References:
[1]
W. I. A. Kaewkhao and K. Kunwai,
Attractive points and convergence theorems
for normally generalized hybrid mappings in
cat (0) spaces, Fixed Point Theory Appl.
2015(1) (2015), 14 pages.
[2]
A. K. K. Kunwai and W. Inthakon,
Properties of attractive points in cat (0)
spaces, Thai J. Math. 13 (2015),109–121. 13
pages.
[3]
W. Takahashi, N. C. Wong and J. C. Yao,
Attractive point and weak convergence
theorems for new generalized hybrid
mappings in Hilbert spaces, J. Nonlinear
Convex Anal. 13 (2012), 745–757. 12 pages.
[4]
Y. Zheng, Attractive points and convergence
theorems of generalized hybrid mapping, J.
Nonlinear Sci.Appl. 8 (2015), 354–362. 9
pages.
[5]
B. Zlatanov, Best proximity points in
modular function spaces, Arab. J. Math. 4
(2015), 215–227. 13 pages.
[6]
H. Iqbal, M. Abbas, and S. H. Khan, ρ-
Attractive elements in modular function
spaces. KJM, Volume 45(1)(2021), Pages
47-61. 15 pages.
[7]
H. Nakano, Modular Semi-Ordered Spaces,
Maruzen, Tokyo, 1950.(Book).
[8]
J. Musielak and W. Orlicz, On modular
spaces, Studia Math. 18 (1959), 49–65. 18
pages.
[9]
M. A. Khamsi, W. M. Kozlowski and S.
Reich, Fixed point theory in modular
function spaces, Nonlinear Anal. 14 (1990),
935–953. 19 pages.
[10]
M. A. Khamsi, Convexity property in
modular function spaces, Sci. Math. Jpn. 44
(1996), 269–280. 13 pages.
[11]
K. Kuaket and P. Kumam, Fixed points of
asymptotic pointwise contractions in
modular spaces, Appl.Math. Lett. 24 (2011),
1795–1798. 5 pages.
[12]
B. A. B. Dehaish and W. M. Kozlowski,
Fixed point iteration processes for
asymptotic point wise nonexpansive
mapping in modular function spaces, Fixed
Point Theory Appl. 2012(118) (2012), 23
pages.
[13]
S. H. Khan, M. Abbas and S. Ali, Fixed
point approximation of multivalued ρ-
quasi-nonexpansive mappings in modular
function spaces, J. Nonlinear Sci. Appl. 10
(2017), 3168–3179. 12 pages.
[14]
A. Ilchev and B. Zlatanov, Fixed and best
proximity points for kannan cyclic
contractions in modular function spaces, J.
Fixed Point Theory Appl. 9 (2017), 2873–
2893. 21 pages.
[15]
A. Ilchev and B. Zlatanov, Coupled fixed
points and coupled best proximity points in
modular function spaces, International
Journal of Pure and Applied Mathematics
118 (2018), 957–977. 21 pages.
[16]
W. M. Kozlowski, Advancements in fixed
point theory in modular function spaces,
Arab. J. Math. 1(2012), 477–494. 17 pages.
[17]
M. A. Khamsi and W. M. Kozolowski, Fixed
Point Theory in Modular Function Spaces,
Springer, Berlin,2015.
[18]
F. Kohsaka and W. Takahashi, Fixed point
theorems for a class of nonlinear mappings
related to maximal monotone operators in
banach spaces, Arch. Math. 91 (2008), 166–
177.
[19]
S. Suantai, P. Cholamjiak, Y. J. Cho and W.
Cholamjiak, On solving split equilibrium
problems and fixed point problems of
nonspreading multi-valued mappings in
Hilbert spaces, Fixed Point Theory
Appl.2016 (2016), 35.
[20]
W. Takahashi and Y. Takeuchi, Nonlinear
ergodic theorem without convexity for
generalized hybrid mappings in a Hilbert
space, J. Nonlinear Convex Anal. 12 (2011),
399–406.
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2023.22.10
Mohammad Amro, Abdalla Tallafha, Wasfi Shatanawi
Contribution of Individual Authors to the
Creation of a Scientific Article (Ghostwriting
Policy)
The authors equally contributed in the present
research, at all stages from the formulation of the
problem to the final findings and solution.
Sources of Funding for Research Presented in a
Scientific Article or Scientific Article Itself
No funding was received for conducting this study.
Conflict of Interest
The authors have no conflicts of interest to declare
that are relevant to the content of this article.
Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)
This article is published under the terms of the
Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en
_US