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Abstract: There are known conformal self-mappings of the fundamental domains of analytic functions viaMöbius
transformations. When two adjacent fundamental domains have a straight line or an arc of a circle as a common
boundary, the Schwarz symmetry principle can be applied for one of those mappings and what we obtain is a
conformal self-mapping of the union of those domains in which each one of the domains is mapped onto itself.
Repeating this operation until the whole plane is exhausted, we obtain a conformal self-mapping of the complex
plane in which every fundamental domain is conformally mapped onto itself. We prove in this paper that this
is true for any analytic function. Since the self-mappings of fundamental domains have each one at least one
fixed point, ultimately, for the self-mapping of the complex plane, we obtain at least as many fixed points as
is the number of fundamental domains. When dealing with a rational function, this number is finite, otherwise
we obtain infinitely many fixed points. Computer experimentation allows the illustration of these concepts for
most of the familiar classes of analytic functions. There are known applications of the Möbius transformations in
physics via the Lorentz group. Relating those application to the present work may contribute to the advancement
of the knowledge in that field.
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1 Introduction
Let f(z) be a holomorphic function in C with the ex-
ception of isolated singular points, which can be poles
or essential singular points. It is known [1] that

C = ∪n≤∞
k=1 Ωk,

where Ωk are open connected sets, Ωk ∩ Ωj = ∅,
when j ̸= k and every Ωk is conformally (hence bi-
jectively) mapped by f ontoC\Lk, whereLk is a slit,
or cut, i.e., a Jordan arc or a Jordan infinite curve. We
will treat slits mostly as point sets. If E ⊂ C is any
point set we will denote by f(E) the image of E by
f , i.e.,

f(E) = {f(z)|z ∈ E}
and by f−1(E) the pre-image of E by f , i.e.,

f−1(E) = {z|f(z) ∈ E}.

This convention cannot produce any confusion.
A slit exhibits two distinct edges, [2], and a point

of the slit can be on one edge or the other. The func-
tion f(z) is defined on every Ωk, except for the es-
sential singular points and it maps the boundary ∂Ωk

of Ωk onto the slit Lk. However, the inverse func-
tion f−1

|Ωk
, which exists for every k in view of bijec-

tiveness of f|Ωk
fails to have a continuous extension

to Lk since for sequences of points tending to the
same point on Lk from the sides of different edges
the function has different limits. Yet, f−1

|Ωk
can be

extended to the two edges of Lk and it maps those
edges onto ∂Ωk. This fact is granted by the Riemann-
Caratheodory Theorem of boundary correspondence
in conformal mapping, [3] and [4]. Ahlfors has called
the domains Ωk fundamental regions of the function
f (see, e.g., [2]). They prove to be useful in revealing
global mapping properties of analytic functions and
in particular in the theory of distribution of zeroes of
Dirichlet functions.

We have shown in [5] that to every Möbius trans-
formationM a conformal self-mapping of every such
a domain Ω can be associated. Suppose that Ω is con-
formally mapped by f onto the whole complex plane
with a slit L. The functionM moves the slit L into a
slit L′, which is the image by f of a slit LM of Ω. On
the other hand,M−1 moves L into a slit L′′, which is
the image by f of another slit LM−1 of Ω. We have
proved in [5]:

Proposition 1. The function

χM = f−1
|Ω ◦M ◦ f

is a conformal mapping of Ω\LM−1 onto Ω\LM in
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which the boundary ∂Ω of Ω is carried into LM and
LM−1 is carried into ∂Ω.

This means that χM can be extended by continuity
to ∂Ω and the image of ∂Ω by the extended function
is LM .

AlsoχM can be extended by continuity to the sides
of LM−1 and the image by the extended function of
LM−1 is ∂Ω.

Proposition 2. The fixed points of the mapping
χM and those of the Möbius transformation M are
related in the following way: z = f(s) is a fixed point
ofM if and only if s is a fixed point of χM .

It does not mean that the two functions have nec-
essarily the same number of fixed points. Indeed, if
z ∈ L then there can be two points s and s′ such that
f(s) = f(s′) = z, hence to a fixed point ofM it may
correspond two fixed points of χM . An example has
been given in [5], where such a situation effectively
occurs.

The purpose of this paper is to prove that for any
fundamental domainΩ of f and for anyMöbius trans-
formation M , the mapping χM can be extended to
the whole plane in such a way that every fundamen-
tal domain of f is mapped by the extended function
onto itself. Then it can be concluded that the respec-
tive mapping has at least as many fixed points as the
number of the fundamental domains of f .

2 The Case of Rational Functions
Global mapping properties of rational functions re-
lated to their fundamental domains have been studied
in [6]. For the rational functions of the second degree
we have shown that:

Proposition 3. Every rational function R of the
second degree can be written under the form R =
M2 ◦T ◦M1, whereM1 andM2 are Möbius transfor-
mations and T (ζ) = ζ2.

The function ζ = M1(z) transforms the z-plane
into the ζ-plane in such a way that a line or a circle L
from the z-plane goes to the real axis into the ζ-plane.
The function η = ζ2 transforms each one of the upper
and lower half-planes from the ζ-plane into the whole
η-plane with the slit L′ which is the positive real half-
axis. Finally, the function w = M2(η) transforms the
η-plane with the slit L′ into the w-plane with a slit
which is an arc of a circle or a half-line L′′. Sum-
ming up, the rational function w = R(z) transforms
each one of the two domains determined by L into
the whole w-plane with the slit L′′ which is an arc of
a circle or a half-line.

Example. For the function

R(z) =
(18− i)z2 − 6(2− i)z + 2− 9i

(2 + 9i)z2 − 6(2 + i)z + 18 + i
, (1)

we have

M1(z) =
3z − 1

3− z
, M2(η) =

2η − i

2 + iη
(2)

and L is the real axis. We have M2(0) = −i/2,
M2(1) = 3/5 − 4i/5 and M2(∞) = −2i. Thus,
w = R(z) conformally maps each one of the upper
and the lower half-planes onto thewholew-planewith
a slit alongside the arc of the circle determined by the
points −i/2, −2i and 3/5− 4i/5.

The pre-image by R(z) of the Steiner net, [5], il-
lustrates a conformal self-mapping of the complex
plane in which the upper and the lower half-planes
are each mapped onto themselves.

To find this pre-image we need an expression of
the multi-valued function R−1(w), which is M−1

1 ◦
T−1 ◦M−1

2 . We have

M−1
1 (ζ) =

3ζ + 1

ζ + 3
,

M−1
2 (w) =

2w + i

2− iw
,

T−1(η) =
√
η,

thus

R−1(w) =
3
√

2w+i
2−iw + 1√
2w+i
2−iw + 3

.

The two branches of T−1(η) provide conformal map-
pings of the complex plane onto itself, Fig. 1, in
which the upper, respectively lower half-plane are
mapped each one by the respective branch onto itself.

Due to Proposition 1, such a mapping can be ob-
tained for any second-degree rational function.

For higher degree rational functions different tech-
niques are needed.

However, for selected rational functions of higher-
degree a similar technique can be applied. For exam-
ple, for the function

R(z) =
(54 + i)z3 − 9(6 + i)z2 + 9(2 + 3i)z − (2 + 27i)

(−2 + 27i)z3 + 9(2− 3i)z2 − 9(6− i)z + 54− i
,

we have three branches of the multi-valued function
R−1(w), namely,

R−1
k (w) =

3ωk
3

√
2w+i
2−iw + 1

ωk
3

√
2w+i
2−iw + 3

,
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Fig.  1: The conformal self-mapping of the complex
plane induced by a second-degree rational function.

k = 0, 1, 2, where ωk are the roots of order three of
the unity.

The function T (ζ) = ζ3 maps conformally the
three sectors determined by the rays

ζ(t) = ωkt, t ≥ 0,

where ωk, k = 0, 1, 2, are the roots of order three of
the unity, onto the whole η-plane with a slit alongside
the positive real half-axis. The Möbius transforma-
tion w = M2(η) carries the real half-axis onto the slit
L′′ in the w-plane. On the other hand,

z = M−1
1 (ζ) =

3ζ + 1

ζ + 3

carries the three rays into the curves

zk(t) =
3ωkt+ 1

ωkt+ 3
, t ≥ 0.

These curves are described in the next example, as
well as the domains bounded by them, which are fun-
damental domains for the functionR(z). The confor-
mal mapping of each one of these domains onto itself
is described by the Ω-Steiner nets shown in Fig. 2
below.

The case of Blaschke products is special, since the
fundamental domains are circular and once we have
the mapping for one fundamental domain, the others
can be obtained by symmetries with respect to circles.

A second-degree rational function which is a
Blaschke product is a function of the form:

B(z) =
z − a

1− az

z − b

1− bz
eiθ, (3)

Fig.  2: The conformal self-mapping of the complex
plane induced by a third-degree rational function.

where 0 ≤ |a| < 1, 0 ≤ |b| < 1, θ ∈ R.
For illustration, let us take a = 1/3 and b = −1/3,

θ = 0. Then,

B(z) =
9z2 − 1

9− z2
, (4)

with the fundamental domains the left and the right-
hand half-planes. The Möbius transformation

M(z) =
2z − 1

2− z

with the fixed points −1 and 1 is illustrated by the
Steiner net in [5]. It induces a conformal mapping of
the complex plane onto itself in which the left and the
right hand half planes aremapped each one onto itself.
This transformation has four fixed points as seen in
the Fig. 3 below. Indeed, for any y ∈ R, we have

B(iy) = B(−iy) = −9y2 + 1

9 + y2
,

which shows that B(z) maps the imaginary axis onto
the interval (−9,−1

9), symmetric points with respect
to the origin having the same image. Hence, each one
of the left and the right half-planes is mapped confor-
mally onto the whole complex plane with a slit along-
side the real axis from −9 to −1

9 .

We dealt in [6] and [7] with the Blaschke products
of the form

Ba(z) =

(
a

|a|
z − a

1− az

)n

, a = reiα,

0 < r < 1, α ∈ R, n = 2, 3, ....

(5)
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Fig.   3: The conformal self-mapping of the complex
plane induced by a Blaschke product of the second-
degree.

An elementary computation shows that the equa-
tion Ba(z) = λn, where 0 ≤ λ ≤ 1 has the solutions

zk(λ) =
ωkλ+ r

ωkλr + 1
eiα, k = 0, 1, ..., n− 1, (6)

where ωk are the roots of order n of unity. The for-
mula (6) is that of a Möbius transformation in λ and
therefore when λ varies from 0 to 1, the point zk(λ)
describes an arc of a circle γk with the end points in

zk(0) = a and zk(1) =
ωk + r

ωkr + 1
eiα

on the unit circle. Two consecutive arcs γk and γk+1

(where γn = γ0) together with the arc of the unit
circle between them bound a domain which is con-
formally mapped by Ba(z) onto the unit disc with a
slit alongside the real axis from 0 to 1. By the sym-
metry principle, the symmetric of this domain with
respect to the unit circle is conformally mapped by
Ba(z) onto the exterior of the unit disc with a slit
alongside the real axis from 1 to infinity. The conclu-
sion is that Ba(z) partitions the complex plane into n
point sets, the interior of which are fundamental do-
mains of Ba(z) and each one of them is conformally
mapped byBa(z) onto the whole complex plane with
a slit alongside the positive real half axis.

Fig.   4: The conformal self-mapping of the com-
plex plane induced by a Blaschke product of the third
degree.

Let us take a = 1/3 and n = 3. By using the
same procedure as previously, we obtain, Fig. 4, a
conformal self-mapping of the complex plane with 6
fixed points.

The boundaries of the fundamental domains of the
Blaschke product

B(z) =

(
3z − 1

3− z

)3

,

can be obtained by solving for z the equation

B(z) = t3, t ≥ 0.

The solutions are

zk(t) =
1 + 3tωk

3 + tωk
, k = 0, 1, 2, 0 ≤ t ≤ ∞,

which represent three arcs of circle γk, k = 0, 1, 2.
Since ω0 = 1, we have

z0(t) =
1 + 3t

3 + t
,

which is, for t ≥ 0, the interval γ0 = (1/3, 3) of the
real axis. It meets the unit circle for t = 1 at the point
z = 1.

For k = 1, 2, the two arcsmeet the unit circle when
|zk(t)| = 1, i.e., when

(1 + 3tωk)(1 + 3tωk) = (3 + tωk)(3 + tωk).
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This equation is equivalent to t2 = 1. Since t ≥ 0,
the right solution is t = 1. We have

zk(1) =
1 + 3ωk

3 + ωk
,

thus γ1 and γ2 are arcs of circle with the ends in
1/3 and 3 and passing through z1(1) and respectively
z2(1).

Thus, the fundamental domains ofB(z) are the do-
mains: Ω1 bounded by γ0 and γ1, Ω2 bounded by γ0
and γ2, and the unbounded domainΩ0 bounded by γ1
and γ2.

Since B(zk(1)) = 1 and z = 1 is a fixed point of
the Möbius transformation

M(z) =
2z − 1

2− z
,

by the Proposition 2 the points zk(1) are fixed points
of the transformations

χk(z) = (B−1
|Ωk

◦M ◦B)(z), k = 0, 1, 2,

as shown in Fig. 4.

3 The Case of an Arbitrary Analytic
Function

Let f(z) be an arbitrary analytic function inCwith the
exception of isolated singular points and letΩ1 andΩ2

be adjacent fundamental domains of f which are con-
formally mapped by f onto the complex plane with
the same slit L. Any Möbius transformation M(z)
defines conformal mappings

χk(s) = f−1
|Ωk

◦M ◦ f(s)

of Ωk\L′
k onto Ωk\Lk , k = 1, 2, where Lk and L′

k
are slits in Ωk. Let Γ = ∂Ω1 ∩ ∂Ω2 and let us extend
by continuity every f|Ωk

(s) to Γ keeping the same no-
tations for the extended functions.

Theorem 1. For every s ∈ Γ we have

f|Ω1
(s) = f|Ω2

(s) = f(s),

hence
f|Ω1

(Γ) = f|Ω2
(Γ) = f(Γ).

Moreover, f−1
|Ω1

(w) and f−1
|Ω2

(w) exist for every w ∈
f(Γ) and they are equal.

Then, χk(s) are extended to Γ, such that χ1(s) =
χ2(s) for every s ∈ Γ.The extended function to (Ω1∪
Ω2∪Γ)\(L′

1∪L′
2) is a conformal mapping χ1,2 of this

domain onto (Ω1 ∪ Ω2 ∪ Γ)\(L1 ∪ L2) such that its
restriction to every Ωk\L′

k, k = 1, 2 is a conformal
mapping of Ωk\L′

k onto Ωk\Lk.

Fig.   5: Illustration of Theorem 1 for an arbitrary
Dirichlet function ζA,Λ(s) and a real Möbius trans-
formationM .

Proof: By the boundary correspondence theorem
in a conformal mapping, for k = 1, 2, the functions
f|Ωk

can be extended by continuity to the boundaries
∂Ωk of Ωk and both extensions map ∂Ω1∩ ∂Ω2 onto
the same edge of L. Indeed, the function f is locally
injective at every point s0 where f ′(s0) ̸= 0 and s0 is
not a multiple pole or an essential singular point. In
particular, this happens at every point s0 ∈ Γ. There-
fore, in a small neighborhood V of f(s0) the function
f−1(z) exists and it coincides with f−1

|Ωk
where both

are defined.
Consequently, f−1

|Ωk
can be extended to f(Γ)where

they are equal, hence they are extensions of each
other and thereforeχk(s) are extensions of each other.
The function χ1,2(s) which coincides with χk(s) in
(Ωk ∪ Γ)\L′

k, k = 1, 2 maps conformally(Ω1 ∪Ω2 ∪
Γ)\(L′

1∪L′
2) onto (Ω1∪Ω2∪Γ)\(L1∪L2) in such a

way that Ωk\L′
k is conformally mapped onto Ωk\Lk

for k = 1, 2.
If it happens that L′

k ⊂ ∂Ωk (as in [6]) then χk(s)
is defined in Ωk.

In Fig. 5, two adjacent fundamental domains Ω1

and Ω2 with the common boundary Γ′
k of an arbitrary

Dirichlet function ζA,Λ(s) are exhibited. A big cir-
cle of radius r centered at the origin is the image by
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ζA,Λ(s) of an infinite curve η1, while a small circle
of radius ϵ centered at the point z = 1 is the im-
age of another infinite curve η6 and some arcs η′3 and
η′′3 around the points u′0 and u′′0 for which we have
ζA,Λ(u

′
0) = ζA,Λ(u

′′
0) = 1. The domainDϵ,r bounded

by the two circles is the conformal image of the two
domains Ωϵ,r and Ω′

ϵ,r included in the fundamental
domainsΩ1 and respectivelyΩ2 of the Dirichlet func-
tion ζA,Λ(s). When ϵ → 0 and r → +∞ the two
domains become Ω1 and respectively Ω2, while Dϵ,r

becomes the whole complex plane. We have

ζA,Λ(s
′
0) = ζA,Λ(s

′′
0) = 0,

ζA,Λ(u
′
0) = ζA,Λ(u

′′
0) = 1,

ζ ′A,Λ(s1) = ζ ′A,Λ(s
′
1) = 0,

lim
σ→+∞

ζA,Λ(σ + it) = 1,

where σ + it belongs to Γ′
k or to η5 or to η′5. The

four points s0, ζA,Λ(s0), M(ζA,Λ(s0)) and χ1(s0) =
χ2(s0), as well as their neighborhoods are portrayed.
This figure illustrates not only the affirmations of
Theorem 1, but also the way a Dirichlet function is
conformally mapping its fundamental domains onto
the complex plane with some slits. Every slit is along
the interval (1,+∞) of the real axis and along an in-
terval from z = 1 to z = ζA,Λ(sk) where ζ ′A,Λ(sk) =
0.

Regarding the sensitivity of the method, it is ob-
vious that any change in a fundamental domain will
trigger changes in all fundamental domains, perturb-
ing the whole landscape of the Fig. 5. However, the
branch points will remain the same.

We need to point out that the famous Riemann Zeta
function is the particular Dirichlet function in which
λn = logn and an = 1 for every n. It is known that
the Riemann Zeta function has important applications
in physics. The results above may draw a new light
on this application.

Theorem 2. (TheMain Theorem) To every func-
tion f , which is analytic in C with the exception of
isolated singular points, and to every Möbius trans-
formation M , a conformal mapping of the complex
plane, with the singular points of f and some cuts re-
moved, can be associated such that every fundamen-
tal domain of f with a cut removed is conformally
mapped into itself.

Proof: It is known that C = ∪n≤∞
k=1 Ωk where Ωk

are fundamental domains of f. Suppose that Ω1 and
Ω2 are adjacent and construct χ1,2 as in Theorem 1.
Now, suppose that Ω3 is adjacent to Ω1 ∪ Ω2 and let
χ1,2,3 a conformal mapping of (Ω1∪Ω2∪Ω3)\(L′

1∪
L′
2∪L′

3) obtained in the same manner as χ1,2. It maps
conformally each one of Ωk\L′

k, k = 1, 2, 3 onto

Ωk\Lk . We continue in this way up to n, if n is finite,
or indefinitely ifn is infinite. What we obtain is a con-
formal mapping of the complex plane with the singu-
lar points of f and some cuts removed in which every
fundamental domain of f is conformally mapped into
itself. IfL′

k ⊂ ∂Ωk there is no cut to be removed from
Ωk.

We illustrate next this theorem for some of the
most known classes of analytic functions.

4 Illustrations For Some Classes of
Analytic Functions

The exponential function has infinitely many funda-
mental domains which are horizontal strips of width
2π. We have shown in [5] how each one of these strips
can be conformally mapped onto itself through the in-
termediate of a Möbius transformation. We will use
throughout in what follows the Möbius transforma-
tion

M(z) =
2z − 1

2− z
. (7)

Let

Ωk = {z = x+ iy|2kπ < y < 2(k + 1)π},

for k ∈ Z. The Ω0-Steiner net in [5], portrays the
conformal self-mapping χM of the strip Ω0 defined
by

χM (s) = Log(M(es)),

where Log is the principal branch of the multival-
ued function logarithm. To obtain a conformal self-
mapping of an arbitrary fundamental domain of ez we
need to use the corresponding branch of the logarithm.
Yet, this can be obtained by making consecutively
symmetries of the Ω0-Steiner net with respect to the
lines z = x+2kπi. Fig. 6 below illustrates a confor-
mal self-mapping of the complex plane in which ev-
ery strip Ωk is mapped onto itself. We notice that this
conformal mapping has infinitely many fixed points,
namely z = kπi. For k even they are repelling fixed
points and for k odd they are attracting.

For the cosine function the fundamental domains
are vertical strips

Ωk = {z = x+ iy|kπ < x < (k + 1)π}, k ∈ Z.

The Ω0-Steiner net is shown in [5].
If we take the symmetric of this net with respect

to the lines z = kπ + iy we obtain a net covering the
whole complex plane and portraying a conformal self-
mapping of the complex plane with the fixed points
z = kπ, k ∈ Z, in which every fundamental domain
Ωk of the cosine function is conformally mapped onto
itself. Fig. 7 illustrates this mapping.
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Fig.    6: The conformal self-mapping of the com-
plex plane by the function χ(s) which coincides with
χM (s) in every fundamental domain of the exponen-
tial function.

Fig.    7: The conformal self-mapping of the com-
plex plane by the function χ(s) which coincides with
χM (s) in every fundamental domain of the cosine
function.

The Euler Gamma function is an extension to the
whole complex plane of the arithmetic function

Γ(n) = (n− 1)!.

For ℜz > 1 the extension is given by the formula

Γ(z) =

∫ ∞

0
e−ttz−1dt. (8)

Integrating by parts, we find that Γ(z) satisfies the
functional equation zΓ(z) = Γ(z + 1), which allows
its extension to the half-plane ℜz ≤ 1. The func-
tion Γ(z) has no zero and it has infinitely many poles
which are z = 0 and z = −n, n ∈ N. The pre-image
of the real axis by Γ(z) displays the fundamental do-
mains of this function. These domains are confor-
mally mapped by Γ(z) onto the complex plane with
slits alongside some intervals of the real axis. Fig. 8
below represents the pre-image by Γ of the Steiner net
of theMöbius transformation (7) which is a collection
of Ω-Steiner nets, each one illustrating a conformal
self-mapping of the respective domain Ω. These do-
mains are bounded by the curves colored red for the
pre-image of the positive real half-axis and blue for
the pre-image of the negative real half-axis and they
are mapped conformally by the function w = Γ(z)
onto the complex plane with slits alongside some in-
tervals on the real axis. Each one of these domains
contains one fixed point in the interior, which is re-
pelling, and two attracting fixed points on the bound-
ary. Both, attracting and repelling fixed points are at
the intersection of the pre-images by Γ(z) of the real
axis in the w and of the unit circle (colored green).
These domains, put together, illustrate a conformal
self-mapping of the complex plane in which every
fundamental domain is mapped onto itself.

A Dirichlet function is obtained by performing an-
alytic continuation to the whole complex plane of a
Dirichlet series

ζA,Λ(s) =

∞∑
n=1

ane
−λns, (9)

whereΛ = (λn) is a non-decreasing sequence of pos-
itive numbers, A = (an) is an arbitrary sequence of
complex numbers and s = σ + it is a complex vari-
able. AnyDirichlet series can be normalized such that
a1 = 1 and λ1 = 0 and we deal only with normalized
Dirichlet series. For such a series we have

lim
σ→+∞

ζA,Λ(σ + it) = 1, (10)

uniformly with respect to t. When, for an we have the
values of a Dirichlet character χ and λn = logn, [5],
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Fig.   8: The conformal self-mapping of the complex
plane by the function χ which coincides with χM (s)
in every fundamental domain of the function Γ(z).

then the series (9) becomes

L(χ, s) =

∞∑
n=1

χ(n)

ns
(11)

and it is called Dirichlet L-series.
The fundamental domains of Dirichlet functions

have been studied in [8]. They are bounded by the
components of the pre-image by ζA,Λ(s) of the inter-
val (1,+∞) of the real axis and by pre-images γk of
the segments from z = 1 to z = ζA,Λ(sk), where
ζ ′A,Λ(sk) = 0. For the Dirichlet L-functions, the loca-
tion of these zeroes of the derivative has been studied
in [9].

For any Dirichlet function (9) the fundamental do-
mains are infinite strips which are mapped confor-
mally by ζA,Λ(s) onto the whole complex plane with
a slit alongside the interval (1,+∞) of the real axis
followed by a slit alongside the segment from z = 1
to z = ζA,Λ(sk). When ζA,Λ(sk) = 0, the point sk
is a double zero of ζA,Λ(s) and the corresponding slit
is the positive real half-axis. The existence of double
zeroes of Dirichlet functions has been proved in [10]
for linear combinations Dirichlet L-functions satisfy-
ing the same Riemann type of functional equation.

We have also shown in [11] that ζA,Λ(s) cannot
have any zero of a higher order than two.

Since the interval (1,∞) of the real axis is in-
cluded in the slit of every fundamental domain Ωk of
ζA,Λ(s), the pre-images by ζA,Λ(s) of the Apollonius
circles around z = 1, of the Steiner net of the Möbius
transformation (7), are orthogonal to the pre-image
of that interval. Some of them may cut also under
different angles the curve γk. The components of the

Fig.    9: The conformal self-mapping of the com-
plex plane by the function χ which coincides with
χM (s) in every fundamental domain of the Dirichlet
L-function L(7, 2, s).

pre-image of the orthogonal circles to the Apollonius
circles, which pass through −1 and 1, can be divided
into two categories: the unbounded ones, which ap-
proach asymptotically ∂Ωk when σ → +∞ and the
bounded ones. Each one of them is mapped onto it-
self by the corresponding function χM (s). By Theo-
rem 2, there is a conformal mapping χ(s) of the com-
plex plane which coincides with χM (s) in every fun-
damental domainΩk of ζA,Λ(s). Fig. 9 illustrates this
affirmation when ζA,Λ(s) is L(7, 2, s).

Fig. 9 and Fig. 5 need to be seen together for a bet-
ter understanding of the conformal self-mapping of
the complex plane generated in Fig. 9 by the Dirichlet
L-function L(7, 2, s) and the Möbius transformation

M(z) =
2z − 1

2− z
.

While Fig. 5 has been conceived by imagination, Fig.
9 is a computer-generated graphic. It shows that the
fundamental domains of L(7, 2, s) are indeed those
illustrated in Fig. 5 and that their conformal self-
mappings given by

χM (s) = L−1
|Ω ◦M ◦ L(7, 2, s)
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in every fundamental domain, Ω of L(7, 2, s), pro-
duce together a conformal self-mapping of the com-
plex plane with some slits. The pre-image by
L(7, 2, s) of the orthogonal circles to the Apollonius
circles of M(s) shown in Fig. 9 prove that the η-
curves from Fig. 5 are real. If we could add to Fig. 5
the fixed points of χ(s) and the Ω-Apollonius circles,
then the complete description of the conformal self-
mapping of the complex plane with slits would result
also in the case of the function illustrated by Fig. 5.

5 Conclusions
Up to now, the only known conformal self-mappings
of the complex plane were the Möbius transforma-
tions. Moreover, it has been proved, [12], that these
are the only possible such transformations. In the
previous paper, [5], we dealt with conformal self-
mappings of the fundamental domains of analytic
functions. In this paper, we succeeded to extend this
idea to the whole complex plane. We have proved
that to any analytic function f in C with the excep-
tion of isolated singular points and to any Möbius
transformation, a conformal self-mapping of the com-
plex plane with some slits can be associated, such that
it maps conformally every fundamental domain of f
onto itself. Computer experimentation has been used
to illustrate this result for the most familiar classes of
analytic functions.
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