results for mathematical programming problems
with vanishing constraints on Hadamard manifolds.
Acknowledgments:
The authors are thankful to the anonymous referees
for their valuable comments and suggestions which
helped to improve the presentation of the paper.
References:
[1] Absil, P.-A., Baker, C.G., Gallivan, K.A.,
Trust-region methods on Riemannian
manifolds, Found. Comput. Math., Vol. 7,
2007, pp. 303-330.
[2] Barani, A., On pseudoconvex functions in
Riemannian manifolds, J. Finsler Geom.
Appl., Vol. 2, 2021, pp. 14-22.
[3] Bergmann, R., Herzog, R., Intrinsic
formulation of KKT conditions and constraint
qualifications on smooth manifolds, SIAM J.
Optim., Vol. 29, 2019, pp. 2423-2444.
[4] Chen, Y., Florian, M., The nonlinear bilevel
programming problem: Formulations,
regularity and optimality conditions,
Optimization, Vol. 32, 1995, pp. 193-209.
[5] Colao, V., López, G., Marino, G., Martín-
Márquez, V., Equilibrium problems in
Hadamard manifolds, J. Math. Anal. Appl.,
Vol. 388, 2012, pp. 61-77.
[6] Guo, L., Lin, G.-h., Zhao, J., Wolfe-type
duality for mathematical programs with
equilibrium constraints, Acta Math. Appl.
Sin., Vol. 35, 2019, pp. 532-540.
[7] Harker, P.T., Pang, J.-S., Existence of
efficient solutions to mathematical programs
with equilibrium constraints, Oper. Res. Lett.,
Vol. 7, 1998, pp. 61-64.
[8] Hu, J., Liu, X., Wen, Z.W., Yuan, Y.X., A
brief introduction to manifold optimization, J.
Oper. Res. Soc. China, Vol. 8, 2020, pp. 199-
248.
[9] Karkhaneei, M.M., Mahdavi-Amiri, N.,
Nonconvex weak sharp minima on
Riemannian manifolds, J. Optim. Theory
Appl., Vol. 183, 2019, pp. 85–104.
[10] Mangasarian, O.L, Nonlinear Programming,
SIAM, 1994.
[11] Maeda, T., Constraint qualifications in
multiobjective optimization problems:
differentiable case, J. Optim. Theory Appl.,
Vol. 80, No. 3, 1994, pp. 483-500.
[12] Mishra, S.K., Jaiswal, M., Optimality
conditions and duality for semi-infinite
mathematical programming problem with
equilibrium constraints, Numer. Funct. Anal.
Optim., Vol. 36, 2015, pp. 460-480.
[13] Mishra, S.K., Upadhyay, B.B., Pseudolinear
Functions and Optimization, CRC Press: Boca
Raton, FL, USA, 2014.
[14] Outrata, J., Optimality conditions for a class
of mathematical programs with equilibrium
constraints, Math. Oper. Res., Vol. 24, 1999,
pp. 627-644.
[15] Papa Quiroz, E.A., Oliveira, P.R., New
Results on Linear Optimization Through
Diagonal Metrics and Riemannian Geometry
Tools. Technical Report, ES-645/04, PESC
COPPE, Federal University of Rio de Janeiro,
2004.
[16] Papa Quiroz, E.A., Oliveira, P.R., A new self-
concordant barrier for the hypercube, J.
Optim. Theory Appl., Vol. 135, 2007, pp.
475–490.
[17] Papa Quiroz, E.A., Quispe, E.M., Oliveira,
P.R., Steepest descent method with a
generalized Armijo search for quasiconvex
functions on Riemannian manifolds, J. Math.
Anal. Appl., Vol. 341, 2008, pp. 467-477.
[18] Papa Quiroz, E.A., Oliveira, P.R., Full
convergence of the proximal point method for
quasiconvex functions on Hadamard
manifolds, ESAIM Control Optim. Calc. Var.,
Vol. 18, 2012, pp. 483-500.
[19] Raghunathan, A.U., Biegler, L.T.,
Mathematical programs with equilibrium
constraints (MPECs) in process engineering,
Comput. Chem. Eng., Vol. 27, 2003, pp.
1381-1392.
[20] Ralph, D., Mathematical programs with
complementarity constraints in traffic and
telecommunications networks, Philos. Trans.
Roy. Soc. A., Vol. 366, 2008, pp. 1973-1987.
[21] Rapcsák, T., Smooth Nonlinear Optimization
in , Springer Science & Business Media,
2013.
[22] Scheel, H., Scholtes, S., Mathematical
programs with complementarity constraints:
stationarity, optimality, and sensitivity, Math.
Oper. Res., Vol. 25, 2000, pp. 1-22.
[23] Singh, K.V.K., Maurya, J.K., Mishra, S.K.,
Duality in multiobjective mathematical
programs with equilibrium constraints, Int. J.
Appl. Comput. Math., Vol. 7, 2021, pp. 1-15.
[24] Singh, K.V.K., Mishra, S.K., On
multiobjective mathematical programming
problems with equilibrium constraints, Appl.
Math. Inf. Sci. Lett., Vol. 7, 2019, pp. 17-25.
[25] Treanţă, S., Upadhyay, B.B., Ghosh, A,
Nonlaopon, K., Optimality conditions for
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2023.22.31
Balendu Bhooshan Upadhyay,
Arnav Ghosh, I. M. Stancu-Minasian