[5] Y. Censor, A. Segal, Iterative projection meth-
ods in biomedical inverse problems. Mathe-
matical methods in biomedical imaging and
intensity-modulated radiation therapy (IMRT),
Vol.10, 2008, pp. 656.
[6] Y. Censor, T. Bortfeld, B. Martin, A. Trofi-
mov, A unified approach for inversion problems
in intensity-modulated radiation therapy, Phys.
Med. Biol., Vol.51, No.10, 2006, 2353-65.
[7] J. Wang, Y. Hu, C. Li, J.C. Yao, Linear conver-
gence of CQ algorithms and applications in gene
regulatory network inference, Inverse Probl.,
Vol.33, No.5, 2017, pp. 055017.
[8] Y. Censor, A. Segal, The split common fixed
point problem for directed operators, J. Convex
Anal., Vol.26, No.5, 2010, pp. 55007.
[9] A. Moudafi, The split common fixed point
problem for demicontractive mappings, Inverse
Probl., Vol.26, No.5, 2010, pp. 055007 .
[10] S. Tuyen, T.M. Reich, N.M. Trang, Parallel it-
erative methods for solving the split common
fixed point problem in Hilbert spaces, Numer.
Funct. Anal. Optim., Vol.41, No.7, 2020, pp.
778-805.
[11] Y. Censor, A. Gibali, S. Reich, Algorithms for
the split variational inequality problems, Numer.
Algorithms, Vol.59, 2012, pp. 301-323.
[12] S. Reich, T.M. Tuyen, Iterative methods for
solving the generalized split common null point
problem in Hilbert spaces, Optimization, Vol.69,
No.5, 2020, pp. 1013-1038.
[13] S. Reich, T.M. Tuyen, A new algorithm for
solving the split common null point problem
in Hilbert spaces, Numer. Algorithms, Vol.83,
2020, pp. 789-805.
[14] S. Reich, T.M. Tuyen, The split feasibility prob-
lem with multiple output sets in Hilbert spaces,
Optim. Lett., Vol.14, 2020, pp. 2335-2353.
[15] Q.Z. Yang, The relaxed CQ algorithm solv-
ing the split feasibility problem, Inverse Probl.,
Vol.20, 2004, pp. 1261-1266.
[16] H. Yu, W.R. Zhan, F.H. Wang, The ball-relaxed
CQ algorithms for the split feasibility problem,
Optimization, Vol.67, No.10, 2018, pp. 1687-
1699.
[17] Q.Z. Yang, On variable-step relaxed projection
algorithm for variational inequalities, J. Math.
Anal. Appl., Vol.302, 2005, pp. 166-179.
[18] G. LΓ³pez, V. MartΓn-MΓ‘rquez, F.H. Wang, H.K.
Xu, Solving the split feasibility problem with-
out prior knowledge of matrix norms, Inverse
Probl., Vol.28, 2012, pp. 374-389.
[19] A. Gibali, L.W. Liu, Y.C. Tang, Note on the
modified relaxation CQ algorithm for the split
feasibility problem, Optim. Lett., Vol.12, 2018,
pp. 817-830.
[20] S. Suantai, N. Pholasa, P. Cholamjiak, Re-
laxed CQ algorithms involving the inertial tech-
nique for multiple-sets split feasibility problems,
RACSAM, Vol.113, 2019, pp. 1081-1099.
[21] H.H. Bauschke, P.L. Combettes, Convex Anal-
ysis and Monotone Operator Theory in Hilbert
Space, Springer: London, UK, 2011.
[22] S. He, C. Yang, Solving the variational in-
equality problem defined on intersection of
finite level sets, Abstr. Appl. Anal., 2013,
https://doi.org/10.1155/2013/942315.
[23] G.H. Taddele, P. Kumam, A.G. Gebrie, J.
Abubakar, Ball-relaxed projection algorithms
for multiple-sets split feasibility problem, Opti-
mization, Vol.2, 2021, pp. 1-31.
[24] Y.Y. Li, Y.X. Zhang, Bounded Perturbation
Resilience of Two Modified Relaxed CQ Al-
gorithms for the Multiple-Sets Split Feasibil-
ity Problem. Axioms, Vol.10, 2021, pp. 197,
https://doi.org/10.3390/axioms10030197.
[25] Y.H. Dai, Fast algorithms for projection on an
ellipsoid, SIAM J Optim., Vol.16, 2006, pp. 986-
1006.
5Contribution of individual authors
Yaxuan Zhang proposed the algorithm and checked
the correctness of the manuscript.
Yuming Guan proved the convergence theorem of the
algorithm and carried out the numerical simulation.
6Sources of funding
This work is supported by the national science foun-
dation of China (grant no. NSFC 11705279).
Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)
This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2023.22.12
Yaxuan Zhang, Yuming Guan
Conflict of Interest
The authors have no conflicts of interest to declare
that are relevant to the content of this article.