middle term is interesting for practical purposes and
challenging for theoreticians’ problems. An
interesting problem is to compare the equation in
question with its dissipative counterpart
References:
[1] S. Atslega, F. Sadyrbaev. Multiple period
annuli in Lenard type equations. Applied
Mathematics Letters, 2010, No. 23(2), pp.
165-169; doi: 10.1016/j.aml.2009.09.006
[2] S. Atslega, F. Sadyrbaev. Solutions of
two-point boundary value problems via
phase-plane analysis. Electronic Journal of
Qualitative Theory of Differential
Equations. Proc. 10th Coll. Qualitative
Theory of Diff. Equ. (July 1-4, 2015,
Szeged, Hungary) 2016, No. 4, 1-10; doi:
10.14232/ejqtde.2016.8.4
[3] S. Atslega, F. Sadyrbaev. Multiplicity of
solutions for the Dirichlet problem:
comparison of cubic and quintic cases.
Math. Diff. Equations (Univ. of Latvia,
Institute of Math. And Comp. Sci.), 2011,
No. 11, pp. 73-82
[4] S. Atslega, F. Sadyrbaev. Period annuli and
multiple solutions for two-point BVP. Tatra
Mountains Mathematical Publications,
2009, No. 43(1), pp. 11-23; doi:
10.2478/v10127-009-0021-x
[5] S. Atslega, F. Sadyrbaev. Multiple positive
solutions in the second order autonomous
nonlinear boundary value problems. AIP
Conference Proceedings, 2009, No. 1168,
pp/ 873-876; doi: 10.1063/1.3241618
[6] A. Elias-Zuniga, O. Martinez-Romero, D.
Olvero-Trejo, L.M. Palcios-Pineda.
Determination of the frequency-amplitude
response curves of undamped forced
Duffing’s oscillators using an ancient
Chinese algorithm. Results in Physics,
24(2021), 104085
[7] L. Cveticanin. Strongly Nonlinear
Oscillators. Springer, 2014
[8] Guo-hua Chen, Zhao-Ling Tao, Jin-Zhong
Minc. Notes on a conservative nonlinear
oscillator. Computers & Mathematics with
Applications. Vol. 61, Issue 8, 2011,
2120-2122.
https://doi.org/10.1016/j.camwa.2010.08.08
6
[9] Zhao-Ling Tao, Guo-Hua Chen and Kai
Xian Bai. Approximate
frequency-amplitude relationship for a
singular oscillator. Journal of Low
Frequency Noise, Vibration and Active
Control 2019, Vol. 38 (3-4), 1036-1040. The
Author(s) 2019 DOI:
10.1177/1461348419828880
journals.sagepub.com/home/lfn
[10] Gui-Fang Hu and Shu-Xian Deng. Ren’s
frequency-amplitude formulation for
nonlinear oscillators. Journal of Low
Frequency Noise, Vibration and Active
Control, 0(0)2018, 1-6; doi:
10.1177/1461348418815045
[11] Guo-hua Chen, Zhao-Ling Tao, Jin-Zhong
Minc. Notes on a conservative nonlinear
oscillator. Computers and Mathematics with
Applications 61 (2011) 2120-2122
[12] H. He, An improved amplitude-frequency
formulation for nonlinear oscillators.
International Journal of Nonlinear Sciences
and Numerical Simulation 9 (2), (2008),
211-212
[13] J.H. He. Max-min approach to nonlinear
oscillators. International Journal of
Nonlinear Sciences and Numerical
Simulation 9 (2), (2008), 207- 210
[14] J.H. He. Amplitude-Frequency Relationship
for Conservative Nonlinear Oscillators with
Odd Nonlinearities. Int. J. Appl. Comput.
Math., 3 (2017), 1557-1560
https://doi.org/10.1007/s40819-016-0160-0
[15] R.E. Mickens. Truly nonlinear oscillations.
World Scientific, 2010, Singapore
[16] R. E. Mickens. Investigation of the
properties of the period for the nonlinear
oscillator ′′ ′. Journal of
Sound and Vibration 292 (3/5), (2006),
1031-1035
[17] H.A. Navarro, L.Cveticanin.
Amplitude-frequency relationship obtained
using Hamiltonian approach for oscillators
with sum of non-integer order
nonlinearities. Applied Mathematics and
Computation, Vol. 291, 2016, 162-171
https://doi.org/1.1016/j.amc.2016.06.047
[18] A. Beléndez, A. Hernández, T. Beléndez, C.
Neipp, A. Márquez. Asymptotic
representations of the period for the
nonlinear oscillator. Journal of Sound and
Vibration. 299 (1/2), (2007), 403-408
[19] (text in Russian) R. Reissig, G. Sansone, R.
Conti. Qualitative theory of nonlinear
differential equations. Moscow, “Nauka”,
1974
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2023.22.34
Svetlana Atslega, Felix Sadyrbaev