Engineering Bandung, Indonesia, 9 May,
2018, 407, 012153.
DOI: 10.1088/1757-899X/407/1/012153
[14] K. Thiyagarajan, S. Kodagoda, R.
Ranasinghe, D. Vitanage, G. Iori, “Robust
Sensor Suite Combined With Predictive
Analytics Enabled Anomaly Detection Model
for Smart Monitoring of Concrete Sewer Pipe
Surface Moisture Conditions,” IEEE Sensors
Journal, vol. 20, issue 15, pp. 8232-8243,
2020. DOI: 10.1109/JSEN.2020.2982173.
[15] K. Thiyagarajan, S. Kodagoda, L. Van, R.
Ranasinghe, “Sensor Failure Detection and
Faulty Data Accommodation Approach for
Instrumented Wastewater Infrastructures,”
IEEE Access, vol. 6, pp. 56562-56574, 2018.
[16] K. Thiyagarajan, S. Kodagoda, N. Ulapane,
M. Prasad, “A Temporal Forecasting Driven
Approach Using Facebook’s Prophet Method
for Anomaly Detection in Sewer Air
Temperature Sensor System,” 2020.
TechRxiv. Preprint
Doi:10.13140/RG.2.2.31367.14245.
[17] E. Zunic, K. Korjenic, K. Hodzic, D. Donko,
“Application of Facebook's Prophet
Algorithm for Successful Sales Forecasting
Based on Real-world Data,” International
Journal of Computer Science and Information
Technology (IJCSIT), vol. 12, issue 2, pp. 23-
36, 2020. DOI: 10.5121/ijcsit.2020.12203
[18] E. Z. Martinez, E. A. S. Silva, “Predicting the
number of cases of dengue infection in
RibeirãoPreto, São Paulo State, Brazil, using a
SARIMA model,” Cadernos de
SaúdePública, vol. 27, pp. 1809–1818, 2011.
doi:10.1590/S0102-311X2011000900014.
[19] P. S. Kalekar, “Time series forecasting using
holt-winters exponential smoothing,” Kanwal
Rekhi School of Information Technology,
issue 4329008.13, pp. 1-13, 2004.
[20] Alysha M. De Livera, Rob J. Hyndman, Ralph
D. Snyder, “Forecasting time series with
complex seasonal patterns using exponential
smoothing,” Journal of the American
statistical association, vol. 106, issue 496, pp.
1513-1527, 2011
https://doi.org/10.1198/jasa.2011.tm09771
[21] Dataset Stock dynamics [Online]. Available
at: https://www.kaggle.com/econdata/stock-
dynamics
[22] Open Machine Learning Course: Time series
analysis in Python. [Online]. Available at:
URL: https://mlcourse.ai/articles/topic9-part1-
time-series/
[23] B. Seong, “Smoothing and forecasting mixed-
frequency time series with vector exponential
smoothing models,” Economic Modelling,
vol. 91, pp. 463-468, 2020 DOI:
10.1016/j.econmod.2020.06.020
[24] E. Ghaderpour, E. SinemInce, D. P. Spiros,
“Least-squares cross-wavelet analysis and its
applications in geophysical time series,”
Journal of Geodesy, vol. 92, issue 10, pp.
1223-1236, 2018.
[25] A. Corberán-Vallet, D. B. José, V. Enriqueta,
“Forecasting correlated time series with
exponential smoothing models,” International
Journal of Forecasting, vol. 27, issue 2, pp.
252-265, 2011.
[26] Ch. C. Holt, “Authorʹs retroperspective on
Forecasting seasonals and trends by
exponentially weighted moving averages,”
International Journal of Forecasting, vol. 20,
issue 1, pp. 11-13, 2004
[27] N. Boyko, “Application of mathematical
models for improvement of “cloud” data
processes organization,” Scientific journal
"Mathematical Modeling and Computing",
vol. 3, issue 2, pp. 111-119, 2016. doi:
https://doi.org/10.23939/mmc2016.02.111.
[28] A. Levin, W. Volker, C. W. John “The
performance of forecast-based monetary
policy rules under model uncertainty,”
American Economic Review, vol. 93, pp. 622-
645, 2003.
[29] S. Makridakis, S. Evangelos, A. Vassilios
“The M4 Competition: 100,000 time series
and 61 forecasting methods,” International
Journal of Forecasting, vol. 36, issue 1, pp.
54-74, 2020.
[30] N. Kunanets, O. Vasiuta, N. Boikо
“Advanced Technologies of Big Data
Research in Distributed Information
Systems,” Proceedings of the 14th
International Conference "Computer Sciences
and Information Technologies" (CSIT 2019),
Lviv, Ukraine, 17-20 September, 2019, pp.
71-76.doi: 10.1109/STC-CSIT.2019.8929756.
[31] A.O. Dolhikh, O.G. Baibuz “The software
development for time series forecasting with
using adaptive methods and analysis of their
efficiency,” Mathematical modeling, vol.
2(41), pp. 7-16, 2019.
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2023.22.43