1979),
pp.151–155.
[10] Abbas, M. and Jungck, G. Common fixed
point results for non-commuting mappings with-
out continuity in cone metric spaces, J. Math.
Anal. Appl. vol.341, no. 1 (2008), pp. 416–420.
[11] Asadi, M. and Soleimani, H. Examples in cone
metric spaces: A Survey, Middle-East Journal
of Scientific Research, vol.11, no.12 (2012), pp.
1636–1640.
[12] Long-Huang, H. and Xian, Z. Cone metric
spaces and fixed point theorems of contractive
mappings, J. Math. Anal. Appl. vol.332, no.2
(2007), pp. 1468–1476.
[13] Rezapour, Sh. and Hamlbarani, R. Some notes
on Cone metric spaces and fixed point theorems
of contractive mappings, J. Math. Anal. Appl.
vol.345, no.2 (2008), pp. 719–724.
[14] Liu, H. and Shaoyuan, X. Cone metric spaces
with Banach algebras and fixed point theorems
of generalized Lipschitz mappings, Fixed point
theory and applications, vol.2013 no.1 (2013), p.
320.
[15] Rodrigues, H. A note on the relationship be-
tween spectral radius and norms of bounded
linear operators, Matem´atica contempor´anea,
vol.36, (2009), pp. 131–137.
[16] Singh, B., Jain, S. and Bhagat, P. Cone 2-metric
space and Fixed point theorem of contractive
mappings, commentationes matematicae, vol.52,
no.2, (2012), pp. 143–151.
[17] Tiwari, S. Cone 2-metric spaces and Fixed point
theorems for pair of contractive mappings, J.
Prog. Research. Math. vol.5, no. 3 (2015), pp.
543–552.
[18] Tiwari, S. Cone 2-metric spaces and an exten-
sion of fixed point theorems for contractive map-
pings, IOSR Journal of mathematics, vol.11, no.4
(2015), pp. 01–08.
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2023.22.66
Abdallah M. M. Badr, Basel Hardan,
Ahmed A. Hamoud, Badr Saleh Al-Abdi,
Faisal A. M. Ali, Jayashree Patil, Alaa A. Abdallah
E-ISSN: 2224-2880
605
Volume 22, 2023
[19] Agarwal, R. and Karapnar, E. Remarks on some
coupled fixed point theorems in G-metric spaces,
Fixed Point Theory Appl. vol.2013, no.1 (2013),
pp. 12-17.
[20] Al-Mezel, A., Alsulami, H., Karapnar, E. and
Roldn, A. Discussion on Multidimensional co-
incidence points via recent publications, Abstr.
Appl. Anal., vol.2014, Article ID 287492, (2014),
pp. 1–13.
[21] Karapinar, E., Roldn, A., Shahzad, N. and
Sintunaravat, W. (2014), Discussion on cou-
pled and tripled coincidence point theorems for
f-contractive mappings without the mixed g-
monotone property, Fixed Point Theory Appl.
vol.2014, no.1 (2014), p. 92.
[22] Roldn, A., Martnez-Moreno, J., Roldn, C. and
Cho, Y. Multidimensional coincidence point re-
sults for compatible mappings in partially or-
dered fuzzy metric spaces, Fuzzy Sets and Sys-
tems, vol.251 (2914), pp. 71–82.
[23] Banach, S. (1922), Sur les opérations dans les
ensembles abstraits et leur application aux équa-
tions intégrales, Fundam. Math. 3, 133–181.
[24] Hardy, G. and Rogers, T. A generalization of a
fixed point theorem of Reich, Canad. Math. Bull,
vol.16 (1973), pp. 201–206.
[25] Khammahawong, K. and Kumam, P. Fixed
point theorems for generalized Roger Hardy type
F-contraction mappings in a metric-like space
with an application to second-order differential
equations, Cogent Mathematics, vol.4, no. 1
(2017), pp. 1318546.
[26] Patil, J., Hardan, B., Hamoud, A.A., Bach-
hav, A., Emadifar, H., Afshin, G., Seyyed, A.E.,
Hooshmand, A., and Eugen R. On (η, γ)(f,g)-
Contractions in Extended b-Metric Spaces, Ad-
vances in Mathematical Physics, vol. 2022
(2022), pp. 1–8.
[27] Patil, J., Hardan, B., Hamoud, A.A., Amol B.,
and Homan E. ”A new result on Branciari metric
space using (α, γ)-contractive mappings.” Topo-
logical Algebra and its Applications, vol.10, no.1
(2022), pp. 103–112.
[28] Patil, J., Hardan, B., Hamoud, A.A., Amol B.,
Homan E., and Hatira, G. ”Generalization Con-
tractive Mappings on Rectangular-Metric Space.”
Advances in Mathematical Physics, Vol. 2022 |
Article ID 7291001 (2022), pp. 1–10.
[29] Jin, M. and Piao, Y. Generalizations of Banach-
Kannan-Chatterjea type fixed point theorems on
non-normed cone metric spaces with Banach
algebras, adv. Fixed point theory, vol.8, no.1
(2018), pp. 68–82.
[30] Wang, T., Yin, J. and Yan, Q. Fixed point theo-
rems on cone 2-metric spaces over Banach alge-
bras and an application, Fixed point theory and
applications, vol.2015, no.1 (2015), pp. 1–13.
[31] Rudin, W. Functinal Analysis, 2nd edition, Mc-
Graw Hill, New York, (1991).
[32] Mlaiki, N., Abodayeh, K., Aydi, H., Abdel-
jawad, T. and Abuloha, M. Rectangular Metric-
Like Type Spaces and Related Fixed Points,
Journal of Mathematics, vol.2018, Article ID
3581768, (2018), 7 pages.
[33] Misiak, A. n-Inner product spaces, Math.
Nacher. vol.140, no.1 (1989), pp. 299–319.
Contribution of Individual Authors to the
Creation of a Scientific Article (Ghostwriting
Policy)
A.B., B.H. and A.H.; methodology, B.H. and A.H.;
validation, B.H., A.H. and B.A.; formal analysis,
B.H.; resources, F.A. and A.A.; data curation,
A.H.; writing-original draft preparation, B.H.;
writing-review and editing, A.H., F.A. and A.A.;
supervision, A.B., J.P. and B.A. All authors have
read and agreed to the published version of the
manuscript.
Sources of Funding for Research Presented in a
Scientific Article or Scientific Article Itself
The research project is supported by Deanship of
Scientific Research at King Khalid University for
funding this work through Larg Groups. (Project
under grant number (RGP.(1/371/43)).
Conflicts of Interest
The authors have no conflicts of interest to declare
that are relevant to the content of this article.
Creative Commons Attribution License 4.0
(Attribution 4.0 International , CC BY 4.0)
This article is published under the terms of the
Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en
_US
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2023.22.66
Abdallah M. M. Badr, Basel Hardan,
Ahmed A. Hamoud, Badr Saleh Al-Abdi,
Faisal A. M. Ali, Jayashree Patil, Alaa A. Abdallah
E-ISSN: 2224-2880
606
Volume 22, 2023