that the NIM is a highly efficient, accurate, and cost
effective method for solving the one species Lotka
Volterra equation.
References:
[1] Khaled Batiha, Belal Batiha, A new algorithm
for solving linear ordinary differential equa
tions, World Applied Sciences Journal, Volume
15, Issue 12, 2011, Pages 17741779.
[2] Belal Batiha, Numerical solution of a class of
singular secondorder IVPs by variational itera
tion method, International Journal of Mathemat
ical Analysis, 2009, 3(3740), pp. 19531968.
[3] Hatamleh, R., Zolotarev, V.A., On model rep
resentations of nonselfadjoint operators with
infinitely dimensional imaginary component,
Journal of Mathematical Physics, Analysis, Ge
ometry, 2015, 11(2), pp. 174–186.
[4] Hatamleh, R., Zolotarev, V.A., On Two
Dimensional Model Representations of One
Class of Commuting Operators, Ukrainian
Mathematical Journal 66 (1), 122144, .2014
[5] J. Hofbauer, K. Sigmund, The Theory of Evo
lution and Dynamical Systems, Cambridge Uni
versity Press, London, 1988.
[6] S. Olek, An accurate solution to the multispecies
LotkaVolterra equations, SIAM Rev. 36 (3)
(1994) 480488.
[7] J.K. Zhou, Differential Transformation and Its
Applications for Electrical Circuits, Huazhong
University Press, Wuhan, China, 1986. (in Chi
nese).
[8] C.L. Chen, S.H. Lin, C.K. Chen, Application
of Taylor transformation to nonlinear predictive
control problem, Applied Mathematical Model
ing 20 (1996) 699–710.
[9] C.L. Chen, Y.C. Liu, Differential transformation
technique for steady nonlinear heat conduction
problems, Applied Mathematics and Computa
tion 95 (1998) 155–164.
[10] F. Ayaz. Applications of differential trans
form method to differentialalgebraic equa
tions. Applied Mathematics and Computation,
152(2004):649–657.
[11] M.J. Jang, C.L. Chen, Y.C. Liy, On solving
the initial value problems using the differen
tial transformation method, Applied Mathemat
ics and Computation 115 (2000) 145–160.
[12] Belal Batiha, Comparison of Numerical Meth
ods for Solving One Species Lotka–volterra
Equation, Analele Universit˘at¸ii Oradea, Fasc.
Matematica, Tom XIX (1) (2012) 243–253.
[13] SH. Chang, IL. Chang, A new algorithm for
calculating onedimensional differential trans
form of nonlinear functions, Applied Mathemat
ics and Computation 195 (2008) 799–808.
[14] G. Adomian, Solving Frontier Problems of
Physics: The Decomposition Method, Kluwer
Academic, Boston, 1994.
[15] A.M.Wazwaz, A new method for solving sin
gular initial value problems in the second order
differential equations, Appl. Math. Comput. 128
(2002) 47–57.
[16] W. Chen, Z. Lu, An algorithm for Adomian de
composition method, Appl. Math. Comput. 159
(2004) 221–235.
[17] J. Biazar, M. Tango, E. Babolian, R. Is
lam, Solution of the kinetic modeling of lac
tic acid fermentation using Adomian decompo
sition method, Appl. Math. Comput. 139 (2003)
249–258.
[18] B. Batiha, M.S.M. Noorani, I. Hashim, Numer
ical simulation of the generalized Huxley equa
tion by He’s variational iteration method Appl.
Math. Comput. 186 (2007) 1322–1325.
[19] J.H. He, A new approach to nonlinear partial dif
ferential equations. Commun. Nonlin. Sci. Nu
mer. Simul. 2 (1997) 230235.
[20] J.H. He, Approximate analytical solution of Bla
sius’ equation. Commun. Nonlin. Sci. Numer.
Simul. 3 (1998) 260–263.
[21] J.H. He, Variational iteration method–a kind of
nonlinear analytical technique: some exam
ples. Int. J. NonLinear Mech. 34 (1999) 699–
708.
[22] J.H. He, Variational iteration method for au
tonomous ordinary differential systems. Appl.
Math. Comput. 114 (2000) 115123.
[23] Z.M. Odibat, S. Momani, Application of varia
tional iteration method to nonlinear differential
equations of fractional order. Int. J. Nonlinear
Sci. Numer. Simul. 7 (2006) 27–34.
[24] B. Batiha, M.S.M. Noorani, I. Hashim, Applica
tion of variational iteration method to the gener
alized BurgersHuxley equation, Chaos Solitons
Fractals, 36 (2008) 660–663.
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2023.22.38