Proposition 17. Let be a 1-normal measure for.
Then, ,0 is a pure binormal pair if and only
if
∁ 0.
Proof. This follows immediately from Theorem 13.
6 Conclusion and Future Work
In the present paper, we consider a biharmonic
elliptic space, corresponding in to the solutions
of the system
, 0, where the
second-order linear elliptic differential operators
1,2 (cf., [15]), have adjoint operators
∗
1,2 satisfying
∗
,
∗0 (cf., [20]).
By introducing binormal pairs of measures, we have
extended the normal measures from the harmonic
case (cf., [6], [10], [14]) to the biharmonic context.
More specifically, by using pure adjoint potential
pairs, we have studied the binormal pairs of
measures satisfying the equivalent properties of
Theorem 3. We have also established some
characteristic properties of biharmonic pairs and
binormal pairs of measures. In addition, we have
pointed out in Theorems 13 and 14, the connection
between binormal pairs of measures and the fine
topologies of the associated harmonic spaces
(corresponding in to the solutions of equations
0 and 0 respectively). On the other
hand, Theorem 15 provides an approximation of
pure binormal pairs of measures by normal
measures.
Finally, Example 6 generalizes a characteristic
property of the classical biharmonic case for the
equation 0 (cf., [17]). It is an important
result that may be useful to study some boundary
value problems, for the above systems. For instance,
it would be interesting to examine the following
biharmonic problem in . Can we determine a
biharmonic function in the interior of a smooth
domain if its values and the values of its normal
derivative are known on the boundary? Here, a
biharmonic function is the first component of a
biharmonic pair. Another interesting open problem
would be the extension of the results in [13], in the
context of the heat equation, to more general
parabolic operators.
References:
[1] J. Bliedtner and W. Hansen, Potential theory.
An Analytic and Probabilistic Approach to
Balayage. Universitext, Springer-Verlag,
Berlin Heidelberg, 1986.
[2] N. Bourbaki, Intégration, Chap.1, 2, 3, 4. Act.
Sci. Ind. No. 1195, fasc. XIII, Hermann, Paris,
1965.
[3] M. Brelot, Lectures on potential theory. Tata
Institute, Bombay, 1960.
[4] M. Brelot, On topology and boundaries in
potential theory. Lecture Notes in
Mathematics Vol. 175, Springer-Verlag,
Berlin, 1971.
[5] G. Chilov, Analyse Mathématique, fonctions
de plusieurs variables réelles. Editions Mir,
Moscou, 1975.
[6] G. Choquet and J. Deny, Sur quelques
propriétés de moyenne caractéristiques des
fonctions harmoniques et polyharmoniques.
Bull. Soc. Math. France, Vol. 72, 1944, pp.
118-140.
[7] P. Courrège, Théorie de la mesure. Les cours
de Sorbonne, 1966.
[8] J. Deny, Systèmes totaux de fonctions
harmoniques. Ann. Inst. Fourier, Vol. I, 1949,
pp. 103-113.
[9] R.-M. Hervé, Recherches axiomatiques sur la
théorie des fonctions surharmoniques et du
potentiel. Ann. Inst. Fourier; Vol. 12, 1962,
pp. 415-471.
[10] A. de La Pradelle, Approximation et caractère
de quasi-analycité dans la théorie axiomatique
des fonctions harmoniques. Ann. Inst.
Fourier, Grenoble, Vol. 17, No. 1, 1967, pp.
383--399.
[11] N. S. Landkof, Foundations of modern
potential theory. Springer-Verlag, Berlin,
1972.
[12] M. Nicolesco, Les fonctions polyharmoniques.
Act. Sci. Ind., No. 331, Hermann, Paris, 1936.
[13] E. P. Smyrnelis, Sur les moyennes des
fonctions paraboliques. Bull. Sci. Math., 2ème
série, Vol. 93, 1969, pp. 163-173.
[14] E. P. Smyrnelis, Mesures normales et
fonctions harmoniques. Bull. Sci. Math., 2ème
série, Vol. 95, 1971, pp. 197-207.
[15] E. P. Smyrnelis, Axiomatique des fonctions
biharmoniques. Ann. Inst. Fourier, Vol. 25,
No.1, 1975, pp. 35-97, and Vol. 26, No.3,
1976, 1-47.
[16] E. P. Smyrnelis, Polarité et effilement dans les
espaces biharmoniques. Séminaire de théorie
du Potentiel, Paris, No. 3, pp. 252-276,
Lecture Notes in Mathematics, Vol. 681,
Springer, Berlin, 1978.
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2023.22.39
Emmanuel P. Smyrnelis, Panayotis Smyrnelis