with complex variable composed as in (23), which
is the complex-sigmoid function being also of the
series expansion given by
≡
⋯ ,
the following-special proposition can be easily
created as only one of a great number of the
possible implications of Theorem 1.
Proposition 1. Let ∈. Then, the assertion:
|
|⇒
0
holds true.
References:
[1] M. Abramowitz and I. A. Stegun, Handbook
of Mathematical Functions, New York, USA,
1972.
]2[ L. V. Ahlfors, Complex Analysis, MacGraw-
Hill, 1966.
]3[ I. Area and J. Losada and J. J. Nieto, A note
on the fractional logistic equation, Physica A:
Statistical Mechanics & its Applications,
Vol. 444, 2016, pp. 182-187.
]4[ M. Carrillo and J. M. Gonzalez, A New
Approach to Modelling sigmoidal curves,
Technological Forecasting & Social Change,
Vol. 69, 2002, pp. 233-241.
]5[ Z. Chen and F. Cao, The approximation
operators with sigmoidal functions,
Computational & Applied Mathematics, Vol.
58, 2009, pp. 758-765.
]6[ D. Costarelli and R. Spigler, Approximation
results for neural network operators active-
ted by sigmoidal functions, Neural Net-
works, Vol. 44, 2013, pp. 101-106.
7[ ] J. S. Cramer, The origins of logistic
regression, Tinbergen Institute, vol. 119,
2002, pp. 167-178.
]8[ (text in German) P. L. Duren, Grundlehren
der Mathema-tischen Wissenschaften,
Springer-Verlag, New York, Berlin,
Heilderberg and Tokyo, 1983.
]9[ A. M. A. El-Sayed, A. E. M. El-Mesiry and
H. A. A. El-Saka, On the fractional-order
logistic equations, Applied Mathematics
Letters, Vol. 20, 2007, pp. 817-823.
]10[ P. Goel and S. Kumar, Certain class of
starlike functions associated with modified
sigmoid function, Bulletin of the Malaysian
Mathematical Sciences Society, Vol. 43,
2019, pp. 957-991.
]11[ J. O. Hamzat and A. T. Oladipo, On a
comprehensive class of analytic p-valent
functions associated with shell-like curve and
modified sigmoid function, The Malaysian
Journal of Computing, Vol. 7, No. 1, 2022,
pp. 995-1010.
]12[ O. A. Fadipe-Joseph, A. T. Oladipo and U.
A. Ezeafulukwe, Modified sigmoid function
in univalent function theory, International
Journal of Mathematical Sciences and
Applications, Vol. 7, 2013, pp. 313-317.
]13[ A. Iliev, N. Kyurkchiev and S. Markov,
Approximation of the cut function by
Stannard and Richards sigmoid functions,
IJPAM, Vol. 109, No. 1, 2016, pp. 119-128.
]14[ I. S. Jack, Functions starlike and convex of
order α, The Journal of the London
Mathematical Society, Vol. 2, No. 3, 1971,
pp. 469-474.
]15[ N. Kyurkchiev and M. Svetoslav, Sigmoid
Functions: Some Approximation and
Modelling Aspects, Lap Lambert Academic
Publishing, Saarbrucken, 2015.
]16[ N. Kyurkchiev and S. Markov, On the
Hausdorff distance between the Heaviside
step function and Verhulst logistic function,
The Journal of Mathematical Chemistry, Vol.
54, No. 1, (2016), pp. 109-119.
]17[ S. S. Miller and P. T. Mocanu, Differential
Subordinations. Theory and Applications,
Series on Monographs and Textbooks in Pure
and Appl. Math., No. 225, Marcel Dekker
Inc., New York, 2000, pp. 101-105.
]18[ G. Murugusundaramoorthy and T. Janani,
Sigmoid function in the space of univalent λ-
pseudo starlike functions, International
Journal of Pure and Applied Mathematics,
Vol. 101, 2015, pp. 33-41.
]19[ R. Mendiratta, S. Nagpal and V.
Ravichandran, On a subclass of strongly
starlike functions associated with exponent-
tial function, Bulletin of the Malaysian
Mathematical Sciences Society, Vol. 38, No.
1, 2015, pp. 365-386.
]20[ J. D. do Nascimento, R. L. C. Damasceno, G.
L. de Oliveira and R. V. Ramos, Quantum-
chaotic key distribution in optical networks:
From secrecy to implementation with logistic
map, Quantum Information Processing, Vol.
17, No. 12, 2018, pp. 329.
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2023.22.46