Acknowledgment:
The authors are grateful to the reviewers for their
insightful and constructive comments and valuable
suggestions, which have helped improve this work.
References:
[1] Khuri A., Mathew T., Sinha B., Statistical
Tests for Mixed Linear Models. Wiley, New
York, 1998.
[2] West B., Welch K., Galecki A., Linear Mixed
Models: A Practical Guide Using Statistical
Software. Taylor and Francis Group, LLC,
2007.
[3] Nelder J. A., The analysis of randomized
experiments with orthogonal block structure I,
Block structure and the null analysis of
variance. Proc. R. Soc. Lond. Ser. A Math.,
Phys. Eng. Sci., Vol.283, 1965a, pp.147–162.
[4] Nelder J. A., The analysis of randomized
experiments with orthogonal block structure
II. Treatment structure and the general
analysis of variance. Proc. R. Soc. Lond. Ser.
A Math., Phys. Eng. Sci., Vol. 283, 1965b,
pp.163–178.
[5] Fonseca M., Mexia J. T., Zmyślony R.,
Inference in normal models with commutative
orthogonal block structure. Acta et
Commentationes Universitatis Tartuensis de
Mathematica, Vol.12, 2008, pp.3–16.
[6] Fonseca M., Mexia J. T., Zmyślony R., Binary
operations on Jordan algebras and orthogonal
normal models. Linear Algebra Appl.,
Vol.117(1), 2006, pp.75–86.
[7] Mexia J. T., Vaquinhas R., Fonseca M.,
Zmyślony R., COBS: segregation, matching,
crossing and nesting. in: Latest Trends and
Applied Mathematics, Simulation, Modelling,
4th International Conference on Applied
Mathematics, Simulation, Modelling, ASM’10.
2010, pp. 249–255.
[8] Santos C., Nunes C., Dias C., Mexia J. T.,
Joining models with commutative orthogonal
block structure. Linear Algebra and its
Applications, Vol.517, 2017, pp.235 – 245.
[9] Zmyślony R., A characterization of best linear
unbiased estimators in the general linear
model. Lecture Notes in Statistics, Vol.2,
1978, pp.365–373.
[10] Jordan P., Von Neumann J., Wigner E., On an
algebraic generalization of the quantum
mechanical formulation. Annals of Math.,
Vol.35 (1), 1934.
[11] Santos C., Nunes C., Dias C., Mexia J. T.,
Models with commutative orthogonal block
structure: a general condition for
commutativity. Journal of Applied
Statistics, Vol. 47 (13-15), 2020, pp.2421 –
2430.
[12] Seely J., Linear spaces and unbiased
estimation. Ann. Math. Stat., Vol.41, 1970,
pp.1725 – 1734.
[13] Carvalho F., Mexia J. T., Santos C., Nunes C.,
Inference for types and structured families of
commutative orthogonal block
structures. Metrika, Vol.78, 2015, pp.337–
372.
[14] Schott J. R., Matrix Analysis for Statistics.
New York: Jonh Wiley & Sons, 1997.
[15] Santos C, Ramos P, Mexia J T, Algebraic
structure of step nesting designs. Discussiones
Mathematicae Probability and Statistics, Vol.
30, 2010, pp.221–235.
[16] Carvalho F., Mexia J. T., Oliveira M.,
Estimation in Models with Commutative
Orthogonal Block Structure. J. Stat. Theory
Practice, Vol.3(2), 2009, pp.525–535.
[17] Carvalho F., Mexia J. T., Covas R, Structured
Families of Models with Commutative
Orthogonal Block Structures. AIP Conf.
Proc., Vol.1281, 2010, pp.1256–1259.
[18] Carvalho F., Mexia J. T., Santos C.,
Commutative orthogonal block structure and
error orthogonal models. Electronic Journal
of Linear Algebra, Vol25, 2013, pp.119–128.
[19] Santos C, Nunes C, Mexia J. T., OBS, COBS
and mixed models associated to commutative
Jordan Algebra. Bulletin of the ISI, LXII,
Proceedings of 56th session of the
International Statistical Institute, Lisbon,
2008, pp. 3271–3274.
[20] Carvalho F., Mexia J. T., Oliveira M. M.,
Canonic inference and commutative
orthogonal block structure. Discussiones
Mathematicae Probability and Statistics,
Vol.28(2), 2008, pp. 171–181.
[21] Ferreira, S.S., Ferreira, D., Nunes, C.,
Carvalho, F., Mexia, J.T. (2019). Orthogonal
Block Structure and Uniformly Best Linear
Unbiased Estimators. In: Ahmed, S.,
Carvalho, F., Puntanen, S. (eds) Matrices,
Statistics and Big Data. IWMS 2016.
Contributions to Statistics. Springer, Cham.
https://doi.org/10.1007/978-3-030-17519-1_7
pp.89-98.
[22] Mexia J. T., Nunes C., Santos C., Structured
families of normal models with COBS. 17th
International Workshop in Matrices and
Statistics, Tomar (Portugal). Conference
paper. 2008.
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2023.22.64
Carla Santos, Cristina Dias, Célia Nunes, João Tiago Mexia