Thailand Statistician, Vol.15, No.1,
2017, pp. 69-77.
[15] Aryuyuen, S. Bayesian inference for the
negative binomial-generalized Lindley
regression model: properties and applications.
Communications in Statistics-Theory and
Methods, 2012, pp.1-19.
[16] Aryuyuen, S., and Tonggumnead, U.
Bayesian Inference for the Negative
Binomial- Quasi Lindley Model for Time
Series Count Data on the COVID-19
Pandemic. Trends in Sciences, Vol.19,
No.21, 2022, pp.3171-3171.
[17] Aryuyuen, S., and Tonggumnead, U. A new
mixed negative binomial regression model to
analyze factors influencing the number of
patients with respiratory disease and long-
term effects of lung cancer.
Communications in Mathematical
Biology and Neuroscience., 2022, Article-ID.
[18] Aryuyuen, S. The negative binomial-new
generalized Lindley distribution for count
data: properties and application. Pakistan
Journal of Statistics and Operation Research,
2022, pp.167-177.
[19] Stoklosa, J., Blakey, R. V., and Hui, F. K.
An overview of modern applications of
negative binomial modelling in ecology and
biodiversity. Diversity, Vol.14, No. 5, 2022,
pp.320.
[20] Ortega, E. M., Cordeiro, G. M., and Kattan,
M. W. The negative binomial–beta weibull
regression model to predict the cure of
prostate cancer. Journal of Applied Statistics,
Vol.39 No.6, 2012, pp.1191-1210.
[21] Tzougas, G., Hoon, W. L., and Lim, J. M.
The negative binomial-inverse Gaussian
regression model with an application to
insurance ratemaking. European Actuarial
Journal, NO.9, 2019, pp. 323-344.
[22] Fu, S. A hierarchical Bayesian approach to
negative binomial regression. Methods and
Applications of Analysis, Vol.22, No.4, 2015,
pp. 409-428.
[23] Gelman, A., Carlin, J. B., Stern, H. S.,
Dunson, D. B., Vehtari, A., and Rubin, D. B.
Bayesian data analysis. CRC press, 2013.
[24] Fu, S. Hierarchical Bayesian LASSO for a
negative binomial regression. Journal of
Statistical Computation and Simulation, Vol.
86, No,11, 2016, pp.2182-2203.
[25] Yamrubboon, D., Thongteeraparp, A.,
Bodhisuwan, W., Jampachaisri, K., and
Volodin, A. Bayesian inference for the
negative binomial-Sushila linear model.
Lobachevskii Journal of Mathematics, No. 40,
2019, pp. 42-54.
[26] Department of Disease Control. Daily covid-
19 report, Thailand information. Daily
COVID-19 Report, Available at:
https://data.go.th/dataset/covid-19-daily.
[accessed January 2023].
[27] Aderoju, S. Samade probability distribution:
its properties and application to real lifetime
data. Asian Journal of Probability and
Statistics, Vol.14, No.1, 2021, pp. 1-11.
[28] Cameron, A. C., and Trivedi, P. K.
Regression analysis of count data (Vol. 53).
Cambridge university press, 2013.
[29] Liboschik, T., Fokianos, K., and Fried, R.
tscount: An R package for analysis of count
time series following generalized linear
models. Journal of Statistical Software,
No.82, 2017, pp. 1-51.
[30] Lunn, D., Jackson, C., Best, N., Thomas, A.,
and Spiegelhalter, D. The BUGS book: A
practical introduction to Bayesian analysis.
CRC press, 2013.
[31] Spiegelhalter, D. J., Best, N. G., and Carlin,
B. P. Linde, A. Bayesian measures of model
complexity and fit. Journal of the Royal
Statistical Society: Series B (Statistical
Methodology), Vol.64, No.4, 2002, pp.583-
639.
[32] Su, Y. S., and Yajima, M. R2jags: Using R to
run ‘JAGS’. R package version 0.5-7, 2015.
[33] Geedipally, S. R., Lord, D., and Dhavala, S.
S. The negative binomial-Lindley generalized
linear model: Characteristics and application
using crash data. Accident Analysis &
Prevention, No.45, 2012, pp. 258-265.
[34] Dey, D. K., Ghosh, S. K., and Mallick, B. K.
Generalized linear models: A Bayesian
perspective. CRC Press, 2000.
[35] Wongrin, W., Srianomai, S., and Klomwises,
Y. Bayesian Unit-Lindley Model:
Applications to Gasoline Yield and Risk
Assessment Data. Naresuan University
Journal: Science and Technology (NUJST),
Vol.28, No.2, 2000, pp. 41-51.
[36] Bar-Joseph, Z., Gifford, D. K., and Jaakkola,
T. S. Fast optimal leaf ordering for
hierarchical clustering. Bioinformatics,
17(suppl_1), 2001, S22-S2.
[37] R Core Team. R: a language and
environment for statistical computing.
Vienna: R Foundation for Statistical
Computing, 2021.
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2023.22.65
Sirinapa Aryuyuen, Issaraporn Thaimsorn,
Unchalee Tonggumnead