12, 2022, pp. 11225-11237. DOI:
10.1016/j.aej.2022.04.043
[3] Qiao, L., Wang, Z., Xu, D., An ADI finite
difference method for the two-dimensional
Volterra integro-differential equation with
weakly singular kernel, International Journal
of Computer Mathematics, 2022 DOI:
10.1080/00207160.2022.2073178
[4] Carpio, A., Cebrian, E., Positivity preserving
high order schemes for angiogenesis models,
International Journal of Nonlinear Sciences
and Numerical Simulation, 2021, DOI:
10.1515/ijnsns-2021-0112.
[5] Khan, K., Ali, A., Fazal-I-Haq, Hussain, I.,
Amir, N., A comparative numerical study of
parabolic partial integro-differential equation
arising from convection-diffusion, Computer
Modeling in Engineering and Sciences, Vol.
126, No. 2, 2021, pp. 673-692.
DOI:10.32604/cmes.2021.012730.
[6] Assari, P., Asadi-Mehregan, F., The
approximate solution of charged particle
motion equations in oscillating magnetic
fields using the local multiquadrics
collocation method, Engineering with
Computers, Vol.37, No. 1, 2021, pp. 21-38.
DOI: 10.1007/s00366-019-00807-z.
[7] Xu, M.-M., Sulaiman, J., Ali, L.H., SOR
iterative method for the linear rational finite
difference solution of second-order Fredholm
integro-differential equations, Lecture Notes
in Electrical Engineering, Vol.835, 2022, pp.
357-369. DOI: 10.1007/978-981-16-8515-
6_28
[8] Xu, M.M., Sulaiman, J., Hanif Ali, L.,
Rational finite difference solution of first-
order Fredholm integro-differential equations
via SOR iteration, Lecture Notes in Electrical
Engineering, Vol.724, 2021, pp. 463-474.
DOI: 10.1007/978-981-33-4069-5_38.
[9] Wang, J., Kamran, Jama, A., Li, X.,
Numerical solution of fractional-order
Fredholm integro-differential equation in the
sense of atangana-baleanu derivative,
Mathematical Problems in Engineering, 2021,
paper 6662808, DOI: 10.1155/2021/6662808
[10] Zemlyanova, A.Y., Machina, A., A new B-
spline collocation method for singular integro-
differential equations of higher orders,
Journal of Computational and Applied
Mathematics, Vol.380, paper 112949, 2020.
[11] Waide, D.T., Green, D.G., Gribakin, G.F.
BSHF: A program to solve the Hartree–Fock
equations for arbitrary central potentials using
a B-spline basis, Computer Physics
Communications, Vol. 250, paper 107112,
2020, DOI: 10.1016/j.cpc.2019.107112.
[12] Jalilian, R., Tahernezhad, T.Exponential
spline method for the approximation solution
of Fredholm integro-differential equation,
International Journal of Computer
Mathematics, Vol.97, No.4, 2020, pp. 791-
801.
[13] Mirzaee, F., Alipour, S., Cubic B-spline
approximation for linear stochastic integro-
differential equation of fractional order,
Journal of Computational and Applied
Mathematics, Vol.366, paper 112440, 2020,
DOI: 10.1016/j.cam.2019.112440 .
[14] Galina M., Vagif I., Mehriban I., On the
construction of the advanced hybrid methods
and application to solving Volterra integral
equation, WSEAS Transactions on Systems
and Control, 2019, Vol. 14, pp. 183-189.
[15] Rahbar S., Solving Fredholm integral
equation using Legendre wavelet functions,
WSEAS Transactions on Mathematics, 2004,
No. 3, pp.591-595.
[16] Galina M., Vagif I., Mehriban I., On the
construction of the forward-jumping method
and its application to solving of the Volterra
integral equations with symmetric boundaries,
WSEAS Transactions on Mathematics, 2017,
Vol. 16, pp. 295-302.
[17] Saha S., Kumar V., Das A. N. An elastic half
space with a moving punch, WSEAS
Transactions on Applied and Theoretical
Mechanics, Vol. 16, 2021, pp. 245-249.
[18] Hącia L., Bednarek K., Tomczewski A.,
Computational results for integral modeling in
some problems of electrical engineering,
WSEAS International Conference on
Computers, 2007, pp. 114-119.
[19] Burova I. G., Fredholm integral equation and
splines of the fifth order of approximation,
WSEAS Transactions on Mathematics,
Vol.21, 2022, pp. 260-270.
[20] Burova I.G., On left integro-differential
splines and Cauchy problem, International
Journal of Mathematical Models and Methods
in Applied Sciences, Vol.9, 2015, pp. 683-
690.
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2023.22.48
I. G. Burova, G. O. Alcybeev