cycles have no common vertex have been studied.
Based on the results of this research, we propose the
following open problem.
Open Problem 3.1 Characterise the local multiset
dimension of bicyclic graphs in which the two cycles
have at least one vertex in common.
Acknowledgment:
We gratefully acknowledge the support from
Universitas Jember and Universitas Airlangga for
the year 2023.
References:
[1] S. Khuller, B. Raghavachari and A.
Rosenfeld, Localization in Graphs, Technical
Report CS-Tr-3326, University of Maryland
at College Park, 1994.
[2] G. Chartrand, L. Eroh, M. Johnson, and O. R.
Oellerman, Resolvability in graphs and the
metric dimension of a graph, Discrete Applied
Mathematics, Vol. 105, 2000, pp. 99-113.
[3] R. Simanjuntak, P. Siagian, and T. Vetrik.
The multiset dimension of graphs. arXiv
preprint arXiv:1711.00225, 2017.
[4] R. Alfarisi, Dafik, A. I. Kristiana, and I. H.
Agustin, The Local Multiset Dimension of
Graphs. IJET, Vol. 8. No. 3, 2019, pp.120-
124.
[5] R. Alfarisi, Y. Lin, J. Ryan, Dafik, I. H.
Agustin, A Note on Multiset Dimension and
Local Multiset Dimension of Graphs,
Statistics, Optimization and Information
Computing, Vol. 8, No. 4, 2020, pp. 890-901.
[6] R. Alfarisi, L. Susilowati, Dafik, The Local
Multiset Resolving of Graphs. 2022.
Accepted.
[7] R. Adawiyah, R. M. Prihandini, E. R. Albirri,
I. H. Agustin, and R. Alfarisi, The local
multiset dimension of a unicyclic graph. In
IOP Conf. Series: EES, Vol. 243, No. 1, 2019,
p. 012075.
[8] R. Adawiyah, I. H. Agustin, R. M. Prihandini,
R. Alfarisi, and E. R. Albirri, On the local
multiset dimension of an m-shadow graph. In
Journal of Physics: Conf. Series, Vol. 1211,
No. 1, 2019, p. 012006.
[9] F. Okamoto, B. Phinezy, P. Zhang. The Local
Metric Dimension of A Graph, Mathematica
Bohemica, Vol. 135, No. 3, 2010, 239 – 255.
[10] R. Diestel, Graph Theory, Graduate Texts in
Mathematics, Springer, ISBN 978-3-642-
14278-91, 2016.
[11] Y. Hafidh, R. Kurniawan, S. Saputro, R.
Simanjuntak, S. Tanujaya, & S.
Uttunggadewa, S. Multiset Dimensions of
Trees. arXiv preprint arXiv:1908.05879,
2019.
[12] N. H. Bong, and Y. Lin. Some properties of
the multiset dimension of graphs, Electron. J.
Graph Theory Appl, Vol. 9, No. 1, 2021, 215-
221.
[13] J. B. Liu, S. K. Sharma, V. K. Bhat, and H.
Raza. Multiset and Mixed Metric Dimension
for Starphene and Zigzag-Edge Coronoid.
Polycyclic Aromatic Compounds, 2021, pp. 1-
15.
Contribution of Individual Authors to the
Creation of a Scientific Article (Ghostwriting
Policy)
-Ridho Alfarisi, carried out the conceptualization,
formal analysis, methodology, and writing-original
draft.
-Liliek Susilowati carried out the methodology,
supervision, funding acquisition, writing review and
editing.
-Dafik carried out the supervision and writing
review and editing.
-Osaye J. Fadekemi carried out the formal analysis
and writing review and editing.
Sources of Funding for Research Presented in a
Scientific Article or Scientific Article Itself
This research was supported by Universitas
Airlangga and University of Jember.
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2023.22.8
Ridho Alfarisi, Liliek Susilowati, Dafik, Osaye J. Fadekemi
Conflict of Interest
The authors have no conflicts of interest to declare
that are relevant to the content of this article.
Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)
This article is published under the terms of the
Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en
_US