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rapid convergence, minimal computing expense, and broad applicability. The new method is used to solve the 
convection–reaction–diffusion problem using fractional Caputo derivatives. 
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1   Introduction 
Various phenomena in physics, engineering, 
biology, and other disciplines are typically modeled 
using fractional partial differential equations 
(FPDEs), [1], [2], [3]. Due to the nonlocal and 
singular nature of fractional derivatives, however, 
accurate or numerical solutions to FPDEs are 
frequently difficult to discover. The fractional 
power series method, the fast convolution algorithm, 
the fractional differential transform method, the 
finite difference method, and the fixed point and 
upper and lower solution methods, [4], [5], [6], [7], 
[8] are examples of analytical and numerical 
methods that have been developed to solve FPDEs. 
In this paper, the Sawi transform homotopy 
perturbation method (STHPM) is introduced as a 
novel hybrid strategy for solving FPDEs with 

Caputo fractional derivatives. The Caputo fractional 
derivative, which is widely recognized as one of the 
most significant definitions of fractional derivatives, 
offers the distinct advantage of maintaining the 
beginning conditions in the classical sense, as 
supported by references [9], [10] and [11]. 
Approximate series solutions for FPDEs are 
generated using the Sawi transform-homotopy 
perturbation method (STHPM) combination, [12], 
[13], [14], [15], [16]. 

In this study, homotopy perturbation methods 
are applied to solve fractional Caputo partial 
differential equations (PDEs) in a novel manner, as 
noted in references [17] and [18]. 

According to references [19] and [20], the 
STHPM produces extremely precise results and 
saves a significant amount of calculation time when 
compared to other techniques like the variational 
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iteration approach and the Adomian decomposition 
method. 

Additionally, a variety of complex and non-
linear partial differential equations (PDEs) can be 
solved quickly and effectively with STHPM's 
flexibility, something that is challenging to achieve 
with conventional numerical approaches, [21], [22] 
and [23]. Scholars and professionals alike will find 
the STHPM to be a beneficial tool as it provides a 
novel perspective on the analysis and solution of 
fractional Caputo PDEs. The solution of the 
convection-reaction-diffusion equation shows the 
practicality and efficacy of the STHPM. We 
compare our results with the accuracy, 
computational expense, and convergence of known 
numerical methods or solutions, as documented in 
references [24], [25] and [26]. As shown in 
references [27], [28] and [29], we also go over 
potential STHPM extensions and uses to handle 
other types of FPDEs. 

It is crucial to acknowledge that the method has 
limits, including the need for meticulous selection of 
homotopy parameters. These constraints will be 
thoroughly described in the subsequent portions of 
this study, as referenced by [30], [31], [32], [33], 
[34]. 

The Sawi transform homotopy perturbation 
method is a significant improvement in the field of 
fractional differential equations, addressing a critical 
gap in the current literature and providing a more 
generic, efficient, and accurate method for solving 
fractional Caputo PDEs, [35]. 
 

 

2   Basic Concepts of Sawi Transform 
This section is concerned with the presentation of 
the Sawi transform. We out line some basic 
properties regarding the existence conditions, 
linearity and the inverse of this transform. 
Moreover, some essential properties and results 
regarding Sawi transform are discussed. We 
introduce the Sawi convolution theorem and the 
derivative properties. For more details about Sawi 
transform see, [17], [18]. 
Definition 2.1. If 𝑤(𝑡) is a function defined over a 
positive domain. Then, Sawi transform of 𝑤(𝑡), 
denoted by 𝕊[𝑤(𝑡)], is given by 

𝕊[𝑤(𝑡)] = Ψ(𝑣) =
1

𝑣2
∫ 𝑤(𝑡)𝑒

−𝑡

𝑣 𝑑𝑡

∞

0

, 𝑡 ≥ 0. (1) 

The inverse Sawi transformation is provided as 

𝕊−1[Ψ(𝑣)] =
1

2𝜋𝑖
∫

1

𝑣2
𝑒

1

𝑣
𝑡Ψ(𝑣)𝑑𝑣

𝑐+𝑖∞

𝑐−𝑖∞

= 𝑤(𝑡), 𝑡 > 0 . 

(2) 

 

Theorem 2.1. If 𝑤(𝑡) is continuous function 
defined for  𝑡 > 0 and of exponential order 𝜌. Then 
𝕊[𝑤(𝑡)] exists for 𝑣 > 𝜌 and satisfies 

|𝑤(𝑡)| ≤ 𝑀𝑒𝜌𝑡,   
where  𝑀 > 0, then Sawi transformation exists for 
𝑣 > 𝜌. 
Suppose that  𝕊[𝑤(𝑡)] = Ψ(𝑣) and 𝕊[ℎ(𝑡)] = 𝐻(𝑣) 
and 𝒾, 𝒿 ∈ ℝ, then the following properties hold: 

𝕊[𝒾 𝑤(𝑡) + 𝒿 ℎ(𝑡)] = 𝒾 𝕊[𝑤(𝑡)] + 𝒿 𝕊[ℎ(𝑡)]. 
𝕊−1[𝒾 𝛹(𝑣) + 𝒿 𝐻(𝑣)]

= 𝒾 𝕊−1[𝛹(𝑣)] + 𝒿 𝕊−1[𝐻(𝑣)]. 
𝕊[𝑡𝒿] = 𝑣𝒿−1Γ(𝒿 + 1). 

𝕊[𝑒𝒿𝑡] =
1

𝑣(1 − 𝒿𝑣)
. 

𝕊[cos(𝒿𝑡)] =
1

𝑣(1 + 𝒿2𝑣2)
. 

𝕊[sin(𝒿𝑡)] =
𝒿

1 + 𝒿2𝑣2
. 

𝕊[cosh(𝒿𝑡)] =
1

𝑣(1 − 𝒿2𝑣2)
. 

𝕊[sinh(𝒿𝑡)] =
𝒿

1 − 𝒿2𝑣2
. 

𝕊 [
𝑑𝒿𝑤(𝑡)

𝑑𝑡𝒿
] =

𝛹(𝑣)

𝑣𝒿
− ∑

𝑤(𝑖)(0)

𝑣 𝒿−𝑖+1

𝒿−1

𝑖=0

. 

 

Theorem 2.2. Let  𝕊[𝑤(𝑡)] = Ψ(𝑣). Then, 

𝕊[𝑤(𝑡 − 𝒿)𝐻(𝑡 − 𝒿)] = 𝑒− 
1 

𝑣 
 𝒿 Ψ(𝑣), (3) 

 
where 𝐻(𝑡) denotes the unit step function defined 
by 

𝐻(𝑡 − 𝒿) = {
1,    𝑡 > 𝑗,         
0,    otherwise.  

 
Theorem 2.3. (Sawi Convolution Theorem). If  
𝕊[𝑤(𝑡)] = Ψ(𝑣)  and [ℎ(𝑡)] = H(𝑣) , then 

𝕊[(𝑤 ∗ ℎ)(𝑡)] = 𝑣2 Ψ(𝑣)𝐻(𝑣), (4) 
 
where  

(𝑤 ∗ ℎ )(𝑡) = ∫𝑤(𝜏)ℎ( 𝑡 − 𝜏)𝑑𝜏.

𝑡

0
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3  Fundamental Facts of Fractional 

Calculus 
In this section, some definitions and properties of 
fractional calculus that will be used in this work are 
presented. 
Definition 3.1. [35], The three - parameters Mittag-
Leffler function is defined as: 

𝐸𝓇,𝒿
𝛿 (𝑡) = ∑

𝑡𝑛

𝑛!

(𝛿)𝑛

𝛤(𝓇𝑛 + 𝒿)

∞

𝑛=0

  , 𝑡, 𝓇, 𝒿, 𝛿

∈ ℂ   , Re(𝛿) > 0, 𝑅𝑒(𝓇)
> 0, 𝑅𝑒(𝒿) > 0,   

(5) 

where (𝛿)𝑛 is the Pochhammer symbol. 
 

Putting 𝛿 =1 in Eq. (5), we have the new 
function turns into the two - parameters Mittag-
Leffler function: 

𝐸𝓇,𝒿(𝑡) = ∑
𝑡𝑛

𝛤(𝓇𝑛 + 𝒿)

∞

𝑛=0

  , 𝑡, 𝓇, 𝒿 ∈ ℂ ,

Re(𝓇) > 0, 𝑅𝑒(𝒿) > 0. 

(6) 

 
Putting  𝒿 =1 in Eq. (6), we have the new 

function turns into the classical Mittag-Leffler 
function: 

𝐸𝓇(𝑡) = ∑
𝑡𝑛

Γ(𝓇𝑛 + 1)

∞

𝑛=0

, 𝑡, 𝓇 ∈ ℂ, Re(𝓇) > 0. (7) 

we note that 𝐸1,1(𝑡) = ∑
𝑡𝑛

𝑛!
∞
𝑛=0 = 𝑒𝑡. 

 

Definition 3.2. [36], Let 𝑤(𝑡) be a continuous 
function, and 𝑛 − 1 < 𝓇 ≤ 𝑛. Then the Caputo 
fractional derivative of the function  𝑤(𝑡) with 
respect to 𝑡 of the order 𝓇 is defined as: 

𝐷𝑡
𝓇𝑤(𝑡) =

1

Γ(𝑛 − 𝓇)
∫(𝑡

𝑡

𝑎

− 𝜏)𝑛−𝓇−1 𝑤(𝑛)(𝜏)𝑑𝜏, 𝑎 ∈ ℝ . 

(8) 

 

Theorem 3.1. Let Ψ(𝑣) be the Sawi transform of 
𝑤(𝑡) .Then the Sawi transform of Caputo fractional 
derivative of  𝑤(𝑡) is expressed as: 

𝕊[𝐷𝑡
𝓇𝑤(𝑡)] =

1

𝑣𝓇
(Ψ(𝑣) − ∑

𝑤(𝑖)(0)

𝑣1−𝑖
  

𝑛−1

𝑖=0

)  ,   𝑛

− 1 < 𝓇 ≤ 𝑛 . 

(9) 

 
Proof. By the definition of convolution integral, we 
have: 

∫(𝑡 − 𝜏)𝑛−𝓇−1

𝑡

0

𝑤(𝑛)(𝜏)𝑑𝜏 = 𝑡𝑛−𝓇−1 ∗ 𝑤(𝑛)(𝑡).    

 
 

Therefore, 
𝕊[𝐷𝑡

𝓇𝑤(𝑡)]

=
1

𝑣2
∫ (

1

Γ(𝑛 − 𝓇)
∫ (𝑡

𝑡

0

∞

0

− 𝜏)𝑛−𝓇−1 𝑤(𝑛)(𝜏)𝑑𝜏) 𝑒
−𝑡

𝑣 𝑑𝑡

=
1

Γ(𝑛 − 𝓇)
𝕊[𝑡𝑛−𝓇−1 ∗ 𝑤(𝑛)(𝑡)]           

=
1

Γ(𝑛 − 𝓇)
(𝑣2 𝕊[𝑡𝑛−𝓇−1] 𝕊[𝑤(𝑛)(𝑡)]). 

 
Using the properties of Sawi transform, we have 

𝕊[𝐷𝑡
𝓇𝑤(𝑡)] =

𝑣2

Γ(𝑛 − 𝓇)
(𝑣𝑛−𝓇−2Γ(𝑛

− 𝓇)(
Ψ(𝑣)

𝑣𝑛
− ∑

𝑤(𝑖)(0)

𝑣𝑛−𝑖+1

𝑛−1

𝑖=0

))

=
Ψ(𝑣)

𝑣𝓇
− ∑

𝑤(𝑖)(0)

𝑣𝓇−𝑖+1
 .

𝑛−1

𝑖=0

 

 
Thus, 

 𝕊[𝐷𝑡
𝓇𝑤(𝑡)] =

1

𝑣𝓇
(Ψ(𝑣) − ∑

𝑤(𝑖)(0)

𝑣1−𝑖
  

𝑛−1

𝑖=0

) ,    𝑛 − 1

< 𝓇 ≤ 𝑛. 
 

Corollary3.1. Let Ψ(𝑢, 𝑣) be the Sawi transform of 
𝑤(𝑢, 𝑡) and 0 < 𝓇 ≤ 1 .Then the Sawi transform of 
Caputo fractional derivative of  𝑤(𝑢, 𝑡) is expressed 
as 

𝕊[𝐷𝑡
𝓇𝑤(𝑢, 𝑡)] =

1

𝑣𝓇
(Ψ(𝑢, 𝑣) −

1

𝑣
𝑤(𝑢, 0)) . (10) 

 
 
4 Analysis of Sawi Transform 

Homotopy Perturbation Method 
In this part of the paper, we present the fundamental 
idea of Sawi transform homotopy perturbation 
method for solving fractional Caputo partial 
differential equations. In order to show the 
fundamental plan of the STHPM, we consider the 
following general partial differential equation 

𝐷𝑡
𝓇𝑤(𝑢, 𝑡) + 𝐿(𝑤(𝑢, 𝑡)) + 𝑁(𝑤(𝑢, 𝑡))

= 𝑅(𝑢, 𝑡),  
(𝑢, 𝑡) ∈ [0,1] × [0, 𝑇], 𝑛 − 1 < 𝓇 < 𝑛,  and 𝑇

> 0, 

(11) 

 
subject to the conditions 

𝜕𝑖𝑤(𝑢, 0)

𝜕𝑡𝑖
= 𝑘𝑖(𝑢)     ,    𝑖 = 0,1,… , 𝑛 − 1, (12) 
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where 𝐿, 𝑁 are linear and nonlinear differential 
operators, 𝐷𝑡

𝓇denotes the Caputo fractional 
derivative with respect to the variable 𝑡, 𝑤(𝑢, 𝑡) is 
the unknown function and 𝑅(𝑢, 𝑡) is a given 
function. 

Applying the Sawi transform for Eq. (11), with 
respect to 𝑡, we obtain 
𝑊(𝑢, 𝑣) = 𝑣𝓇(𝕊[𝑅(𝑢, 𝑡) − 𝐿(𝑤(𝑢, 𝑡))

+ 𝑁(𝑤(𝑢, 𝑡))])

+ ∑
1

𝑣1−𝑖
(
𝜕𝑖w(𝑢, 0)

𝜕𝑡𝑖
) .

𝑛−1

𝑖=0
 

(13) 

 
Thus, the homotopy parameter 𝓆 is defined as 

𝑤(𝑢, 𝑡) = ∑𝓆𝑧𝑤𝑧

∞

𝑧=0

(𝑢, 𝑡). (14) 

 
The nonlinear terms in Eq.(11) can be written as 

𝑁(𝑤(𝑢, 𝑡)) = ∑ 𝓆𝑧ℋ𝑧

∞

𝑧=0

. (15) 

 
Where ℋ𝑧 are He’s polynomials, which can be 
calculated by using the following formula 

ℋ𝑧 =
1

𝑧!

𝜕𝑧

𝜕𝓆𝑧
𝑁 (∑𝓆𝑖𝑤𝑖

∞

𝑖=0

(𝑢, 𝑡))|

𝓆=0

, 𝑧

= 0,1,2,… 

(16) 

 
We carry out the component of the Caputo 

operator result by substituting Eqs. (14) and (15) 
into Eq. (13). 

∑ 𝓆𝑧𝑊𝑧

∞

𝑧=0

(𝑢, 𝑣)

= 𝑣𝓇𝕊[𝑅(𝑢, 𝑡)] + ∑
1

𝑣1−𝑖
(
𝜕𝑖𝑤(𝑢, 0)

𝜕𝑡𝑖
)  

𝑛−1

𝑖=0

− 𝓆𝑣𝓇 (𝕊 [𝐿(∑𝓆𝑧𝑤𝑧

∞

𝑧=0

(𝑢, 𝑡))

+ ∑𝓆𝑧ℋ𝑧

∞

𝑧=0

]). 

(17) 

 
Appling the inverse Sawi transform to Eq. (17), we 
have: 

∑𝓆𝑧𝑤𝑧

∞

𝑧=0

(𝑢, 𝑡)

= 𝕊−1 [𝑣𝓇𝕊[𝑅(𝑢, 𝑡)]

+ ∑
1

𝑣1−𝑖
(
𝜕𝑖𝑤(𝑢, 0)

𝜕𝑡𝑖
)  

𝑛−1

𝑖=0
]

− 𝓆 𝕊−1 [𝑣𝓇𝕊 [𝐿 (∑𝓆𝑧𝑤𝑧

∞

𝑧=0

(𝑢, 𝑡))

+ ∑𝓆𝑧ℋ𝑧

∞

𝑧=0

]].  

(18) 

 
Thus, Eq. (18) , when solved with respect to 𝓆, are 
defined as 

𝓆0:𝑤0(𝑢, 𝑡) = 𝕊−1 [𝑣𝓇𝕊[𝑅(𝑢, 𝑡)]

+ ∑
1

𝑣1−𝑖
(
𝜕𝑖𝑤(𝑢, 0)

𝜕𝑡𝑖
) 

𝑛−1

𝑖=0

], 

𝓆1: 𝑤1(𝑢, 𝑡) = −𝕊−1 [𝑣𝓇𝕊[𝐿(𝑤0(𝑢, 𝑡))

+ ℋ0]], 

𝓆2:𝑤2(𝑢, 𝑡) = −𝕊−1 [𝑣𝓇𝕊[𝐿(𝑤1(𝑢, 𝑡))

+ ℋ1]], 
⋮ 

𝓆𝑧+1:𝑤𝑧+1(𝑢, 𝑡)

= −𝕊−1 [𝑣𝓇𝕊[𝐿(𝑤𝑧(𝑢, 𝑡))

+ ℋ𝑧]] , 𝑧 ≥ 0, 

(19) 

 
when 𝓆 → 1 is applied, suppose that Eq .(19) is the 
approximated solution to Eq. (11) , and the solution 
is 

𝑤(𝑢, 𝑡) = 𝑤0(𝑢, 𝑡) + 𝑤1(𝑢, 𝑡) + 𝑤2(𝑢, 𝑡)
+ ⋯. 

(20) 

   
 
5   Applications 
In this section of this paper, we present some 
examples to show the efficiency of the presented 
method. 
Application 5.1. Consider the following 
convection–reaction–diffusion equation 
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𝜕𝓇𝑤(𝑢, 𝑡)

𝜕𝑡𝓇
=

𝜕2𝑤(𝑢, 𝑡)

𝜕𝑢2
+ 𝑤(𝑢, 𝑡)

−
𝜕𝑤(𝑢, 𝑡)

𝜕𝑢

+ 𝑤(𝑢, 𝑡)
𝜕𝑤(𝑢, 𝑡)

𝜕𝑢
− 𝑤2(𝑢, 𝑡), 

(21) 

 
subject to the conditions 

𝑤(𝑢, 0) = 𝑒 𝑢. (22) 
 

Applying Sawi transform homotopy 
perturbation method for Eq. (21), we obtain: 

∑ 𝓆𝑧𝑊𝑧

∞

𝑧=0

(𝑢, 𝑣)

=
1

𝑣
𝑤(𝑢, 0)

+ 𝓆𝑣𝓇 (𝕊 [(∑ 𝓆𝑧𝑤𝑧

∞

𝑧=0

(𝑢, 𝑡))

𝑢𝑢

+ ∑𝓆𝑧𝑤𝑧

∞

𝑧=0

(𝑢, 𝑡) − (∑𝓆𝑧𝑤𝑧

∞

𝑧=0

(𝑢, 𝑡))

𝑢

])

+ 𝓆𝑣𝓇 (𝕊 [∑𝓆𝑧ℋ𝑧

∞

𝑧=0

(𝑢, 𝑡)]). 

(23) 

 
Taking the inverse Sawi transform to Eq. (23) ,we 
get 

∑𝓆𝑧𝑤𝑧

∞

𝑧=0

(𝑢, 𝑡)

= 𝕊−1 [
1

𝑣
𝑤(𝑢, 0)]

+ 𝓆 𝕊−1

[
 
 
 

𝑣𝓇𝕊 [(∑𝓆𝑧𝑤𝑧

∞

𝑧=0

(𝑢, 𝑡))

𝑢𝑢

+ ∑𝓆𝑧𝑤𝑧

∞

𝑧=0

(𝑢, 𝑡) − (∑𝓆𝑧𝑤𝑧

∞

𝑧=0

(𝑢, 𝑡))

𝑢

]

]
 
 
 

+ 𝓆 𝕊−1 [𝑣𝓇𝕊 [∑𝓆𝑧ℋ𝑧

∞

𝑧=0

(𝑢, 𝑡)]] 

(24) 

 
Note that, the first few terms of  ℋ𝑧 in this case 

is given by: 
ℋ0 = 𝑤0𝑤0𝑢

− (𝑤0)
2, 

ℋ1 = 𝑤0𝑤1𝑢 + 𝑤1𝑤0𝑢
− 2𝑤0𝑤1, 

ℋ2 = 𝑤0𝑤2𝑢 + 𝑤1𝑤1𝑢 + 𝑤2𝑤0𝑢
− 2𝑤0𝑤2

− (𝑤2)
2, 

⋮ 

(25) 

The function of the Caputo derivative result is 
achieved by calculating the powers of 𝓆 

𝓆0: 𝑤0(𝑢, 𝑡) = 𝕊−1 [
1

𝑣
𝑤(𝑢, 0)] = 𝕊−1 [

1

𝑣
𝑒 𝑢]

= 𝑒 𝑢 , 
(26) 

𝓆𝑛+1: 𝑤𝑛+1(𝑢, 𝑡)

= 𝕊−1 [𝑣𝓇𝕊[𝑤𝑛𝑢𝑢
(𝑢, 𝑡)

+ 𝑤𝑛(𝑢, 𝑡) − 𝑤𝑛𝑢
(𝑢, 𝑡)

+ ℋ𝑛]]. 

(27) 

 
Putting 𝑛 = 0 into Eq. (27) , we get 
𝓆1:𝑤1(𝑢, 𝑡) = 𝕊−1 [𝑣𝓇𝕊[𝑤0𝑢𝑢

(𝑢, 𝑡) + 𝑤0(𝑢, 𝑡)

− 𝑤0𝑢
(𝑢, 𝑡) + ℋ0]]

= 𝕊−1[𝑣𝓇𝕊[𝑒 𝑢 + 𝑒 𝑢 − 𝑒 𝑢 + 𝑒 2𝑢

− 𝑒 2𝑢]] = 𝕊−1[𝑣𝓇−1𝑒 𝑢]

= 𝑒 𝑢
𝑡 𝓇

Γ(𝓇 + 1)
. 

Putting 𝑛 = 1 into Eq. (27), we get 
𝓆2: 𝑤2(𝑢, 𝑡) = 𝕊−1 [𝑣𝓇𝕊[𝑤1𝑢𝑢

(𝑢, 𝑡) + 𝑤1(𝑢, 𝑡)

− 𝑤1𝑢
(𝑢, 𝑡) + ℋ1]]

= 𝕊−1 [𝑣𝓇𝕊 [
𝑡 𝓇𝑒 𝑢

Γ(𝓇 + 1)
+

𝑡 𝓇𝑒 𝑢

Γ(𝓇 + 1)

−
𝑡 𝓇𝑒 𝑢

Γ(𝓇 + 1)
+

𝑡 𝓇𝑒2𝑢

Γ(𝓇 + 1)

−
𝑡 𝓇𝑒 2𝑢

Γ(𝓇 + 1)
]]

= 𝕊−1 [𝑣𝓇𝕊 [
𝑡 𝓇𝑒 𝑢

Γ(𝓇 + 1)
]]

= 𝕊−1[𝑣2𝓇−1𝑒 𝑢] =
𝑡 2𝓇𝑒 𝑢

Γ(2𝓇 + 1)
, 

in the same way, we get 

𝓆3:𝑤3(𝑢, 𝑡) =
𝑡 3𝓇𝑒 𝑢

Γ(3𝓇 + 1)
, 

⋮ 

𝓆𝑛: 𝑤𝑛(𝑢, 𝑡) =
𝑡 𝑛𝓇𝑒 𝑢

Γ(𝑛𝓇 + 1)
. 

 
Therefore, the solution of Eq.(21)  is given by 
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𝑤(𝑢, 𝑡) = 𝑤0(𝑢, 𝑡) + 𝑤1(𝑢, 𝑡) + 𝑤2(𝑢, 𝑡)
+ ⋯+ 𝑤𝑛(𝑢, 𝑡) + ⋯

= 𝑒 𝑢 + 𝑒 𝑢
𝑡 𝓇

Γ(𝓇 + 1)

+ 𝑒 𝑢
𝑡 2𝓇

Γ(2𝓇 + 1)

+ 𝑒 𝑢
𝑡 3𝓇

Γ(3𝓇 + 1)
+ ⋯

+
𝑡 𝑛𝓇𝑒 𝑢

Γ(𝑛𝓇 + 1)
+ ⋯

= 𝑒 𝑢 (1 +
𝑡 𝓇

Γ(𝓇 + 1)

+
𝑡 2𝓇

Γ(2𝓇 + 1)
+

𝑡 3𝓇

Γ(3𝓇 + 1)

+ ⋯+
𝑡 𝑛𝓇

Γ(𝑛𝓇 + 1)
+ ⋯)

= 𝑒 𝑢 ∑
𝑡 𝑧𝓇

Γ(𝑧𝓇 + 1)

∞

𝑧=0

.   

(28) 

 
at 𝓇 = 1, then the exact solution is 𝑤(𝑢, 𝑡) = 𝑒 𝑢+𝑡. 
Below, we sketch the graph of the exact solution 
𝑤(𝑢, 𝑡) = 𝑒 𝑢+𝑡 in Figure 1, and the approximate 
solution in Eq. (28) with different values of 𝑟, 𝑟 =
1, 0.9, 0.8, 0.6 in Figure 2. 
 

 
Fig. 1: The exact solution convection–reaction–
diffusion equation (21) 
 

 

 

 

 

 
Fig. 2: The approximate solution in Eq. (28) with 
different values of 𝑟 
 

In Figure 3, the 3D plots showing the absolute 
error between the solution of Eq.(21) and the exact 
solution 𝑒𝑢+𝑡  for each specified value of 𝑟. 
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Fig. 3: The absolute error of Application 5.1 
 

The above plots show the difference between 
the approximate solution and the exact solution 
𝑒𝑢+𝑡 for different values of  𝑟. This difference can 
be interpreted as the deviation of the exact function 
from a simple exponential function  𝑒𝑢+𝑡. 

As  𝑟 decreases, the difference becomes more 
pronounced, especially for larg values of  𝑢 and  𝑡. 
This suggests that the approximate solution deviates 
more from 𝑒𝑢+𝑡 as 𝑟 decreases. The complexity of 
the surface increases as 𝑟 decreases, indicating that 
the function becomes more sensitive to changes in 𝑢 
and 𝑡. 
 
Application 5.2. Consider the following 
convection–reaction–diffusion equation:  
𝜕𝓇𝑤(𝑢, 𝑡)

𝜕𝑡𝓇
=

𝜕2𝑤(𝑢, 𝑡)

𝜕𝑢2
− (1 + 4𝑢2)𝑤(𝑢, 𝑡), (29) 

 
subject to the conditions: 

𝑤(𝑢, 0) = 𝑒 𝑢
2
. (30) 

Applying Sawi transform homotopy perturbation 
method for Eq. (29), we obtain: 

∑𝓆𝑧𝑊𝑧

∞

𝑧=0

(𝑢, 𝑣)

=
1

𝑣
𝑤(𝑢, 0)

+ 𝓆𝑣𝓇 (𝕊 [(∑𝓆𝑧𝑤𝑧

∞

𝑧=0

(𝑢, 𝑡))

𝑢𝑢

− (1

+ 4𝑢2)(∑𝓆𝑧𝑤𝑧

∞

𝑧=0

(𝑢, 𝑡))]). 

(31) 

 
Taking inverse Sawi transform to Eq.(31) ,we get: 

∑𝓆𝑧𝑤𝑧

∞

𝑧=0

(𝑢, 𝑡)

= 𝕊−1 [
1

𝑣
𝑤(𝑢, 0)]

+ 𝓆 𝕊−1

[
 
 
 

𝑣𝓇𝕊 [(∑𝓆𝑧𝑤𝑧

∞

𝑧=0

(𝑢, 𝑡))

𝑢𝑢

− (1

+ 4𝑢2)(∑𝓆𝑧𝑤𝑧

∞

𝑧=0

(𝑢, 𝑡))]

]
 
 
 

. 

 
Thus, the function of the Caputo derivative result is 
achieved by calculating the powers of: 
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𝓆0:𝑤0(𝑢, 𝑡) = 𝕊−1 [
1

𝑣
𝑤(𝑢, 0)]

= 𝕊−1 [
1

𝑣
𝑒 𝑢

2
] = 𝑒 𝑢

2
, 

(32) 

𝓆𝑛+1:𝑤𝑛+1(𝑢, 𝑡)

= 𝕊−1 [𝑣𝓇𝕊[𝑤𝑛𝑢𝑢
(𝑢, 𝑡)

− (1 + 4𝑢2)𝑤𝑛(𝑢, 𝑡)]]. 
(33) 

 
Putting 𝑛 = 0 into Eq. (33), we get: 
𝓆1:𝑤1(𝑢, 𝑡) = 𝕊−1 [𝑣𝓇𝕊[𝑤0𝑢𝑢

(𝑢, 𝑡) − (1

+ 4𝑢2)𝑤0(𝑢, 𝑡)]]

= 𝕊−1 [𝑣𝓇𝕊[(2 + 4𝑢2)𝑒 𝑢
2
− (1

+ 4𝑢2)𝑒 𝑢
2
]] = 𝕊−1[𝑣𝓇−1𝑒 𝑢

2
]

= 𝑒 𝑢
2 𝑡 𝓇

Γ(𝓇 + 1)
. 

Putting 𝑛 = 1 into Eq. (33), we get: 
𝓆2: 𝑤2(𝑢, 𝑡) = 𝕊−1 [𝑣𝓇𝕊[𝑤1𝑢𝑢

(𝑢, 𝑡) − (1

+ 4𝑢2)𝑤1(𝑢, 𝑡)]]

= 𝑒 𝑢
2 𝑡 2𝓇

Γ(2𝓇 + 1)
. 

in the same way, we get: 

𝓆3:𝑤3(𝑢, 𝑡) = 𝑒 𝑢
2 𝑡 3𝓇

Γ(3𝓇 + 1)
, 

𝓆𝑛: 𝑤𝑛(𝑢, 𝑡) = 𝑒 𝑢
2 𝑡 𝑛𝓇

Γ(𝑛𝓇 + 1)
. 

Therefore, the solution of Eq. (29) is given by: 
𝑤(𝑢, 𝑡) = 𝑤0(𝑢, 𝑡) + 𝑤1(𝑢, 𝑡) + 𝑤2(𝑢, 𝑡)

+ ⋯+ 𝑤𝑛(𝑢, 𝑡) + ⋯

= 𝑒 𝑢
2
+ 𝑒 𝑢

2 𝑡 𝓇

Γ(𝓇 + 1)

+ 𝑒 𝑢
2 𝑡 2𝓇

Γ(2𝓇 + 1)

+ 𝑒 𝑢
2 𝑡 3𝓇

Γ(3𝓇 + 1)
+ ⋯

+ 𝑒 𝑢
2 𝑡 𝑛𝓇

Γ(𝑛𝓇 + 1)
+ ⋯

= 𝑒 𝑢
2
(1 +

𝑡 𝓇

Γ(𝓇 + 1)

+
𝑡 2𝓇

Γ(2𝓇 + 1)
+

𝑡 3𝓇

Γ(3𝓇 + 1)

+ ⋯+
𝑡 𝑛𝓇

Γ(𝑛𝓇 + 1)
+ ⋯)

= 𝑒 𝑢
2
∑

𝑡 𝑧𝓇

Γ(𝑧𝓇 + 1)

∞

𝑧=0

. 

(34) 

 
At  𝓇 = 1, the exact solution is 𝑤(𝑢, 𝑡) = 𝑒 𝑢

2+𝑡. 

In Figure 4, we sketch the exact solution of 
Application 5.2, that is 𝑤(𝑢, 𝑡) = 𝑒 𝑢

2+𝑡. 
 

 
Fig. 4: The exact solution convection–reaction–
diffusion Eq. (29) 
 

In Figure 5, we plot the approximate solution in 
Eq. (34) with different values of 𝑟 = 1,0.9,0.8,0.6. 

 

 

 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2023.22.108

Rania Saadeh, Ahmad Qazza, 
Abdelilah Kamal Sedeeg

E-ISSN: 2224-2880 995 Volume 22, 2023



 

 

 
Fig. 5: The approximate solution in Eq. (34) with 
different values of 𝑟 
 
Application 5.3. Consider the following 
convection–reaction–diffusion equation 
𝜕𝓇𝑤(𝑢, 𝑡)

𝜕𝑡𝓇
=

𝜕2𝑤(𝑢, 𝑡)

𝜕𝑢2
+ 𝑤(𝑢, 𝑡)

+ 𝑤(𝑢, 𝑡)
𝜕𝑤(𝑢, 𝑡)

𝜕𝑢
− 𝑤2(𝑢, 𝑡), 

(35) 

 
subject to the conditions 

𝑤(𝑢, 0) = 1 + 𝑒 𝑢. (36) 
 

Applying Sawi transform homotopy 
perturbation method for Eq. (35), we obtain 

∑𝓆𝑧𝑊𝑧

∞

𝑧=0

(𝑢, 𝑣)

=
1

𝑣
𝑤(𝑢, 0)

+ 𝓆𝑣𝓇 (𝕊 [(∑𝓆𝑧𝑤𝑧

∞

𝑧=0

(𝑢, 𝑡))

𝑢𝑢

+ ∑ 𝓆𝑧𝑤𝑧

∞

𝑧=0

(𝑢, 𝑡)])

+ 𝓆𝑣𝓇 (𝕊 [∑𝓆𝑧ℋ𝑧

∞

𝑧=0

(𝑢, 𝑡)]), 

(37) 

 
Taking inverse Sawi transform to Eq. (37) ,we get 

∑ 𝓆𝑧𝑤𝑧

∞

𝑧=0

(𝑢, 𝑡)

= 𝕊−1 [
1

𝑣
𝑤(𝑢, 0)]

+ 𝓆 𝕊−1

[
 
 
 

𝑣𝓇𝕊 [(∑ 𝓆𝑧𝑤𝑧

∞

𝑧=0

(𝑢, 𝑡))

𝑢𝑢

+ ∑𝓆𝑧𝑤𝑧

∞

𝑧=0

(𝑢, 𝑡)]

]
 
 
 

+ 𝓆 𝕊−1 [𝑣𝓇𝕊 [∑𝓆𝑧ℋ𝑧

∞

𝑧=0

(𝑢, 𝑡)]]. 

 

 
Note that, the first few terms of  ℋ𝑧 in this case 

is given by: 
ℋ0 = 𝑤0𝑤0𝑢

− (𝑤0)
2, 

ℋ1 = 𝑤0𝑤1𝑢 + 𝑤1𝑤0𝑢
− 2𝑤0𝑤1, 

ℋ2 = 𝑤0𝑤2𝑢 + 𝑤1𝑤1𝑢 + 𝑤2𝑤0𝑢
− 2𝑤0𝑤2

− (𝑤2)
2, 

⋮ 

(38) 

The function of the Caputo derivative result is 
achieved by calculating the powers of 𝓆: 

𝓆0:𝑤0(𝑢, 𝑡) = 𝕊−1 [
1

𝑣
𝑤(𝑢, 0)]

= 𝕊−1 [
1

𝑣
(1 + 𝑒 𝑢)]

= 1 + 𝑒 𝑢, 

(39) 

𝓆𝑛+1:𝑤𝑛+1(𝑢, 𝑡)

= 𝕊−1 [𝑣𝓇𝕊[𝑤𝑛𝑢𝑢
(𝑢, 𝑡)

+ 𝑤𝑛𝑢
(𝑢, 𝑡) + ℋ𝑛]]. 

(40) 

 
Putting 𝑛 = 0 into Eq.(40) , we get 
𝓆1: 𝑤1(𝑢, 𝑡) = 𝕊−1 [𝑣𝓇𝕊[𝑤0𝑢𝑢

(𝑢, 𝑡) + 𝑤0𝑢
(𝑢, 𝑡)

+ ℋ0]] 
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= 𝕊−1[𝑣𝓇𝕊[𝑒 𝑢 + (1 + 𝑒 𝑢)

+ (1 + 𝑒 𝑢)𝑒 𝑢 − (1 + 𝑒 𝑢)2]]. 

= 𝕊−1[𝑣𝓇−1𝑒 𝑢] = 𝑒 𝑢
𝑡 𝓇

Γ(𝓇 + 1)
. 

 
in the same way, we get: 

𝓆2: 𝑤2(𝑢, 𝑡) = 𝑒 𝑢
𝑡 2𝓇

Γ(2𝓇 + 1)
, 

𝓆𝑛:𝑤𝑛(𝑢, 𝑡) = 𝑒 𝑢
𝑡 𝑛𝓇

Γ(𝑛𝓇 + 1)
. 

 
Therefore, the solution of Eq. (35)  is given by: 
𝑤(𝑢, 𝑡) = 𝑤0(𝑢, 𝑡) + 𝑤1(𝑢, 𝑡) + 𝑤2(𝑢, 𝑡) + ⋯

+ 𝑤𝑛(𝑢, 𝑡) + ⋯

= 1 + 𝑒 𝑢 + 𝑒 𝑢
𝑡 𝓇

Γ(𝓇 + 1)

+ 𝑒 𝑢
𝑡 2𝓇

Γ(2𝓇 + 1)
+ 𝑒 𝑢

𝑡 3𝓇

Γ(3𝓇 + 1)

+ ⋯+ 𝑒 𝑢
𝑡 𝑛𝓇

Γ(𝑛𝓇 + 1)
+ ⋯

= 1

+ 𝑒 𝑢 (1 +
𝑡 𝓇

Γ(𝓇 + 1)
+

𝑡 2𝓇

Γ(2𝓇 + 1)

+
𝑡 3𝓇

Γ(3𝓇 + 1)
+ ⋯+

𝑡 𝑛𝓇

Γ(𝑛𝓇 + 1)

+ ⋯) = 1 + 𝑒 𝑢 ∑
𝑡 𝑧𝓇

Γ(𝑧𝓇 + 1)

∞

𝑧=0

, 

at  𝓇 = 1, then the exact solution is  𝑤(𝑢, 𝑡) = 1 +
𝑒 𝑢+𝑡 . 
 

Here are the 3D plots Figure 6 showing the 
absolute error between the solution of Eq. (35) and 
the exact solution 𝑒𝑢+𝑡 for each specified value of 
𝑟: 

 

 

 

 

 

 

 
Fig. 6: The absolute error of Application 5.3 
 
 
6   Conclusion 
This paper provided a thorough analysis of the Sawi 
transform homotopy method perturbation, a novel 
and effective technique for solving fractional 
Caputo PDEs. In terms of computational efficiency 
and solution precision, the STHPM has 
demonstrated significant gains over traditional 
techniques like the Variational iteration method and 
the Adomian decomposition method. Through the 
integration of homotopy techniques and the Sawi 
transform, we effectively resolved a number of the 
most formidable challenges associated with the 
solution of nonlinear PDEs. 
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One benefit of this undertaking is that it is possible 
to decrease the processing time while maintaining 
the precision of the solutions. For this reason, 
researchers and professionals who need to solve 
fractional Caputo PDEs rapidly and precisely will 
find the STHPM to be an extremely useful 
instrument. There are numerous potential paths for 
further investigation in the future. We feel that the 
STHPM has the potential to transform how 
fractional Caputo PDEs are treated and solved, and 
we are hopeful about its future contributions to 
academia and industry. 
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