A new algorithm for the split feasibility problem with multiple output
sets in Hilbert spaces
YAXUAN ZHANG,YUMING GUAN
College of Science
Civil Aviation University of China
Tianjin 300300
CHINA
Abstract: - In this paper, we study the split feasibility problem with multiple output sets in Hilbert spaces. We
propose a new self-adaptive algorithm combing with ball-relaxation and inertial acceleration, and prove its strong
convergence. Numerical simulations are provided to illustrate the effectiveness of the proposed algorithm.
Key-Words: - split feasibility problem with multiple output sets, self-adaptive step size, ball-relaxation, inertial
acceleration, strong convergence.
Received: October 7, 2022. Revised: December 10, 2022. Accepted: January 9, 2023. Published: February 2, 2023.
1 Introduction
The multiple-sets split feasibility problem (MSSFP)
is to find π‘₯βˆ—βˆˆπ»1such that
π‘₯βˆ—βˆˆ
𝑑
ξ›™
𝑖=1
𝐢𝑖, 𝐴π‘₯βˆ—βˆˆ
π‘Ÿ
ξ›™
𝑗=1
𝑄𝑗,(1)
where 𝐢𝑖, 𝑖 =1,2,Β· Β· Β· , 𝑑 βŠ‚π»1,𝑄𝑗, 𝑗 =1,2,Β· Β· Β· , π‘Ÿ βŠ‚
𝐻2are nonempty, closed and convex subsets of
Hilbert spaces 𝐻1and 𝐻2, respectively, and 𝐴:
𝐻1→𝐻2is a bounded linear operator.
It is obviously that if π‘Ÿ=𝑑=1, the MSSFP is
reduced to the split feasibility problem (SFP).
The SFP and the MSSFP were first proposed by
Censor and Elfving in [1] and [2] for modeling cer-
tain inverse problems, which have been widely used
in many application fields, such as, medical image re-
construction, [1, 3, 4], intensity-modulated radiation
therapy (IMRT), [5, 6], and gene regulatory network
inference, [7], etc. Many authors have also made a
continuation of the study on the MSSFP and its vari-
ant form, for instance, see, [8–16].
Recently, Reich et al. proposed the split feasibil-
ity problem with multiple output sets in [14]. Let
𝐻,𝐻𝑗, 𝑗 =1,2,Β· Β· Β· , π‘Ÿ, be real Hilbert spaces and let
𝐴𝑗:𝐻→𝐻𝑗, 𝑗 =1,2,Β· Β· Β· , π‘Ÿ, be bounded linear op-
erators. Let 𝐢and 𝑄𝑗be nonempty, closed and con-
vex subsets of 𝐻and 𝐻𝑗, 𝑗 =1,2,Β· Β· Β· , π‘Ÿ, respectively.
Find an element π‘₯βˆ—, such that
π‘₯βˆ—βˆˆπ‘†=𝐢∩ (
π‘Ÿ
ξ›™
𝑗=1
π΄βˆ’1
𝑗(𝑄𝑗)).(2)
They also provided algorithms for solving this prob-
lem.
In this paper, we study a slightly generalized
multiple-sets split feasibility problem with multi-
ple output sets: Let 𝐻,𝐻𝑗, 𝑗 =1,2,Β· Β· Β· , π‘Ÿ, be
real Hilbert spaces and let 𝐴𝑗:𝐻→𝐻𝑗, 𝑗 =
1,2,Β· Β· Β· , π‘Ÿ, be bounded linear operators. Let 𝐢𝑖and
𝑄𝑗be nonempty, closed and convex subsets of 𝐻and
𝐻𝑗, 𝑗 =1,2,Β· Β· Β· , π‘Ÿ, respectively. Find an element π‘₯βˆ—,
such that
π‘₯βˆ—βˆˆπ‘†=
𝑑
ξ›™
𝑖=1
πΆπ‘–βˆ© (
π‘Ÿ
ξ›™
𝑗=1
π΄βˆ’1
𝑗(𝑄𝑗)).(3)
In other words, the aim is to find an π‘₯βˆ—βˆˆπΆπ‘–such that
𝐴𝑗π‘₯βˆ—βˆˆπ‘„π‘—for all 𝑖=1,2,Β· Β· Β· , 𝑑, 𝑗 =1,2Β· Β· Β· , π‘Ÿ.
If 𝑑=1, the problem (3) reduces to the problem
(2). If 𝐴𝑗≑𝐴, 𝐻 𝑗≑𝐻1, the problem (3) reduces to
the MSSFP (1).
Many iterative methods have been proposed for
solving the SFP. One of the well-known algorithms
is the CQ method proposed by Byrne, [3], which is
formulated as follows
π‘₯𝑛+1=𝑃𝐢(π‘₯π‘›βˆ’π›Όπ‘›π΄βˆ—(πΌβˆ’π‘ƒπ‘„)𝐴π‘₯𝑛),(4)
where the step size π›Όπ‘›βˆˆ (0,2
βˆ₯𝐴βˆ₯2), and 𝑃𝐢and 𝑃𝑄
stand for the metric projection onto 𝐢and 𝑄, respec-
tively.
Since the projections onto a general nonempty
closed convex subset is hard to be implemented, Yang
[15] proposed the half-space relaxation projection CQ
algorithm. Yu et al. [16] introduced the ball-relaxed
projection CQ algorithms.
Since the norm estimation of || 𝐴𝑗|| for step size is
hard to get, Several choice of the self-adaptive step
size have been presented, see for instance, Yang [17],
LΓ³pez et al. [18], Gibali et a.l. [19], etc.
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2023.22.12
Yaxuan Zhang, Yuming Guan
E-ISSN: 2224-2880
100
Volume 22, 2023
To achieve a faster convergence of the algorithms,
many references have investigated the inertial tech-
nique, see for example, Suantai et al. [20], etc.
In this paper, we adopt the ball-relaxation, a new
self-adaptive step size and inertial acceleration tech-
nique to the algorithm solving the problem (3). Since
the orthogonal projections onto balls and the self-
adaptive step size can be directly calculated, the pro-
posed algorithm is easy to implement.
The rest is outlined as follows. Some useful con-
cepts and lemmas for our analysis are reviewed in the
next section. In section 3, we present our algorithm
and prove its strong convergence. Finally, in section
4, we exhibit a numerical example in order to illus-
trate our results and observe the performance of our
algorithm.
2 Preliminaries
In this section, we introduce some definitions and ba-
sic lemmas that will be used in the sequel. Let 𝐻be a
real Hilbert space, and its inner product and norm be
expressed by ⟨·,·⟩ and βˆ₯ Β· βˆ₯, respectively. Besides, we
use the symbol π‘₯𝑛→π‘₯(π‘₯𝑛⇀ π‘₯)to express that the
sequence {π‘₯𝑛}converges strongly (weakly) to π‘₯.
Definition 2.1 Let 𝐢be a nonempty closed convex
subset of 𝐻. Then the mapping 𝑇:𝐢→𝐻is said to
be:
(1) nonexpansive if
βˆ₯𝑇π‘₯ βˆ’π‘‡ 𝑦βˆ₯ ≀ βˆ₯π‘₯βˆ’π‘¦βˆ₯,βˆ€π‘₯, 𝑦 ∈𝐢. (5)
(2) firmly nonexpansive if
βˆ₯𝑇π‘₯ βˆ’π‘‡ 𝑦βˆ₯2≀ βˆ₯π‘₯βˆ’π‘¦βˆ₯2βˆ’ βˆ₯(πΌβˆ’π‘‡)π‘₯βˆ’ (πΌβˆ’π‘‡)𝑦βˆ₯2,
βˆ€π‘₯, 𝑦 ∈𝐢, (6)
or equivalently if
βˆ₯𝑇π‘₯ βˆ’π‘‡ 𝑦βˆ₯2≀ βŸ¨π‘‡π‘₯ βˆ’π‘‡ 𝑦, π‘₯ βˆ’π‘¦βŸ©,βˆ€π‘₯, 𝑦 ∈𝐢, (7)
where 𝐼is the identity operator.
Definition 2.2 Let 𝐢be a nonempty, closed and con-
vex subset of 𝐻. The metric projection 𝑃𝐢:𝐻→𝐢
defined by
𝑃𝐢(π‘₯)=arg min
π‘¦βˆˆπΆ
βˆ₯π‘₯βˆ’π‘¦βˆ₯2, π‘₯ ∈𝐢. (8)
Definition 2.3 Let 𝑓:𝐻→ (βˆ’βˆž,+∞] be a proper
function. Then 𝑓is said to be weakly lower semicon-
tinuous at π‘₯if π‘₯𝑛⇀ π‘₯ implies
𝑓(π‘₯) ≀ lim inf
π‘›β†’βˆž 𝑓(π‘₯𝑛).(9)
𝑓is lower semicontinuous on 𝐻if it is lower semicon-
tinuous at every point π‘₯∈𝐻and 𝑓is weakly lower
semicontinuous on 𝐻if it is weakly lower semicon-
tinuous at every point π‘₯∈𝐻.
Lemma 2.1 [21] Let 𝐢be a nonempty closed and
convex subset of 𝐻. Then for all π‘₯, 𝑦 ∈𝐻and π‘§βˆˆπΆ,
we have the following statements:
(1) ⟨π‘₯βˆ’π‘ƒπΆ(π‘₯), 𝑦 βˆ’π‘ƒπΆ(π‘₯)⟩ ≀ 0ΝΎ
(2)𝑃𝐢and πΌβˆ’π‘ƒπΆare both firmly nonexpansiveΝΎ
(3) ⟨π‘₯, π‘¦βŸ©=1
2βˆ₯π‘₯βˆ₯2+1
2βˆ₯𝑦βˆ₯2βˆ’1
2βˆ₯π‘₯βˆ’π‘¦βˆ₯2ΝΎ
(4) βˆ₯π‘₯+𝑦βˆ₯2≀ βˆ₯π‘₯βˆ₯2+2βŸ¨π‘¦, π‘₯ +π‘¦βŸ©.
Lemma 2.2 [21] Let 𝑓:𝐻→ (βˆ’βˆž,+∞] be a
strongly convex function with constant πœ†. Then for
all π‘₯, 𝑦 ∈𝐻,
𝑓(𝑦) β‰₯ 𝑓(π‘₯) + βŸ¨πœ‰, 𝑦 βˆ’π‘₯⟩ + πœ†
2βˆ₯π‘¦βˆ’π‘₯βˆ₯2, πœ‰ βˆˆπœ• 𝑓 (π‘₯)
(10)
Lemma 2.3 [4] Let 𝐻1and 𝐻2be real Hilbert spaces
and 𝑓:𝐻1β†’Ris given by 𝑓(π‘₯)=1
2βˆ₯(πΌβˆ’π‘ƒπ‘„)𝐴π‘₯ βˆ₯2
where 𝑄is closed convex subset of 𝐻2and
𝐴:𝐻1→𝐻2be a bounded linear operator.
Then
(1)the function 𝑓is convex and weakly lower
semicontinuous on 𝐻1;
(2) βˆ‡ 𝑓(π‘₯)=π΄βˆ—(πΌβˆ’π‘ƒπ‘„)𝐴π‘₯, for π‘₯∈𝐻1ΝΎ
(3) βˆ‡ 𝑓is βˆ₯𝐴βˆ₯2-Lipschitzian continuous, i.e.,
βˆ₯βˆ‡ 𝑓(π‘₯) βˆ’ βˆ‡ 𝑓(𝑦)βˆ₯ ≀ βˆ₯ 𝐴βˆ₯2βˆ₯π‘₯βˆ’π‘¦βˆ₯,βˆ€π‘₯, 𝑦 ∈𝐻1.
Lemma 2.4 [22] Assume that {𝑠𝑛}is a sequence of
nonnegative real numbers such that
𝑠𝑛+1≀ (1βˆ’π›Όπ‘›)𝑠𝑛+𝛼𝑛𝛿𝑛, 𝑛 β‰₯1,(11)
𝑠𝑛+1β‰€π‘ π‘›βˆ’πœ‚π‘›+𝛾𝑛, 𝑛 β‰₯1,(12)
where {𝛼𝑛}is a sequence in (0,1),{πœ‚π‘›}is a sequence
of nonnegative real numbers, {𝛿𝑛}and {𝛾𝑛}are two
sequences in Rsuch that
(1)ξ›βˆž
𝑛=1𝛼𝑛=∞;
(2)lim
π‘›β†’βˆž 𝛾𝑛=0;
(3)lim
π‘˜β†’βˆž πœ‚π‘›π‘˜=0implies lim sup
π‘˜β†’βˆž
π›Ώπ‘›π‘˜β‰€0for any sub-
sequence {π‘›π‘˜}of {𝑛}.
Then lim
π‘›β†’βˆž 𝑠𝑛=0.
3 Algorithm and its convergence
In this section, we introduce ball-relaxed algorithm
with a new self-adaptive step size and inertial acceler-
ation for solving the problem (3) and prove its strong
convergence.
Set
𝐢𝑖={π‘₯∈𝐻:𝑐𝑖(π‘₯) ≀ 0},(13)
𝑄𝑗={π‘¦βˆˆπ»π‘—:π‘žπ‘—(𝑦) ≀ 0},(14)
where 𝑐𝑖(π‘₯), 𝑖 =1,2,Β· Β· Β· , 𝑑 and π‘žπ‘—(𝑦), 𝑗 =1,2,Β· Β· Β· , π‘Ÿ
are convex, weakly lower semi-continuous functions,
respectively.
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2023.22.12
Yaxuan Zhang, Yuming Guan
E-ISSN: 2224-2880
101
Volume 22, 2023
If 𝑐𝑖(π‘₯), 𝑖 =1,2,Β· Β· Β· , 𝑑 and π‘žπ‘—(𝑦), 𝑗 =1,2,Β· Β· Β· , π‘Ÿ
are πœ†π‘–- and 𝛾𝑗- strongly convex, define a series of sets
𝐢𝑏
𝑖,𝑛 and 𝑄𝑏
𝑗,𝑛,𝑛β‰₯1, by
𝐢𝑏
𝑖,𝑛 ={π‘₯∈𝐻:𝑐𝑖(π‘₯𝑛) + βŸ¨πœ‰π‘›
𝑖, π‘₯ βˆ’π‘₯π‘›βŸ©
+πœ†π‘–
2βˆ₯π‘₯βˆ’π‘₯𝑛βˆ₯2≀0},(15)
𝑄𝑏
𝑗,𝑛 ={π‘¦βˆˆπ»π‘—:π‘žπ‘—(𝐴𝑗π‘₯𝑛) + βŸ¨πœπ‘›
𝑗, 𝑦 βˆ’π΄π‘—π‘₯π‘›βŸ©
+𝛾𝑗
2βˆ₯π‘¦βˆ’π΄π‘—π‘₯𝑛βˆ₯2≀0},(16)
where πœ‰π‘›
π‘–βˆˆπœ•π‘π‘–(π‘₯𝑛),𝑖=1,2,Β· Β· Β· , 𝑑 and πœπ‘›
π‘—βˆˆ
πœ•π‘ž 𝑗(𝐴𝑗π‘₯𝑛), 𝑗 =1,2,Β· Β· Β· π‘Ÿ.
It is easy to verify that 𝐢𝑏
𝑖,𝑛, 𝑖 =1,2,Β· Β· Β· , 𝑑 and
𝑄𝑏
𝑗,𝑛, 𝑗 =1,2,Β· Β· Β· , π‘Ÿ are closed balls containning 𝐢
and 𝑄, respectively, see, [23].
Define that
𝑑𝑛=max
𝑖=1,Β·Β·Β· ,𝑑 βˆ₯π‘₯βˆ’π‘ƒπΆπ‘–(π‘₯)βˆ₯,
𝑣𝑛=max
𝑗=1,Β·Β·Β· ,π‘Ÿ βˆ₯𝐴𝑗π‘₯βˆ’π‘ƒπ‘„π‘—(𝐴𝑗π‘₯) βˆ₯,(17)
Then the problem (3) is equivalent to the following
minimization problem:
min 𝑓(π‘₯)=1
2
𝑑
ξ›•
𝑖=1
𝑙𝑖βˆ₯π‘₯βˆ’π‘ƒπΆπ‘–(π‘₯)βˆ₯2
+1
2
π‘Ÿ
ξ›•
𝑗=1
πœ†π‘—βˆ₯𝐴𝑗π‘₯βˆ’π‘ƒπ‘„π‘—(𝐴𝑗π‘₯)βˆ₯2.(18)
where 𝑙𝑖, 𝑖 =1,Β· Β· Β· , 𝑑 and πœ†π‘—, 𝑗 =1,Β· Β· Β· , π‘Ÿ are all pos-
itive constants such that 𝑑
𝑖=1𝑙𝑖+ξ›π‘Ÿ
𝑗=1πœ†π‘—=1.
Using (17), the problem (18) is equivalent to the
following minimization problem:
min 𝑓(π‘₯)=1
2Ξ¦2
𝑛.(19)
where Φ𝑛=max{𝑑𝑛, 𝑣𝑛}.
In the sequel, we assume that the following three
assumptions hold.
(A1) The solution set 𝑆of (3) is nonempty.
(A2) The functions 𝑐𝑖:𝐻→Rand π‘žπ‘—:𝐻𝑗→
Rdefined in (13) and (14) are πœ†π‘–- and 𝛾𝑗- strongly
convex lower semicontinuous functions.
(A3) For any π‘₯∈𝐻and π‘¦π‘—βˆˆπ»π‘—, at least one sub-
gradient πœ‰π‘–βˆˆπœ•π‘π‘–(π‘₯)and πœπ‘—βˆˆπœ•π‘ž 𝑗(𝑦𝑗)can be calcu-
lated. The subdifferentials πœ•π‘π‘–and πœ•π‘ž 𝑗are bounded
on the bounded sets.
Algorithm 3.1 For any initial point π‘₯0, π‘₯1∈𝐻, the
sequence {π‘₯𝑛}be defined as follows:
1. Compute 𝑦𝑛
𝑦𝑛=π‘₯𝑛+𝛽𝑛(π‘₯π‘›βˆ’π‘₯π‘›βˆ’1).(20)
2. Compute 𝑑𝑛and define 𝐿𝑛
𝑑𝑛=max
𝑖=1,Β·Β·Β· ,𝑑 βˆ₯π‘¦π‘›βˆ’π‘ƒπΆπ‘
𝑖,𝑛 (𝑦𝑛)βˆ₯,(21)
𝐿𝑛={π‘–βˆˆ {1,2,Β· Β· Β· , 𝑑}:βˆ₯π‘¦π‘›βˆ’π‘ƒπΆπ‘
𝑖,𝑛 (𝑦𝑛)βˆ₯ =𝑑𝑛}.
(22)
3. Compute 𝑣𝑛and define 𝐻𝑛
𝑣𝑛=max
𝑗=1,Β·Β·Β· ,π‘Ÿ βˆ₯π΄π‘—π‘¦π‘›βˆ’π‘ƒπ‘„π‘
𝑗,𝑛 (𝐴𝑗𝑦𝑛)βˆ₯,(23)
𝐻𝑛={π‘—βˆˆ {1,2,Β· Β· Β· , π‘Ÿ}:βˆ₯π΄π‘—π‘¦π‘›βˆ’π‘ƒπ‘„π‘
𝑗,𝑛 (𝐴𝑗𝑦𝑛)βˆ₯ =𝑣𝑛}.
(24)
4. If 𝑑𝑛β‰₯𝑣𝑛, then choose π‘–π‘›βˆˆπΏπ‘›and let Ξ” = 𝐼,
πœ‡π‘›=𝑃𝑏
𝐢𝑖𝑛,𝑛 𝑦𝑛,𝑓𝑛(𝑦𝑛)=1
2βˆ₯(πΌβˆ’π‘ƒπΆπ‘
𝑖𝑛,𝑛 )𝑦𝑛βˆ₯2ΝΎ
else choose π‘—π‘›βˆˆπ»π‘›and let Ξ” = 𝐴𝑗𝑛,πœ‡π‘›=
𝑃𝑏
𝑄𝑗𝑛,𝑛 𝐴𝑗𝑛𝑦𝑛,𝑓𝑛(𝑦𝑛)=1
2βˆ₯(πΌβˆ’π‘ƒπ‘„π‘
𝑗𝑛,𝑛 )𝐴𝑗𝑛𝑦𝑛βˆ₯2.
5. Compute π‘₯𝑛+1
π‘₯𝑛+1=𝛼𝑛𝑔(𝑦𝑛) + (1βˆ’π›Όπ‘›)(π‘¦π‘›βˆ’πœπ‘›βˆ‡π‘“π‘›(𝑦𝑛)),(25)
where
πœπ‘›=πœŒπ‘›
βˆ₯Ξ”π‘¦π‘›βˆ’πœ‡π‘›βˆ₯2
βˆ₯Ξ”βˆ—(Ξ”π‘¦π‘›βˆ’πœ‡π‘›)βˆ₯2+πœƒπ‘›
,(26)
π›Όπ‘›βˆˆ (0,1),πœŒπ‘›βˆˆ (0,2)and {πœƒπ‘›} is a bounded
sequence of positive real numbers. 𝑔:𝐻→𝐻
is a strict contraction mapping 𝐻into itself with
the contraction coefficient π‘βˆˆ [0,1).
Now we establish the strong convergence for Al-
gorithm 3.1.
Theorem 3.1 Let 𝐻and 𝐻𝑗be real Hilbert spaces,
𝐢𝑖, 𝑖 =1,2,Β· Β· Β· , 𝑑 and 𝑄𝑗, 𝑗 =1,2,Β· Β· Β· , π‘Ÿ be
nonempty, closed and convex subsets of 𝐻and 𝐻𝑗,
respectively. Let 𝐴𝑗:𝐻→𝐻𝑗, 𝑗 =1,2,Β· Β· Β· , π‘Ÿ be
bounded linear operators with their adjoint denoted
by π΄βˆ—
𝑗. Assume that {𝛼𝑛},{𝛽𝑛}and πœŒπ‘›satisfy the
following conditions:
(C1) lim
π‘›β†’βˆž 𝛼𝑛=0and ξ›βˆž
𝑛=1𝛼𝑛=∞;
(C2) inf
π‘›βˆˆNπœŒπ‘›(2βˆ’πœŒπ‘›)>0ΝΎ
(C3) {𝛽𝑛} βŠ‚ [0, 𝛽], where π›½βˆˆ [0,1)and
lim
π‘›β†’βˆž
𝛽𝑛
𝛼𝑛βˆ₯π‘₯π‘›βˆ’π‘₯π‘›βˆ’1βˆ₯=0ΝΎ
(C4) 0<inf{πœƒπ‘›} ≀ sup{πœƒπ‘›}<+∞.
Then the sequence {π‘₯𝑛}generated by Algorithm 3.1
converges strongly to π‘§βˆˆπ‘†, and 𝑧is the unique solu-
tion to the variational inequality:
⟨(πΌβˆ’π‘”)(𝑧), 𝑦 βˆ’π‘§βŸ© β‰₯ 0,βˆ€π‘¦βˆˆπ‘†, (27)
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2023.22.12
Yaxuan Zhang, Yuming Guan
E-ISSN: 2224-2880
102
Volume 22, 2023
Proof Note that 𝑔:𝐻→𝐻is contractive, so 𝑃𝑆𝑔
is also contractive, thus 𝑃𝑆𝑔has a unique fixed point
𝑧, which by Lemma 2.1(1) is the unique solution of
(27).
Notice that
βˆ₯π‘₯𝑛+1βˆ’π‘§βˆ₯
=βˆ₯𝛼𝑛𝑔(𝑦𝑛)+(1βˆ’π›Όπ‘›)(π‘¦π‘›βˆ’πœπ‘›βˆ‡π‘“π‘›(𝑦𝑛)) βˆ’ 𝑧βˆ₯
≀𝛼𝑛βˆ₯𝑔(𝑦𝑛) βˆ’ 𝑧βˆ₯
+ (1βˆ’π›Όπ‘›)βˆ₯π‘¦π‘›βˆ’πœπ‘›βˆ‡π‘“π‘›(𝑦𝑛) βˆ’ 𝑧βˆ₯.
(28)
Next, we consider the following two cases.
Case A: 𝑑𝑛β‰₯𝑣𝑛.
In this case, πœπ‘›=
πœŒπ‘›| | (πΌβˆ’π‘ƒπΆπ‘
𝑖𝑛,𝑛
)𝑦𝑛| |2
| | (πΌβˆ’π‘ƒπΆπ‘
𝑖𝑛,𝑛
)𝑦𝑛| |2+πœƒπ‘›,𝑓𝑛(𝑦𝑛)=
1
2||(πΌβˆ’π‘ƒπΆπ‘
𝑖𝑛,𝑛 )𝑦𝑛||2and βˆ‡π‘“π‘›(𝑦𝑛)=(πΌβˆ’π‘ƒπΆπ‘
𝑖𝑛,𝑛 )𝑦𝑛.
Applying Lemma 2.1 (2-3) and the nonexpansivity of
𝑃𝐢𝑏
𝑖𝑛,𝑛 that
βˆ₯π‘¦π‘›βˆ’πœπ‘›βˆ‡π‘“π‘›(𝑦𝑛) βˆ’ 𝑧βˆ₯2
=βˆ₯π‘¦π‘›βˆ’π‘§βˆ₯2+𝜏2
𝑛βˆ₯βˆ‡ 𝑓𝑛(𝑦𝑛)βˆ₯2
βˆ’2πœπ‘›βŸ¨βˆ‡ 𝑓𝑛(𝑦𝑛), π‘¦π‘›βˆ’π‘§βŸ©
=βˆ₯π‘¦π‘›βˆ’π‘§βˆ₯2+𝜏2
𝑛βˆ₯(πΌβˆ’π‘ƒπΆπ‘
𝑖𝑛,𝑛 )𝑦𝑛βˆ₯2
βˆ’2πœπ‘›βŸ¨(πΌβˆ’π‘ƒπΆπ‘
𝑖𝑛,𝑛 )𝑦𝑛, π‘¦π‘›βˆ’π‘§βŸ©
=βˆ₯π‘¦π‘›βˆ’π‘§βˆ₯2+𝜏2
𝑛βˆ₯(πΌβˆ’π‘ƒπΆπ‘
𝑖𝑛,𝑛 )𝑦𝑛βˆ₯2
βˆ’2πœπ‘›βŸ¨(πΌβˆ’π‘ƒπΆπ‘
𝑖𝑛,𝑛 )π‘§βˆ’ (πΌβˆ’π‘ƒπΆπ‘
𝑖𝑛,𝑛 )𝑦𝑛, π‘¦π‘›βˆ’π‘§βŸ©
≀ βˆ₯π‘¦π‘›βˆ’π‘§βˆ₯2+𝜏2
𝑛βˆ₯(πΌβˆ’π‘ƒπΆπ‘
𝑖𝑛,𝑛 )𝑦𝑛βˆ₯2
βˆ’2πœπ‘›βˆ₯πΌβˆ’π‘ƒπΆπ‘
𝑖𝑛,𝑛 )π‘§βˆ’ (πΌβˆ’π‘ƒπΆπ‘
𝑖𝑛,𝑛 )𝑦𝑛βˆ₯2
=βˆ₯π‘¦π‘›βˆ’π‘§βˆ₯2+𝜏2
𝑛βˆ₯(πΌβˆ’π‘ƒπΆπ‘
𝑖𝑛,𝑛 )𝑦𝑛βˆ₯2
βˆ’2πœπ‘›βˆ₯(πΌβˆ’π‘ƒπΆπ‘
𝑖𝑛,𝑛 )𝑦𝑛βˆ₯2
≀ βˆ₯π‘¦π‘›βˆ’π‘§βˆ₯2+𝜌2
𝑛
βˆ₯(πΌβˆ’π‘ƒπΆπ‘
𝑖𝑛,𝑛 )𝑦𝑛βˆ₯4
(βˆ₯(πΌβˆ’π‘ƒπΆπ‘
𝑖𝑛,𝑛 )𝑦𝑛βˆ₯2+πœƒπ‘›)2
(βˆ₯(πΌβˆ’π‘ƒπΆπ‘
𝑖𝑛,𝑛 )𝑦𝑛βˆ₯2+πœƒπ‘›)
βˆ’2πœŒπ‘›
βˆ₯(πΌβˆ’π‘ƒπΆπ‘
𝑖𝑛,𝑛 )𝑦𝑛βˆ₯4
βˆ₯(πΌβˆ’π‘ƒπΆπ‘
𝑖𝑛,𝑛 )𝑦𝑛βˆ₯2+πœƒπ‘›
=βˆ₯π‘¦π‘›βˆ’π‘§βˆ₯2βˆ’πœŒπ‘›(2βˆ’πœŒπ‘›)
βˆ₯(πΌβˆ’π‘ƒπΆπ‘
𝑖𝑛,𝑛 )𝑦𝑛βˆ₯4
βˆ₯(πΌβˆ’π‘ƒπΆπ‘
𝑖𝑛,𝑛 )𝑦𝑛βˆ₯2+πœƒπ‘›
.
(29)
Case B: 𝑑𝑛< 𝑣𝑛.
In this case, πœπ‘›=
πœŒπ‘›βˆ₯ (πΌβˆ’π‘ƒπ‘„π‘
𝑗𝑛,𝑛
)𝐴𝑗𝑛𝑦𝑛βˆ₯2
βˆ₯π΄βˆ—
𝑗𝑛(πΌβˆ’π‘ƒπ‘„π‘
𝑗𝑛,𝑛
)𝐴𝑗𝑛𝑦𝑛βˆ₯2+πœƒπ‘›,
𝑓𝑛(𝑦𝑛)=1
2||(πΌβˆ’π‘ƒπ‘„π‘
𝑗𝑛,𝑛 )𝐴𝑗𝑛𝑦𝑛||2and βˆ‡π‘“π‘›(𝑦𝑛)=
π΄βˆ—
𝑗𝑛(πΌβˆ’π‘ƒπ‘„π‘
𝑗𝑛,𝑛 )𝐴𝑗𝑛𝑦𝑛. Similar with the deduction of
Case A, we obtain that
βˆ₯π‘¦π‘›βˆ’πœπ‘›βˆ‡π‘“π‘›(𝑦𝑛) βˆ’ 𝑧βˆ₯2
≀ βˆ₯π‘¦π‘›βˆ’π‘§βˆ₯2βˆ’πœŒπ‘›(2βˆ’πœŒπ‘›)
βˆ₯ (πΌβˆ’π‘ƒπ‘„π‘
𝑗𝑛,𝑛
)𝐴𝑗𝑛𝑦𝑛βˆ₯4
βˆ₯π΄βˆ—
𝑗𝑛(πΌβˆ’π‘ƒπ‘„π‘
𝑗𝑛,𝑛
)𝐴𝑗𝑛𝑦𝑛βˆ₯2+πœƒπ‘›.
(30)
From (C2), (29) and (30) we have that
βˆ₯π‘¦π‘›βˆ’πœπ‘›βˆ‡π‘“π‘›(𝑦𝑛) βˆ’ 𝑧βˆ₯ ≀ βˆ₯π‘¦π‘›βˆ’π‘§βˆ₯.(31)
By (20), we also have
βˆ₯π‘¦π‘›βˆ’π‘§βˆ₯=βˆ₯π‘₯𝑛+𝛽𝑛(π‘₯π‘›βˆ’π‘₯π‘›βˆ’1) βˆ’ 𝑧βˆ₯
≀ βˆ₯π‘₯π‘›βˆ’π‘§βˆ₯ + 𝛽𝑛βˆ₯π‘₯π‘›βˆ’π‘₯π‘›βˆ’1βˆ₯.(32)
Combining (28), (31) and (32)
βˆ₯π‘₯𝑛+1βˆ’π‘§βˆ₯ ≀ 𝛼𝑛||𝑔(𝑦𝑛) βˆ’ 𝑔(𝑧)|| + 𝛼𝑛||𝑔(𝑧) βˆ’ 𝑧||
+ (1βˆ’π›Όπ‘›)||π‘¦π‘›βˆ’πœπ‘›βˆ‡π‘“π‘›(𝑦𝑛) βˆ’ 𝑧||
≀𝛼𝑛𝑐||π‘¦π‘›βˆ’π‘§|| + 𝛼𝑛||𝑔(𝑧) βˆ’ 𝑧||
+ (1βˆ’π›Όπ‘›)||π‘¦π‘›βˆ’π‘§||
≀ [1βˆ’π›Όπ‘›(1βˆ’π‘)]βˆ₯π‘₯π‘›βˆ’π‘§βˆ₯
+ [1βˆ’π›Όπ‘›(1βˆ’π‘)] 𝛽𝑛βˆ₯π‘₯π‘›βˆ’π‘₯π‘›βˆ’1βˆ₯
+𝛼𝑛βˆ₯𝑔(𝑧) βˆ’ 𝑧βˆ₯
=[1βˆ’π›Όπ‘›(1βˆ’π‘)] βˆ₯π‘₯π‘›βˆ’π‘§βˆ₯ + 𝛼𝑛(1βˆ’π‘)
βˆ₯𝑔(𝑧) βˆ’ 𝑧βˆ₯ + 1βˆ’π›Όπ‘›(1βˆ’π‘)
𝛼𝑛𝛽𝑛βˆ₯π‘₯π‘›βˆ’π‘₯π‘›βˆ’1βˆ₯
1βˆ’π‘.
(33)
According to (C3), we see that 𝑑𝑛=
[1βˆ’π›Όπ‘›(1βˆ’π‘) ]𝛽𝑛βˆ₯π‘₯π‘›βˆ’π‘₯π‘›βˆ’1βˆ₯
𝛼𝑛→0. Hence the sequence 𝑑𝑛
is bounded. There exists some 𝑀 > 0such that
βˆ₯π‘₯𝑛+1βˆ’π‘§βˆ₯ ≀ [1βˆ’π›Όπ‘›(1βˆ’π‘)]βˆ₯π‘₯π‘›βˆ’π‘§βˆ₯ + 𝛼𝑛(1βˆ’π‘)𝑀
≀max{βˆ₯π‘₯π‘›βˆ’π‘§βˆ₯, 𝑀}
.
.
.
≀max{βˆ₯π‘₯0βˆ’π‘§βˆ₯, 𝑀}.
(34)
We conclude that {π‘₯𝑛}is bounded and hence {𝑦𝑛}is
bounded.
According to the definition of 𝑦𝑛, it holds that
βˆ₯π‘¦π‘›βˆ’π‘§βˆ₯2=βˆ₯π‘₯𝑛+𝛽𝑛(π‘₯π‘›βˆ’π‘₯π‘›βˆ’1) βˆ’ 𝑧βˆ₯2
=βˆ₯π‘₯π‘›βˆ’π‘§βˆ₯2+2π›½π‘›βŸ¨π‘₯π‘›βˆ’π‘₯π‘›βˆ’1, π‘₯π‘›βˆ’π‘§βŸ©
+𝛽2
𝑛βˆ₯π‘₯π‘›βˆ’π‘₯π‘›βˆ’1βˆ₯2.
(35)
By Lemma 2.1(3), the following equation holds.
⟨π‘₯π‘›βˆ’π‘₯π‘›βˆ’1, π‘₯π‘›βˆ’π‘§βŸ©=βˆ’1
2βˆ₯π‘₯π‘›βˆ’1βˆ’π‘§βˆ₯2+1
2βˆ₯π‘₯π‘›βˆ’π‘§βˆ₯2
+1
2βˆ₯π‘₯π‘›βˆ’π‘₯π‘›βˆ’1βˆ₯2.(36)
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2023.22.12
Yaxuan Zhang, Yuming Guan
E-ISSN: 2224-2880
103
Volume 22, 2023
Substituting the equality (36) into (35), we obtain
βˆ₯π‘¦π‘›βˆ’π‘§βˆ₯2=βˆ₯π‘₯π‘›βˆ’π‘§βˆ₯2+𝛽𝑛(βˆ’βˆ₯π‘₯π‘›βˆ’1βˆ’π‘§βˆ₯2
+ βˆ₯π‘₯π‘›βˆ’π‘§βˆ₯2+ βˆ₯π‘₯π‘›βˆ’π‘₯π‘›βˆ’1βˆ₯2)
+𝛽2
𝑛βˆ₯π‘₯π‘›βˆ’π‘₯π‘›βˆ’1βˆ₯2
≀ βˆ₯π‘₯π‘›βˆ’π‘§βˆ₯2+𝛽𝑛(βˆ₯π‘₯π‘›βˆ’π‘§βˆ₯2βˆ’ βˆ₯π‘₯π‘›βˆ’1βˆ’π‘§βˆ₯2)
+2𝛽𝑛βˆ₯π‘₯π‘›βˆ’π‘₯π‘›βˆ’1βˆ₯2
≀ βˆ₯π‘₯π‘›βˆ’π‘§βˆ₯2+𝛽𝑛βˆ₯π‘₯π‘›βˆ’π‘₯π‘›βˆ’1βˆ₯ (βˆ₯π‘₯π‘›βˆ’π‘§βˆ₯
βˆ’ βˆ₯π‘₯π‘›βˆ’1βˆ’π‘§βˆ₯) + 2𝛽𝑛βˆ₯π‘₯π‘›βˆ’π‘₯π‘›βˆ’1βˆ₯2
=βˆ₯π‘₯π‘›βˆ’π‘§βˆ₯2+𝐸𝑛,
(37)
where 𝐸𝑛=𝛽𝑛βˆ₯π‘₯π‘›βˆ’π‘₯π‘›βˆ’1βˆ₯(βˆ₯π‘₯π‘›βˆ’π‘§βˆ₯ βˆ’ βˆ₯π‘₯π‘›βˆ’1βˆ’π‘§βˆ₯) +
2𝛽𝑛βˆ₯π‘₯π‘›βˆ’π‘₯π‘›βˆ’1βˆ₯2.
According to the boundedness of {πœƒπ‘›}and {𝑦𝑛},
put
𝐿=max{sup
𝑛
{βˆ₯(πΌβˆ’π‘ƒπΆπ‘
𝑖𝑛,𝑛 )𝑦𝑛βˆ₯2+πœƒπ‘›},
sup
𝑛
{βˆ₯ π΄βˆ—
𝑗𝑛(πΌβˆ’π‘ƒπ‘„π‘
𝑗𝑛,𝑛 )𝐴𝑗𝑛𝑦𝑛βˆ₯2+πœƒπ‘›}}.(38)
It follows from (29) and (30) that
Ξ¦4
𝑛≀𝐿
πœŒπ‘›(1βˆ’πœŒπ‘›)(βˆ₯π‘¦π‘›βˆ’π‘§βˆ₯2βˆ’βˆ₯π‘¦π‘›βˆ’πœπ‘›βˆ‡π‘“π‘›(𝑦𝑛)βˆ’π‘§βˆ₯2),
(39)
where Φ𝑛=max{𝑑𝑛, 𝑣𝑛}.
Using (31) and (39), we have
βˆ₯π‘₯𝑛+1βˆ’π‘§βˆ₯2
=βŸ¨π›Όπ‘›π‘”(𝑦𝑛)+(1βˆ’π›Όπ‘›)(π‘¦π‘›βˆ’πœπ‘›βˆ‡π‘“π‘›(𝑦𝑛)) βˆ’ 𝑧, π‘₯𝑛+1βˆ’π‘§βŸ©
=(1βˆ’π›Όπ‘›)βŸ¨π‘¦π‘›βˆ’πœπ‘›βˆ‡π‘“π‘›(𝑦𝑛) βˆ’ 𝑧, π‘₯𝑛+1βˆ’π‘§βŸ©
+π›Όπ‘›βŸ¨π‘”(𝑦𝑛) βˆ’ 𝑧, π‘₯𝑛+1βˆ’π‘§βŸ©
≀1βˆ’π›Όπ‘›
2(βˆ₯π‘₯𝑛+1βˆ’π‘§βˆ₯2+ βˆ₯π‘¦π‘›βˆ’πœπ‘›βˆ‡π‘“π‘›(𝑦𝑛) βˆ’ 𝑧βˆ₯2)
+π›Όπ‘›βŸ¨π‘”(𝑦𝑛) βˆ’ 𝑔(𝑧), π‘₯𝑛+1βˆ’π‘§βŸ©
+π›Όπ‘›βŸ¨π‘”(𝑧) βˆ’ 𝑧, π‘₯𝑛+1βˆ’π‘§βŸ©
≀1βˆ’π›Όπ‘›
2(βˆ₯π‘₯𝑛+1βˆ’π‘§βˆ₯2+ βˆ₯π‘¦π‘›βˆ’πœπ‘›βˆ‡π‘“π‘›(𝑦𝑛) βˆ’ 𝑧βˆ₯2)
+𝛼𝑛
2(𝑐2βˆ₯π‘¦π‘›βˆ’π‘§βˆ₯2+ βˆ₯π‘₯𝑛+1βˆ’π‘§βˆ₯2)
+π›Όπ‘›βŸ¨π‘”(𝑧) βˆ’ 𝑧, π‘₯𝑛+1βˆ’π‘§βŸ©
≀1βˆ’π›Όπ‘›
2(βˆ₯π‘₯𝑛+1βˆ’π‘§βˆ₯2+ βˆ₯π‘¦π‘›βˆ’π‘§βˆ₯2βˆ’πœŒπ‘›(1βˆ’πœŒπ‘›)Ξ¦4
𝑛
𝐿)
+𝛼𝑛
2(𝑐βˆ₯π‘¦π‘›βˆ’π‘§βˆ₯2+ βˆ₯π‘₯𝑛+1βˆ’π‘§βˆ₯2)
+π›Όπ‘›βŸ¨π‘”(𝑧) βˆ’ 𝑧, π‘₯𝑛+1βˆ’π‘§βŸ©,
(40)
which is rearranged to obtain
βˆ₯π‘₯𝑛+1βˆ’π‘§βˆ₯2
≀ (1βˆ’π›Όπ‘›)βˆ₯π‘¦π‘›βˆ’π‘§βˆ₯2
βˆ’ (1βˆ’π›Όπ‘›)πœŒπ‘›(1βˆ’πœŒπ‘›)Ξ¦4
𝑛
𝐿+𝛼𝑛𝑐βˆ₯π‘¦π‘›βˆ’π‘§βˆ₯2
+2π›Όπ‘›βŸ¨π‘”(𝑧) βˆ’ 𝑧, π‘₯𝑛+1βˆ’π‘§βŸ©
=[1βˆ’π›Όπ‘›(1βˆ’π‘)] βˆ₯π‘¦π‘›βˆ’π‘§βˆ₯2
βˆ’ (1βˆ’π›Όπ‘›)πœŒπ‘›(1βˆ’πœŒπ‘›)Ξ¦4
𝑛
𝐿
+2π›Όπ‘›βŸ¨π‘”(𝑧) βˆ’ 𝑧, π‘₯𝑛+1βˆ’π‘§βŸ©.
(41)
Substituting (37) into (41) yields that
βˆ₯π‘₯𝑛+1βˆ’π‘§βˆ₯2≀ [1βˆ’π›Όπ‘›(1βˆ’π‘)](βˆ₯π‘₯π‘›βˆ’π‘§βˆ₯2+𝐸𝑛)
βˆ’ (1βˆ’π›Όπ‘›)πœŒπ‘›(1βˆ’πœŒπ‘›)Ξ¦4
𝑛
𝐿
+2π›Όπ‘›βŸ¨π‘”(𝑧) βˆ’ 𝑧, π‘₯𝑛+1βˆ’π‘§βŸ©
=[1βˆ’π›Όπ‘›(1βˆ’π‘)] βˆ₯π‘₯π‘›βˆ’π‘§βˆ₯2
+ [1βˆ’π›Όπ‘›(1βˆ’π‘)]𝐸𝑛
βˆ’ (1βˆ’π›Όπ‘›)πœŒπ‘›(1βˆ’πœŒπ‘›)Ξ¦4
𝑛
𝐿
+2π›Όπ‘›βŸ¨π‘”(𝑧) βˆ’ 𝑧, π‘₯𝑛+1βˆ’π‘§βŸ©.
(42)
Set
𝑠𝑛=βˆ₯π‘₯π‘›βˆ’π‘§βˆ₯2;
𝛾𝑛=[1βˆ’π›Όπ‘›(1βˆ’π‘)]𝐸𝑛+2π›Όπ‘›βŸ¨π‘”(𝑧) βˆ’ 𝑧, π‘₯𝑛+1βˆ’π‘§βŸ©;
𝛿𝑛=[1βˆ’π›Όπ‘›(1βˆ’π‘)] 𝐸𝑛
𝛼𝑛(1βˆ’π‘)
+2
1βˆ’π‘βŸ¨π‘”(𝑧) βˆ’ 𝑧, π‘₯𝑛+1βˆ’π‘§βŸ©;
πœ‚π‘›=(1βˆ’π›Όπ‘›)πœŒπ‘›(1βˆ’πœŒπ‘›)Ξ¦4
𝑛
𝐿.
(43)
From (42) and (43), we derive that
𝑠𝑛+1≀ [1βˆ’π›Όπ‘›(1βˆ’π‘)]𝑠𝑛+𝛼𝑛(1βˆ’π‘)𝛿𝑛, 𝑛 β‰₯1,
(44)
𝑠𝑛+1β‰€π‘ π‘›βˆ’πœ‚π‘›+𝛾𝑛, 𝑛 β‰₯1.(45)
Let {π‘›π‘˜}be a subsequence of {𝑛}such that
lim sup
π‘˜β†’βˆž
πœ‚π‘›π‘˜β‰€0.(46)
That is
lim sup
π‘˜β†’βˆž
(1βˆ’π›Όπ‘›π‘˜)πœŒπ‘›π‘˜(1βˆ’πœŒπ‘›π‘˜)
Ξ¦4
π‘›π‘˜
𝐿≀0,(47)
which by conditions (C1) and (C2) implies
lim
π‘˜β†’βˆž
Ξ¦π‘›π‘˜=0.(48)
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2023.22.12
Yaxuan Zhang, Yuming Guan
E-ISSN: 2224-2880
104
Volume 22, 2023
By the definition of Φ𝑛, it indicates that
lim
π‘˜β†’βˆž βˆ₯(πΌβˆ’π‘ƒπΆπ‘
π‘–π‘›π‘˜,π‘›π‘˜
)π‘¦π‘›π‘˜βˆ₯=0,(49)
lim
π‘˜β†’βˆž βˆ₯(πΌβˆ’π‘ƒπ‘„π‘
π‘—π‘›π‘˜,π‘›π‘˜
)π΄π‘—π‘›π‘¦π‘›π‘˜βˆ₯=0.(50)
The definitions of π‘–π‘›π‘˜and π‘—π‘›π‘˜ensure that
lim
π‘˜β†’βˆž βˆ₯(πΌβˆ’π‘ƒπΆπ‘
𝑖,π‘›π‘˜
)π‘¦π‘›π‘˜βˆ₯=0, 𝑖 =1,2,Β· Β· Β· , 𝑑, (51)
lim
π‘˜β†’βˆž βˆ₯(πΌβˆ’π‘ƒπ‘„π‘
𝑗,π‘›π‘˜
)π΄π‘—π‘¦π‘›π‘˜βˆ₯=0, 𝑗 =1,2,Β· Β· Β· , π‘Ÿ.
(52)
Since πœ•π‘ž 𝑗, 𝑗 =1,2,Β· Β· Β· , π‘Ÿ are bounded on
bounded sets , there exists a constant πœ‡ > 0such
that βˆ₯πœπ‘›π‘˜
𝑗βˆ₯ ≀ πœ‡, 𝑗 =1,2,Β· Β· Β· , π‘Ÿ, π‘˜ ∈N, where
πœπ‘›π‘˜
π‘—βˆˆπœ•π‘ž 𝑗(π‘¦π‘›π‘˜). Note that 𝑃𝑄𝑏
𝑗,π‘›π‘˜
π΄π‘—π‘¦π‘›π‘˜βˆˆπ‘„π‘
𝑗,π‘›π‘˜and
from (52) we obtain
π‘žπ‘—(π΄π‘—π‘¦π‘›π‘˜) ≀ βŸ¨πœπ‘›π‘˜
𝑗, 𝐴 π‘—π‘¦π‘›π‘˜βˆ’π‘ƒπ‘„π‘
𝑗,π‘›π‘˜
π΄π‘—π‘¦π‘›π‘˜βŸ©
βˆ’π›Ύπ‘—
2βˆ₯π΄π‘—π‘¦π‘›π‘˜βˆ’π‘ƒπ‘„π‘
𝑗,π‘›π‘˜
π΄π‘—π‘¦π‘›π‘˜βˆ₯2
≀ βˆ₯πœπ‘›π‘˜
𝑗βˆ₯βˆ₯ π΄π‘—π‘¦π‘›π‘˜βˆ’π‘ƒπ‘„π‘
𝑗,π‘›π‘˜
π΄π‘—π‘¦π‘›π‘˜βˆ₯
β‰€πœ‡βˆ₯(πΌβˆ’π‘ƒπ‘„π‘
𝑗,π‘›π‘˜
)π΄π‘—π‘¦π‘›π‘˜βˆ₯ β†’ 0, π‘˜ β†’ ∞.
(53)
Since {π‘¦π‘›π‘˜}is bounded, there exists a subsequence
{π‘¦π‘›π‘˜π‘š} βŠ‚ {π‘¦π‘›π‘˜}such that π‘¦π‘›π‘˜π‘šβ‡€ π‘₯βˆ—and
lim sup
π‘˜β†’βˆž
βŸ¨π‘”(𝑧) βˆ’ 𝑧, π‘¦π‘›π‘˜βˆ’π‘§βŸ©=lim
π‘šβ†’βˆžβŸ¨π‘”(𝑧) βˆ’ 𝑧, π‘¦π‘›π‘˜π‘šβˆ’π‘§βŸ©.
(54)
Since π‘žπ‘—(Β·) is convex and weakly lower semicon-
tinuous and that π΄π‘—π‘¦π‘›π‘˜π‘šβ‡€ 𝐴 𝑗π‘₯βˆ—, by (53) we have
π‘žπ‘—(𝐴𝑗π‘₯βˆ—) ≀ lim inf
π‘šβ†’βˆž π‘žπ‘—(π΄π‘—π‘¦π‘›π‘˜π‘š) ≀ 0.(55)
Hence 𝐴𝑗π‘₯βˆ—βˆˆπ‘„π‘—.
By the definition of 𝐢𝑏
𝑖,π‘›π‘˜, the assumption (A3) and
(51), there exists a constant πœ€ > 0such that
𝑐𝑖(π‘¦π‘›π‘˜) ≀ βŸ¨πœ‰π‘›π‘˜
𝑖, π‘¦π‘›π‘˜βˆ’π‘ƒπΆπ‘
𝑖,π‘›π‘˜
(π‘¦π‘›π‘˜)⟩
βˆ’πœ†π‘–
2βˆ₯π‘¦π‘›π‘˜βˆ’π‘ƒπΆπ‘
𝑖,π‘›π‘˜
(π‘¦π‘›π‘˜)βˆ₯2
β‰€πœ€βˆ₯π‘¦π‘›π‘˜βˆ’π‘ƒπΆπ‘
𝑖,π‘›π‘˜
(π‘¦π‘›π‘˜)βˆ₯ β†’ 0, π‘˜ β†’ ∞.
(56)
By the weakly lower semi-continuity of 𝑐𝑖and
π‘¦π‘›π‘˜π‘šβ‡€ π‘₯βˆ—, we have
𝑐𝑖(π‘₯βˆ—) ≀ lim inf
π‘šβ†’βˆž 𝑐𝑖(π‘¦π‘›π‘˜π‘š) ≀ 0.(57)
Therefore π‘₯βˆ—βˆˆπΆπ‘–(𝑖=1, ..., 𝑑). So π‘₯βˆ—βˆˆπ‘†.
From Lemma 2.1(1) and (54) we obtain:
lim sup
π‘˜β†’βˆž
βŸ¨π‘”(𝑧) βˆ’ 𝑧, π‘¦π‘›π‘˜βˆ’π‘§βŸ©
=lim
π‘šβ†’βˆžβŸ¨π‘”(𝑧) βˆ’ 𝑧, π‘¦π‘›π‘˜π‘šβˆ’π‘§βŸ©
=βŸ¨π‘”(𝑧) βˆ’ 𝑧, π‘₯βˆ—βˆ’π‘§βŸ© ≀ 0.
(58)
On the other hand, by (C3), we have
βˆ₯π‘¦π‘›βˆ’π‘₯𝑛βˆ₯=𝛽𝑛βˆ₯π‘₯π‘›βˆ’π‘₯π‘›βˆ’1βˆ₯ β†’ 0, 𝑛 β†’ ∞.(59)
So we have
βˆ₯π‘₯𝑛+1βˆ’π‘₯𝑛βˆ₯
=βˆ₯𝛼𝑛(𝑔(𝑦𝑛) βˆ’ π‘₯𝑛)+(1βˆ’π›Όπ‘›)(π‘¦π‘›βˆ’πœπ‘›βˆ‡π‘“π‘›(𝑦𝑛) βˆ’ π‘₯𝑛)βˆ₯
≀𝛼𝑛βˆ₯𝑔(𝑦𝑛) βˆ’ π‘₯𝑛βˆ₯+(1βˆ’π›Όπ‘›)βˆ₯π‘¦π‘›βˆ’π‘₯𝑛βˆ₯
+ (1βˆ’π›Όπ‘›)πœπ‘›βˆ₯βˆ‡ 𝑓𝑛(𝑦𝑛)βˆ₯.
(60)
Note that
πœπ‘›=πœŒπ‘›
Ξ¦2
𝑛
||βˆ‡ 𝑓𝑛(𝑦𝑛)||2+πœƒπ‘›
≀2
inf{πœƒπ‘›}Ξ¦2
𝑛→0, 𝑛 β†’ ∞.
(61)
Thus
βˆ₯π‘₯𝑛+1βˆ’π‘₯𝑛βˆ₯ β†’ 0, 𝑛 β†’ ∞.(62)
From (58), (59) and (62), we derive that
lim sup
π‘˜β†’βˆž
βŸ¨π‘”(𝑧) βˆ’ 𝑧, π‘₯π‘›π‘˜+1βˆ’π‘§βŸ© ≀ 0.(63)
Then (C3) and (63) implies that
lim sup
π‘˜β†’βˆž
π›Ώπ‘›π‘˜β‰€0.(64)
Using Lemma 2.4 , we conclude that π‘₯𝑛→𝑧. The
proof is complete. β–‘
4 Numerical experiments
In this section, we provide some numerical experi-
ments to show the efficiency of Algorithm 3.1 and
compare the convergence rates of our algorithm and
other algorithms. The codes are written in Matlab
R2018b and run on Inter(R) Core(TM) i9-12900H
CPU @ 2.50 GHz , RAM 16.00 GB.
The inertial coefficient 𝛽𝑛is given by
𝛽𝑛=ξ˜¨πœ€π‘›
||π‘₯π‘›βˆ’π‘₯π‘›βˆ’1|| ,||π‘₯π‘›βˆ’π‘₯π‘›βˆ’1|| >1
πœ€π‘›,||π‘₯π‘›βˆ’π‘₯π‘›βˆ’1|| ≀ 1.
(65)
It is easy to check that π›½π‘›β‰€πœ€π‘›and that 𝛽𝑛||π‘₯π‘›βˆ’
π‘₯π‘›βˆ’1|| ≀ πœ€π‘›. It also can be proved, see [24], that if
πœ€π‘›β‰₯0and ξ›βˆž
𝑛=0πœ€π‘›<+∞, the corresponding algo-
rithms are strongly convergent.
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2023.22.12
Yaxuan Zhang, Yuming Guan
E-ISSN: 2224-2880
105
Volume 22, 2023
Example 4.1 Consider the following problem: find
an element π‘₯βˆ—βˆˆR𝑁such that
π‘₯βˆ—βˆˆπ‘†=
𝑑
ξ›™
𝑖=1
πΆπ‘–βˆ© (
π‘Ÿ
ξ›™
𝑗=1
π΄βˆ’1
𝑗(𝑄𝑗)),(66)
where the closed convex subsets 𝐢𝑖and 𝑄𝑗are given
by
𝐢𝑖={π‘₯∈R𝑁:
𝑁
ξ›•
π‘˜=𝑖
10 π‘˜βˆ’1
π‘βˆ’1π‘₯2
π‘˜βˆ’1≀0},(67)
𝑄𝑗={π‘¦βˆˆR𝑁(𝑗+1):
𝑁(𝑗+1)
ξ›•
π‘˜=𝑗
10 π‘˜βˆ’1
𝑁(𝑗+1) βˆ’1𝑦2
π‘˜βˆ’1≀0}.
(68)
It is obvious that 𝐢𝑖and 𝑄𝑗are ellipsoids (see
[25]), and 𝑐𝑖(π‘₯)=𝑁
π‘˜=𝑖10 π‘˜βˆ’1
π‘βˆ’1π‘₯2
π‘˜βˆ’1and π‘žπ‘—(𝑦)=
𝑁(𝑗+1)
π‘˜=𝑗10 π‘˜βˆ’1
𝑁(𝑗+1) βˆ’1𝑦2
π‘˜βˆ’1are both 2-strongly convex
functions, see [16]).
Set 𝑁=5,𝑑=10, π‘Ÿ =20, πœŒπ‘›=0.1, 𝛼𝑛=
1
𝑛, πœ€π‘›=1
𝑛1.2, πœƒπ‘›=0.1, 𝑔(π‘₯)=0.8π‘₯, and 𝑒denotes
the vector of corresponding dimension of which the
coordinates are all 1. Let 𝐴𝑗:R𝑁→R𝑁(𝑗+1)be
bounded linear operators, of which the elements are
randomly generated in the closed interval [0,10]. Set
TOL =1
𝑑+π‘Ÿ(
𝑑
ξ›•
𝑖=1
βˆ₯π‘₯π‘›βˆ’π‘ƒπΆπ‘–π‘₯𝑛βˆ₯2
+
π‘Ÿ
ξ›•
𝑗=1
βˆ₯𝐴𝑗π‘₯π‘›βˆ’π‘ƒπ‘„π‘—π΄π‘—π‘₯𝑛βˆ₯2)(69)
for all 𝑛β‰₯1. Note that if at the 𝑛th step, TOL =0,
then π‘₯π‘›βˆˆπ‘†, that is, π‘₯𝑛is a solution to this problem.
We use TOL <10βˆ’3as a stopping criteria.
First, we consider the impact of inertial term on
the convergence rate under different initial values π‘₯0
and π‘₯1. We use Alg.3.1 to refer to Algorithm 3.1 and
Alg.3.2 to refer to Algorithm 3.1 without inertial term.
The results of numerical experiments are reported in
Table 1 and Fig.1.
From Table 1 and Fig.1, we can see that Alg.3.1
has advantage over Alg.3.2 in both the iteration num-
ber and the CPU time. This shows that the inertial
perturbation can improve the convergence of the al-
gorithms.
Next, we consider the impact of πœŒπ‘›in the self-
adaptive step size on the convergence rate. For πœŒπ‘›=
0.1, πœŒπ‘›=0.3,πœŒπ‘›=0.6, πœŒπ‘›=0.9, 𝜌 =1.2, 𝜌 =1.5,
and 𝜌=1.9, with other parameters retaining the same
values as above, we examine the convergence of the
sequence {π‘₯𝑛}which is generated by Algorithm 3.1.
The results as shown in Fig.2(e).
123456
Number of iterations
10-2
10-1
TOL
Alg.3.1
Alg.3.2
(a) π‘₯0=π‘₯1=1
50 βˆ—π‘Ÿ π‘Žπ‘›π‘‘ (𝑁 , 1)
0 5 10 15 20 25 30 35
Number of iterations
10-2
10-1
100
101
102
TOL
Alg.3.1
Alg.3.2
(b) π‘₯0=π‘₯1=1
20 βˆ—π‘’
0 5 10 15 20 25 30 35 40
Number of iterations
10-2
10-1
100
101
102
103
TOL
Alg.3.1
Alg.3.2
(c) π‘₯0=π‘₯1=1
10 βˆ—π‘’
0 10 20 30 40 50 60
Number of iterations
10-2
10-1
100
101
102
103
104
105
TOL
Alg.3.1
Alg.3.2
(d) π‘₯0=π‘₯1=𝑒
Fig.1: Comparison of Alg.3.1 and Alg.3.2 under
different choices of initial values.
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2023.22.12
Yaxuan Zhang, Yuming Guan
E-ISSN: 2224-2880
106
Volume 22, 2023
Table 1: The numerical results for Alg.3.1 and
Alg.3.2
Alg.3.1 Alg.3.2
Initial Point 𝑛Time(s) 𝑛Time(s)
π‘₯0=π‘₯1=1
50 βˆ—π‘Ÿπ‘Žπ‘›π‘‘ (𝑁, 1)4 0.0223 7 0.0330
π‘₯0=π‘₯1=1
20 βˆ—π‘’28 0.0823 33 0.0941
π‘₯0=π‘₯1=1
10 βˆ—π‘’35 0.0986 40 0.1218
π‘₯0=π‘₯1=𝑒54 0.1500 59 0.1495
0 10 20 30 40 50 60
Number of iterations
10-2
10-1
100
101
102
103
104
105
TOL
n=0.1
n=0.3
n=0.6
n=0.9
n=1.1
n=1.5
n=1.9
(e) Different choices of πœŒπ‘›
0 50 100 150 200 250 300 350
Number of iterations
10-2
10-1
100
101
102
103
104
105
TOL
Alg.3.1
Alg.3.3
(f) Different choices of step sizes
Fig.2: Comparison of different choices of πœŒπ‘›and
step sizes.
It seems that Algorithm 3.1 converges faster if πœŒπ‘›
takes values around the midpoint of the interval (0,2).
Finally, we consider the convergence rate under
different choices of self-adaptive step sizes. We de-
note by Alg.3.3 the algorithm the same as ours except
that the the step size is the ordinary self-adaptive one:
πœπ‘›=πœŒπ‘›
π‘Ž1
π‘Ž2
,(70)
where
π‘Ž1=
𝑑
ξ›•
𝑖=1
||(πΌβˆ’π‘ƒπΆπ‘
𝑖,𝑛 )𝑦𝑛||2+
π‘Ÿ
ξ›•
𝑗=1
||(πΌβˆ’π‘ƒπ‘„π‘
𝑗,𝑛 )𝐴𝑗𝑦𝑛||2,
(71)
π‘Ž2=||
𝑑
ξ›•
𝑖=1
(πΌβˆ’π‘ƒπΆπ‘
𝑖,𝑛 )𝑦𝑛+
π‘Ÿ
ξ›•
𝑗=1
π΄βˆ—
𝑗(πΌβˆ’π‘ƒπ‘„π‘
𝑗,𝑛 )𝐴𝑗𝑦𝑛||2,
(72)
with other parameters retaining the same values as
above, we provide the results in Fig.2(f).
From Fig.2(f), we see that our algorithm with step
size defined as in (26) is more effective in that it
used fewer iterates in the experiment. The reason
may be that we applied the largest distance among
βˆ₯π΄π‘—π‘¦π‘›βˆ’π‘ƒπ‘„π‘
𝑗,𝑛 (𝐴𝑗𝑦𝑛)βˆ₯, 𝑖 =1,2,Β· Β· Β· , 𝑑 and βˆ₯π΄π‘—π‘¦π‘›βˆ’
𝑃𝑄𝑏
𝑗,𝑛 (𝐴𝑗𝑦𝑛)βˆ₯, 𝑗 =1,2,Β· Β· Β· , π‘Ÿ while Alg.3.3 use the
sum of them.
Acknowledgments
The authors would like to thank the editors
and reviewers for their valuable comments on the
manuscript.
References:
[1] Y. Censor, T. Elfving, A multi projection algo-
rithm using Bregman projections in a product
space, Numer. Algorithms, Vol.8, No.3, 1994,
pp. 221-239.
[2] Y. Censor, T. Elfving, N. Kopf, T. Bortfeld, The
multiple-sets split feasibility problem and its ap-
plication for inverse problem, Inverse Probl.,
Vol.21, 2005, pp. 2071-2084.
[3] C. Byrne, Iterative oblique projection onto con-
vex sets and the split feasibility problem, Inverse
Probl., Vol.18, No.2, 2002, pp. 441-453.
[4] C. Byrne, A unified treatment of some iter-
ative algorithms in signal processing and im-
age reconstruction, Inverse Probl., Vol.20, No.1,
2004, pp. 103-120.
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2023.22.12
Yaxuan Zhang, Yuming Guan
E-ISSN: 2224-2880
107
Volume 22, 2023
[5] Y. Censor, A. Segal, Iterative projection meth-
ods in biomedical inverse problems. Mathe-
matical methods in biomedical imaging and
intensity-modulated radiation therapy (IMRT),
Vol.10, 2008, pp. 656.
[6] Y. Censor, T. Bortfeld, B. Martin, A. Trofi-
mov, A unified approach for inversion problems
in intensity-modulated radiation therapy, Phys.
Med. Biol., Vol.51, No.10, 2006, 2353-65.
[7] J. Wang, Y. Hu, C. Li, J.C. Yao, Linear conver-
gence of CQ algorithms and applications in gene
regulatory network inference, Inverse Probl.,
Vol.33, No.5, 2017, pp. 055017.
[8] Y. Censor, A. Segal, The split common fixed
point problem for directed operators, J. Convex
Anal., Vol.26, No.5, 2010, pp. 55007.
[9] A. Moudafi, The split common fixed point
problem for demicontractive mappings, Inverse
Probl., Vol.26, No.5, 2010, pp. 055007 .
[10] S. Tuyen, T.M. Reich, N.M. Trang, Parallel it-
erative methods for solving the split common
fixed point problem in Hilbert spaces, Numer.
Funct. Anal. Optim., Vol.41, No.7, 2020, pp.
778-805.
[11] Y. Censor, A. Gibali, S. Reich, Algorithms for
the split variational inequality problems, Numer.
Algorithms, Vol.59, 2012, pp. 301-323.
[12] S. Reich, T.M. Tuyen, Iterative methods for
solving the generalized split common null point
problem in Hilbert spaces, Optimization, Vol.69,
No.5, 2020, pp. 1013-1038.
[13] S. Reich, T.M. Tuyen, A new algorithm for
solving the split common null point problem
in Hilbert spaces, Numer. Algorithms, Vol.83,
2020, pp. 789-805.
[14] S. Reich, T.M. Tuyen, The split feasibility prob-
lem with multiple output sets in Hilbert spaces,
Optim. Lett., Vol.14, 2020, pp. 2335-2353.
[15] Q.Z. Yang, The relaxed CQ algorithm solv-
ing the split feasibility problem, Inverse Probl.,
Vol.20, 2004, pp. 1261-1266.
[16] H. Yu, W.R. Zhan, F.H. Wang, The ball-relaxed
CQ algorithms for the split feasibility problem,
Optimization, Vol.67, No.10, 2018, pp. 1687-
1699.
[17] Q.Z. Yang, On variable-step relaxed projection
algorithm for variational inequalities, J. Math.
Anal. Appl., Vol.302, 2005, pp. 166-179.
[18] G. LΓ³pez, V. MartΓ­n-MΓ‘rquez, F.H. Wang, H.K.
Xu, Solving the split feasibility problem with-
out prior knowledge of matrix norms, Inverse
Probl., Vol.28, 2012, pp. 374-389.
[19] A. Gibali, L.W. Liu, Y.C. Tang, Note on the
modified relaxation CQ algorithm for the split
feasibility problem, Optim. Lett., Vol.12, 2018,
pp. 817-830.
[20] S. Suantai, N. Pholasa, P. Cholamjiak, Re-
laxed CQ algorithms involving the inertial tech-
nique for multiple-sets split feasibility problems,
RACSAM, Vol.113, 2019, pp. 1081-1099.
[21] H.H. Bauschke, P.L. Combettes, Convex Anal-
ysis and Monotone Operator Theory in Hilbert
Space, Springer: London, UK, 2011.
[22] S. He, C. Yang, Solving the variational in-
equality problem defined on intersection of
finite level sets, Abstr. Appl. Anal., 2013,
https://doi.org/10.1155/2013/942315.
[23] G.H. Taddele, P. Kumam, A.G. Gebrie, J.
Abubakar, Ball-relaxed projection algorithms
for multiple-sets split feasibility problem, Opti-
mization, Vol.2, 2021, pp. 1-31.
[24] Y.Y. Li, Y.X. Zhang, Bounded Perturbation
Resilience of Two Modified Relaxed CQ Al-
gorithms for the Multiple-Sets Split Feasibil-
ity Problem. Axioms, Vol.10, 2021, pp. 197,
https://doi.org/10.3390/axioms10030197.
[25] Y.H. Dai, Fast algorithms for projection on an
ellipsoid, SIAM J Optim., Vol.16, 2006, pp. 986-
1006.
5Contribution of individual authors
Yaxuan Zhang proposed the algorithm and checked
the correctness of the manuscript.
Yuming Guan proved the convergence theorem of the
algorithm and carried out the numerical simulation.
6Sources of funding
This work is supported by the national science foun-
dation of China (grant no. NSFC 11705279).
Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)
This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2023.22.12
Yaxuan Zhang, Yuming Guan
E-ISSN: 2224-2880
108
Conflict of Interest
The authors have no conflicts of interest to declare
that are relevant to the content of this article.