and
,)
,)
1
n
ww
uu pq
pq n
M f f
. This implies that
converges to
uniformly. Since
is finite-dimensional,
is a finite
rank operator. Therefore,
is a compact
operator’s sequence and so
is.
References:
[1] S.C.Arora, G.Datt and S.Verma,
Multiplication operators on Lorentz spaces,
Indian J. Math., 48-3, 2006, 317-329.
[2] S.C. Arora, G. Datt and S.Verma, Weighted
composition operators on Lorentz spaces,
Bull. Korean Math. Soc., 44-4, 2007, 701-708.
[3] S.C. Arora, G. Datt and S.Verma,
Composition Operators on Lorentz spaces,
Bull. Austral. Math. Soc., 76, 2007, 205-214.
[4] R.E. Castillo, H. Rafeiro, An introductory
course in Lebesgue spaces, CMS Books in
Mathematics/Ouvrages de Mathematiques de
la SMC. Springer, [Cham], 2016. xii+461 pp.
[5] J.T. Chan, A note on compact weighted
composition operators on
, Acta Sci.
Math. (Szeged), 56-2, 1992, 165-168.
[6] C. Duyar and A.T. Gürkanlı, Multipliers and
Relative completion in weighted Lorentz
spaces, Acta Math.Sci., 4, 2003, 467-476.
[7] İ. Eryılmaz, G. Işık, Some Basic Properties of
Grand Lorentz spaces, preprint.
[8] A. Fiorenza, Duality and reflexivity in grand
Lebesgue spaces, Collect. Math., 51(2), 2000,
131-148.
[9] A. Fiorenza, B. Gupta, and P. Jain, The
maximal theorem for weighted grand
Lebesgue spaces, Studia Math., 188(2), 2008,
123-133.
[10] A. Fiorenza, G.E. Karadzhov, Grand and
small Lebesgue spaces and their analogs, Z.
Anal. Anwendungen, 23(4), 2008, 657--681.
[11] H.Hudzik, R.Kumar and R. Kumar, Matrix
multiplication operators on Banach function
spaces, Proc. Indian Acad. Sci. Math. Sci.,
116-1, 2006, 71-81.
[12] T. Iwaniec, C. Sbordone, On the integrability
of the Jacobian under minimal hypotheses,
Arch. Rational Mech. Anal., 119(2), 1992,
129--143.
[13] M.R. Jabbarzadeh and E. Pourreza, A note on
weighted composition operators on
spaces, Bull. Iranian Math. Soc., 29-1, 2003,
47-54.
[14] V. Kokilashvili, Boundedness criterion for the
Cauchy singular integral operator in weighted
grand Lebesgue spaces and application to the
Riemann problem, Proc. A. Razmadze Math.
Inst. 151, 2009, 129-133.
[15] V. Kokilashvili, Boundedness criteria for
singular integrals in weighted grand Lebesgue
spaces, Problems in Mathematical Analysis
49, J. Math. Sci., 170(1), 2010, 20--33.
[16] V. Kokilashvili, A. Meskhi, A note on the
boundedness of the Hilbert transform in
weighted grand Lebesgue spaces, Georgian
Math. J., 16(3), 2009, 547--551.
[17] R. Kumar and R. Kumar, Composition
operators on Banach function spaces, Proc.
Amer. Math. Soc., 133-7, 2005, 2109-2118.
[18] R. Kumar and R. Kumar, Compact
composition operators on Lorentz spaces,
Math. Vestnik 57/3-4, 2005, 109-112.
[19] R. Kumar, Ascent and descent of weighted
composition operators on
spaces, Math.
Vestnik, 60, 2008, 47-51.
[20] R. Kumar, Weighted composition operators
between two
spaces, Math. Vestnik, 61,
2009, 111-118.
[21] A. Meskhi, Weighted criteria for the Hardy
transform under the
condition in grand
Lebesgue spaces and some applications, J.
Math. Sci., 178(6), 2011, 622--636.
[22] A. Meskhi, Criteria for the boundedness of
potential operators in grand Lebesgue spaces,
Proc. A. Razmadze Math. Inst. 169, 2015,
119--132.
[23] S. Moritoh, M. Niwa and T. Sobukawa,
Interpolation theorem on Lorentz spaces over
weighted Measure spaces, Proc. Amer. Math.
Soc., 134-8, 2006, 2329-2334.
[24] O. Oğur, Grand Lorentz sequence space and
its multiplication operator, Communications
Faculty of Sciences University of Ankara
Series A1 Mathematics and Statistics, 69 (1),
2020, 771-781.
[25] J. Pankaj, S. Kumari, On grand Lorentz
spaces and the maximal operator, Georgian
Math. J., 19(2), 2012, 235--246.
[26] M. Rieffel, Induced Banach representations of
Banach Algebras and locally compact groups,
J. Funct. Anal., 1, 1967, 443-491.
[27] S.G. Samko, S.M. Umarkhadzhiev, On
Iwaniec-Sbordone spaces on sets which may
have infinite measure, Azerb. J. Math., 1(1),
2011, 67--84.
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2023.22.32