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1  Introduction 
A Throughout of this paper, all graphs and multisets 
considered have vertices in 𝑍𝑣. Let 𝐺 be a graph of 
order 𝑣, a near-𝑘-factor of 𝐺 is a spanning subgraph 
in which all vertices have a degree 𝑘 with exception 
of one vertex (isolated vertex) which has a degree 
zero. An analysis of graph G involves a list of 
subgraphs ℋ = {𝐻1, . . . , 𝐻𝑡}, in which the edge sets 
split the edge set of 𝐺 as a whole. Another name for 
it is a (𝐺, 𝐻)-design. A subgraph is called a 

(𝐺, 𝐻) −design if every subgraph in 𝐻 is 
isomorphic to a predefined subgraph 𝐻. 

Let 𝛱 be a group of permutation on 𝑉(𝐺) = 𝑣 
leaving the multiset of subgraphs ℋ invariant. If 
there is a permutation 𝜋 ∈ 𝛱 of order 𝑣, then 
(𝐺,ℋ)-design is called a cyclic. Thus, the 
permutation can be represented by 𝜋 =
(0, 1, … , 𝑣 − 1).  

A complete multigraph 𝜆𝐾𝑣 is a graph where 
any two vertices are joined by 𝜆 distinct edges. The 
fundamental theorem for the existence of (𝐾𝑣 , 𝐻)-
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design has been stated by, [1]. There have been 
several research papers relating to decomposing of 
complete multigraph 𝜆𝐾𝑣 into different subgraphs. 
For example, into crowns, [2], paths, [3] or cycles, 
[4].  

Furthermore, (𝜆𝐾𝑣, 𝐾𝑘)-design is known as a 
balanced incomplete block design denoted by 
(𝑣, 𝑘, 𝜆)-𝐵𝐼𝐵𝐷. On other words, (𝑣, 𝑘, 𝜆)-𝐵𝐼𝐵𝐷 is a 
pair (𝑉, ℬ) where 𝑉 is a finite set of 𝑣 points and ℬ 
is a list of 𝑘-subsets (called blocks) of 𝑉 such that 
each pair of distinct points of 𝑉 is contained in 
precisely 𝜆 blocks. A 𝜆-fold triple system of order 𝑣, 
denoted by  𝑇𝑆(𝑣, 𝜆), is (𝑣, 3, 𝜆)-𝐵𝐼𝐵𝐷. 
The 𝑇𝑆(𝑣, 𝜆), (𝑉, ℬ), is called cyclic triple system, 
 𝐶𝑇𝑆(𝑣, 𝜆), if 𝐵 = {𝑐1, 𝑐2, 𝑐3} ∈ ℬ then 𝐵 + 1 =
{𝑐1 + 1, 𝑐2 + 1, 𝑐3 + 1} is also in ℬ. The ensemble 
of triplets generating all triplets within 𝐶𝑇𝑆(𝑣, 𝜆) 
through the addition of one modulo 𝑣 is termed 
starter triplets. 

The orbit of triple 𝐵, represented by 𝑜𝑟𝑏(𝐵), is 
the set that contains all unique triples in the 
collection {𝐵 +  𝑖 | 𝑖 ∈  𝑍𝑣}, where 𝐵 is a triple. 
The length of the orbit, written as 𝑜𝑟𝑏(𝐵)  =  𝑘, is 
the cardinality of this orbit, represented as |𝑜𝑟𝑏(𝐵)|, 
the smallest positive integer, denoted by 𝑘 in this 
case, for which 𝐵 +  𝑘 =  𝐵. 𝐵 is said to be 
precisely defined if its orbit matches 𝑣; if not, it is 
deemed short. There is no block's short orbit when 𝑣 
is not equivalent to 0 (𝑚𝑜𝑑 3), [5]. 

The existence of 𝐶𝑇𝑆(𝑣, 𝜆) is an interesting 
open problem of combinatorics due to its vast 
applications. In, [6], they studied the existence of 
cyclic triple system over 𝑍𝑣 when 𝑣 ≡ 1, 3 (mod 6). 
While Colbourn and Rosa have given the spectrum 
of 𝐶𝑇𝑆(𝑣, 𝜆), [7]. Recently, in, [8], they introduced 
a new type of triple system called compatible 
factorization. They employed the near-one-factor to 
arrange 𝑣 × (𝑣−1

2
) distinct triple into 𝑣 rows 

according to certain conditions for 𝑣 ≡
1, 5(mod 6). In, [9] they developed the compatible 
factorization to display 𝑣 × (𝑣−1

2
−
2

3
) triples with 

minimum repetition for 𝑣 ≡ 3 (mod 6 ). 
The primary aim of this paper is to devise a 

novel decomposition for the complete multigraph 
8𝐾12𝑛+2 utilizing wheel graphs of distinct orders. 
Then we will employ this decomposition to define a 
new cyclic triple system to arrange 𝑣 × 2(𝑣 − 1) 
triples satisfying certain constraints. 

 
 

2   Preliminaries and Definitions   
Here, we introduce some key ideas in 
(𝑣, 𝑘, 𝜆) −BIBD and graph decomposition that are 

relevant to our conclusions. The primary goals of 
this research will be achieved by applying the partial 
difference approach, which is described in this 
section and has been successful in creating cyclic 
(𝜆𝐾𝑣 , 𝐻)-designs in many cases,[9]. 
Definition 1 A wheel graph of order 𝑛 ≥ 4, written 
as 𝑊𝑛 = 𝑐0 + (𝑐1, 𝑐2, … , 𝑐𝑛−1), is a graph that 
contains a cycle of order 𝑛 − 1, and each vertex  in 
the cycle is joined to a new vertex, 𝑐0, which is 
known as center, [10].  
Definition 2 A starter of cyclic (𝜆𝐾𝑣 ,ℋ)-design is 
the collection of subgraphs of 𝜆𝐾𝑣 that generates all 
the subgraphs in ℋ, [11]. 
Definition 3 Let 𝐻 be a subgraph of 𝜆𝐾𝑣. The list of 
differences from 𝐻 is the multiset, [12], 

∆(𝐻) = {𝑑(𝑥, 𝑦) = 𝑚𝑖𝑚 {|𝑥 − 𝑦|, 𝑣 − |𝑥 − 𝑦|}, 𝑥𝑦

∈ 𝐸(𝐻)} 

In general, given a multiset δ = {𝐻1, 𝐻2, … , 𝐻𝑡} of 
subgraphs of 𝜆𝐾𝑣, the list of differences of the 
multiset δ is defined by: 

∆(δ) = ∆(𝐻1) ∪ ∆(𝐻2) ∪ … ∪ ∆(𝐻𝑡). 

Definition 4 Let 𝐻 be a subgraph of 𝜆𝐾𝑣, the 
stabilizer of 𝐻 under 𝑍𝑣 is 𝑠𝑡𝑎𝑏(𝐻) = {𝑧 ∈
𝑍𝑣   |  𝑧 + 𝐻 = 𝐻}  and is called trivial if 𝑠𝑡𝑎𝑏(𝐻) =
{0},[12]. 

As a particular result of, [13], we have the 
following lemma.  
Theorem 5  Let 𝑣 be even and 𝛿 be a multiset of 
subgraphs of 𝜆𝐾𝑣 and every subgraph of 𝛿 has 
trivial stabilizer. Then 𝛿 is a starter of 
cyclic( 𝜆𝐾𝑣, 𝒴)-design if and only if Δ𝛿 covers each 
nonzero integer of 𝑍𝑣

2
 exactly 𝜆 and (𝑣

2
 )occurs 𝜆

2
 

times, [14]. 

Definition 6 Let 𝐵 be a 𝑘-subset of 𝑍𝑣. The list of 
difference of 𝐵 is the multiset,[6],  
𝐷(𝐵) = {𝑚𝑖𝑛{|𝑎 − 𝑏|, 𝑣 − |𝑎 − 𝑏|},   𝑎, 𝑏 ∈

𝐵, 𝑎 ≠ 𝑏}. 
Generally, if 𝒜 = {𝐵1, 𝐵2, … , 𝐵𝑡} is a multiset of 

𝑘-subsets of 𝑍𝑣, then the list of differences of 
multiset 𝒜 is defined as 

𝐷(𝒜) = 𝐷(𝐵1) ∪ 𝐷(𝐵2) ∪ … ∪ 𝐷(𝐵𝑡). 
Theorem 7 Let 𝑣 be even and 𝒜 be a multiset of 3-
subsets of  𝑍𝑣. An 𝒜 is a starter of cyclic 𝜆-fold 
triple system if and only if 𝐷(𝒜) covers each 
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nonzero integer,[6], of  𝑍𝑣
2
 exactly 𝜆 times and the 

middle difference (𝑣
2
) precisely  𝜆

2
 times. 

Definition 8 Let 𝐻 and 𝐹 be two 𝑚-cycles of a 
graph 𝐺 of order 𝑣. Then 𝐻 and 𝐹 are called parallel 
𝑚 cycles if they have the same difference set, [15].  

Definition 9 Let 𝐻 and 𝐹 be two 𝑚-cycles of a 
graph 𝐺 of order 𝑣. If the sum of each two 
corresponding vertices of them is 𝑣, then it is called 
adjoined 𝑚-cycles,[15].  

Lemma 10 Any two adjoined 𝑚-cycles of a graph 𝐺 
are parallel 𝑚-cycles, [15].  
 
 
3 Cyclic (𝟓∗, (𝟒𝒏)∗, (𝟐𝒏 + 𝟑)∗)-wheel 

System of 𝟖𝑲𝟏𝟐𝒏+𝟐 
In this section, we consider how to decompose the 
complete multigraph  8𝐾𝑣 into wheel graphs for 𝑣 =
12𝑛 + 2. According to the Definition 1, the edges 
set of wheel graph 𝑊𝑛 = 𝑐0 + (𝑐1, … , 𝑐𝑛−1) will be 
expressed below: 

𝐸(𝑊𝑛) = 𝐸(𝐾(1,𝑛−1)) ∪ 𝐸(𝐶𝑛−1) such that: 

𝐸(𝐾(1,𝑛−1)) = {𝑐0𝑐𝑖   | 1 ≤ 𝑖 ≤ 𝑛 − 1}, 

𝐸(𝐶𝑛−1)  = {𝑐𝑖𝑐𝑖+1  | 1 ≤ 𝑖 ≤ 𝑛 − 1} where 𝑐𝑛 =
𝑐1. 

So, the list of difference from 𝑊𝑛 is 𝐷(𝑊𝑛) =
𝐷(𝐶𝑛−1) ∪ 𝐷(𝐾(1,𝑛−1)). We will call 𝐷(𝐶𝑛−1) and 
𝐷(𝐾(1,𝑛−1)) the cycle differences (𝐶𝐷(𝑊𝑛)) and 
internal differences (𝐼𝐷(𝑊𝑛)), respectively, of 𝑊𝑛. 
As usual, any 𝐶𝑚 is written as a permutation: 

𝐶𝑚 = (𝑐0, 𝑐1, … , 𝑐𝑚−1). 

To simplify determining a vertex set and computing 
the list of differences of 𝑚-cycle, we will write 𝐶𝑚 
of high order, when 𝑚 ≥ 5, as linking paths as 
follows:  

𝐶𝑚 = (𝑐0, 𝑐1, … , 𝑐𝑚−1) = (𝑐0, 𝑃𝑛, 𝑃𝑠), where 𝑛, 𝑠 are 
positive integers and 1 + 𝑛 + 𝑠 = 𝑚 in which 𝑃𝑛and 
𝑃𝑠 are paths and 𝑐0 is a point such that: 

𝑃𝑛 = [𝑐1, … , 𝑐𝑛], 𝑃𝑠 = [ 𝑐𝑛+1, … , 𝑐𝑚−1]. 

We represent a path of even order as follows: 

𝑃2𝑛 = [𝑎1, 𝑏1, 𝑎2, 𝑏2, … , 𝑎𝑛, 𝑏𝑛] = [⋃ 𝑎𝑖, 𝑏𝑖
𝑛
𝑖=1 ], 

Therefore, the list of difference and vertex set of 𝑃2𝑛 
determined as: 

𝐷(𝑃2𝑛) = {
𝑑(𝑎𝑖, 𝑏𝑖),                     1 ≤ 𝑖 ≤ 𝑛,        

𝑑(𝑎𝑖+1, 𝑏𝑖),                 1 ≤ 𝑖 ≤ 𝑛 − 1,
 

𝑉(𝑃2𝑛) = {⋃ 𝑎𝑖
𝑛
𝑖=1 } ∪ {⋃ 𝑏𝑖

𝑛
𝑖=1 }, 

Moreover, the difference between 𝑃𝑛 and 𝑃𝑠 that 
located in the same cycle, denoted by 𝐷(𝑃𝑛, 𝑃𝑠 ), is 
defined as the difference between the last vertex in 
the path 𝑃𝑛 and the first vertex in the path 𝑃𝑠. As a 
result, the vertex set and list of difference for an 𝑚-
cycle  𝐶𝑚 = (𝑐0, 𝑃𝑛, 𝑃𝑠), 𝑛, 𝑠 ∈ ℕ, will be written as: 

𝑉(𝐶𝑚) = {𝑐0} ∪ 𝑉(𝑃𝑛) ∪ 𝑉(𝑃𝑠), 

𝐷(𝐶𝑚) = 𝐷(𝑃𝑛) ∪ 𝐷(𝑃𝑠) ∪ 𝐷(𝑐0, 𝑃𝑛) ∪ 𝐷(𝑃𝑛, 𝑃𝑠)

∪ 𝐷(𝑃𝑠, 𝑐0) 

Definition 11 A (𝑚1
∗ ,𝑚2

∗ , … ,𝑚𝑡
∗)-wheel system of 

𝜆𝐾𝑣 is (𝜆𝐾𝑣 ,ℋ)-design where ℋ is a collection of 
wheels in which the order of each wheel graph 
belong to {𝑚1,𝑚2, … ,𝑚𝑡}. 
We will denote of a cyclic (𝑚1

∗ ,𝑚2
∗ , … ,𝑚𝑡

∗)-wheel 
system of 𝜆𝐾𝑣 by 𝐶𝑊𝑆(𝜆𝐾𝑣 ,𝒲) where 𝒲 is its a 
starter set. Following Tian and Wei,[13], we will 
use the notation ℋ = {𝐻𝑚1

𝑛1 , 𝐻𝑚2

𝑛2 , … , 𝐻𝑚𝑟

𝑛𝑟 } to 
describe a set of subgraphs ℋ meaning that there 
are 𝑛1 subgraph of order 𝑚1, 𝑛2 subgraph of order 
𝑚2, etc. For more see, [16]. 

The following results will be used to prove the 
existence (𝑚1

∗ ,𝑚2
∗ , … ,𝑚𝑡

∗)-wheel system of 8𝐾𝑣, 
[17].  
Lemma 12 Let 𝐺 be graph of order 𝑣. Let 𝑘 be a 
positive even and 𝒞 be a set of cycles of 𝐺. Then 𝒞 
is near-𝑘-factor if and only if the vertex set of 𝒞 
covers every element of 𝐺 exactly  𝑘

2
  times except 

one vertex. 
Proof. We will prove the first part of this lemma. 
The second part can be shown similarly. Let 𝒞 =
{𝐶1, 𝐶2, … , 𝐶𝑚} be a set of cycles that forms a near-
𝑘-factor, then each vertex of 𝐺 has a degree 𝑘 
except the isolated vertex. Let 𝑥 ∈ 𝑉(𝐺) and 𝑥 is 
not isolated vertex in 𝒞. Then, the degree of 𝑥 in 𝐺 
is 

𝑑𝑒𝑔𝐺(𝑥) = ∑ 𝑑𝑒𝑔𝐶𝑖(𝑥)
𝑚
𝑖=1 . 

Where 𝑑𝑒𝑔𝐺(𝑥) and 𝑑𝑒𝑔𝐶𝑖(𝑥) denote the degree of 
𝑥 in 𝐺 and 𝐶𝑖 respectively. Since a cycle graph is a 
2-regular graph, then 𝑑𝑒𝑔𝐶𝑖(𝑥) = 2 or 0 according 
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to whether 𝑥 is a vertex of 𝐶𝑖 . Suppose the number 
of cycles in 𝒞 that contains 𝑥 is 𝑛. Then, we have: 

𝑑𝑒𝑔𝐺(𝑥) = 2 + 2 +⋯+ 2 = 2 × 𝑛. 

Since 𝑑𝑒𝑔𝐺(𝑥) = 𝑘, then 𝑛 = 𝑘

2
.                                                                                                                    

Lemma 13 Let 𝑣 and 𝑛 be even integers and 𝒲 =

{𝑐0 + 𝐶𝑚1
, 𝑐0 + 𝐶𝑚2

, … , 𝑐0 + 𝐶𝑚𝑡
} be a set of 

wheels of 𝜆𝐾𝑣. If the cycles {𝐶𝑚1
, 𝐶𝑚2

, … , 𝐶𝑚𝑡
} 

satisfy a near-𝑛-factor, then the internal 
differences, (𝐼𝐷), of 𝒲 covers each element of 
 𝑍𝑣+2

2

∗  exactly 𝑛 times except the middle difference 

(
𝑣

2
), which occurs (𝑛

2
)  times.  

Proof. Let 𝒲 = {𝑐0 + 𝐶𝑚1
, 𝑐0 + 𝐶𝑚2

, … , 𝑐0 + 𝐶𝑚𝑡
} 

be a set of wheels of 𝜆𝐾𝑣 such that the set of cycles 
{𝐶𝑚𝑖

, 1 ≤ 𝑖 ≤ 𝑡} satisfies near-𝑛-factor with 
isolated  𝑐0. The internal differences of 𝒲, (𝐼𝐷), is 
determined as follows: 

𝐷(𝐾(1,𝑚𝑖)) = {𝑚𝑖𝑛{|𝑐𝑗 − 𝑐0|, 𝑣 − |𝑐𝑗 − 𝑐0|},  𝑐𝑗 ∈

𝐶𝑚𝑖
, 1 ≤ 𝑖 ≤ 𝑡, 1 ≤ 𝑗 ≤  𝑚𝑖  }, 

𝐷(𝐾(1,𝑚𝑖)) = 

{
|𝑐𝑗 − 𝑐0|,        |𝑐𝑗 − 𝑐0| ≤

𝑣

2
, 𝑐𝑗 ∈ 𝐶𝑚𝑖

, 1 ≤ 𝑖 ≤ 𝑡, 1 ≤ 𝑗 ≤  𝑚𝑖 ,

𝑣 − |𝑐𝑗 − 𝑐0|, |𝑐𝑗 − 𝑐0| >
𝑣

2
, 𝑐𝑗 ∈ 𝐶𝑚𝑖

, 1 ≤ 𝑖 ≤ 𝑡, 1 ≤ 𝑗 ≤  𝑚𝑖 .
 

Since the cycles {𝐶𝑚𝑖
, 1 ≤ 𝑖 ≤ 𝑡} form a near-𝑛-

factor, then the vertex set of set of cycles {𝐶𝑚𝑖
, 1 ≤

𝑖 ≤ 𝑡} covers each element of 𝑍𝑣 exactly  𝑛
2
  times 

except 𝑐0 based on Lemma 12, [18]. 

Now if we label 𝑐0 by "0", then every vertex of    

{1, 2, … , ( 
𝑣

2
− 1) ,

𝑣

2
, ( 

𝑣

2
+ 1) ,… , (𝑣 − 2), (𝑣 − 1)} 

will appear as 𝑐𝑗 ∈ 𝐶𝑚𝑖
 exactly 𝑛

2
 times. Therefore, 

(𝐼𝐷) can be written as:  

𝐷(𝐾(1,𝑚𝑖)) =

{
𝑐𝑗,                 𝑐𝑗 ≤

𝑣

2
, 𝑐𝑗 ∈ 𝐶𝑚𝑖

, 1 ≤ 𝑖 ≤ 𝑡,

𝑣 − 𝑐𝑗,          𝑐𝑗 >
𝑣

2
, 𝑐𝑗 ∈ 𝐶𝑚𝑖

, 1 ≤ 𝑖 ≤ 𝑡.
  

Thus, every element in the multiset of {1, 2, … , (𝑣
2
−

1) ,
𝑣

2
, (
𝑣

2
− 1) ,… , 2, 1} will be shown 𝑛

2
 times. Then 

𝐷(𝐾(1,𝑚𝑖)) covers all the nonzero elements of  𝑍𝑣+2
2

∗   

precisely 𝑛 times except the middle difference 𝑣
2
 

occur 𝑛
2
 times, [19].                                                                                                

Lemma 14 Let 𝑊𝑚+1 be a wheel graph of 𝜆𝐾𝑣. If 
the 𝑊𝑚+1 is formed as 𝑊𝑚+1 = 0 + 𝐶𝑚, then 
𝑊𝑚+1 has a trivial stabilizer. 

Proof. Let 𝑊𝑚+1 = 0 + (𝑐1, 𝑐2, … , 𝑐𝑚) be (𝑚 + 1)-
wheel of 𝜆𝐾𝑣, the stabilizer of 𝑊𝑚+1 is represented 
as follows: 

𝑠𝑡𝑎𝑏(𝑊𝑚+1) = {𝑧 ∈ 𝑍𝑣  |  𝑧 +𝑊𝑚+1 = 𝑊𝑚+1} 

suppose 𝑧 ∈ 𝑠𝑡𝑎𝑏(𝑊𝑚+1), then.  

              𝑊𝑚+1 + 𝑧 = 𝑊𝑚+1, 

𝑧 + (𝑐1 + 𝑧, 𝑐2 + 𝑧,… , 𝑐𝑚 + 𝑧) = 0 +

(𝑐1, 𝑐2, … , 𝑐𝑚)      

This implies that 𝑧 = 0. Hence, 𝑠𝑡𝑎𝑏(𝑊𝑚+1) = {0}.                                                      
Now, we will present the existence cyclic 
(𝑚1

∗ ,𝑚2
∗ , … ,𝑚𝑡

∗)-wheel system of 8𝐾𝑣 for 𝑣 =
12𝑛 + 2.  

Theorem 15 For 𝑛 > 1, there exists a cyclic 
(5∗, (4𝑛)∗, (2𝑛 + 3)∗)-wheel system of 8𝐾12𝑛+2. 

Proof. We construct the starter of cyclic 
(5∗, (4𝑛)∗, (2𝑛 + 3)∗)-wheel system of 8𝐾12𝑛+2 as 
follows: 

Case 1. 𝑛 = 2. 

Consider that 𝒲 = {𝑊5
6,𝑊8

2,𝑊7
2} is a wheel set 

of 8𝐾26 such that: 

𝑊51 = 0 + (1, 25, 14, 12), 𝑊52 = 0 +

(2, 24, 15, 11), 

𝑊53 = 0 + (3, 23, 16, 10), 𝑊54 = 0 +

(4, 22, 17, 9), 

𝑊55 = 0 + (5, 21, 18, 8),  𝑊56 = 0 + (6, 7, 20, 19), 

𝑊8
∗ = 0 + (13, 2, 12, 3, 11, 4, 10), 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2023.22.104

Khaled Ahmad Matarneh, Mowafaq Omar Al-Qadri, 
Abdallah Al-Husban, Raja'i Aldiabat, 

 Shameseddin Alshorm

E-ISSN: 2224-2880 953 Volume 22, 2023



𝑊8
∗∗ = 0 + (13, 24, 14, 23, 15, 22, 16), 

𝑊7
∗ = 0 + (6, 1, 5, 17, 19, 18), 

𝑊7
∗∗ = 0 + (20, 25, 21, 9, 7, 8). 

It is straightforward to check that 𝒲 =

{𝑊5
6,𝑊8

2,𝑊7
2} is the starter of cyclic 

(5∗, (8)∗, (7)∗)-wheel system of 8𝐾26. 

Case 2. 𝑛 ≥ 3 is odd. 

Consider that 𝒲 = {𝑊5
3𝑛,𝑊4𝑛

2 ,𝑊2𝑛+3
2 } is a set of 

wheel of 8𝐾12𝑛+2, where the list of wheels of order 
5 is: 

0 + (𝑖, 12𝑛 + 2 − 𝑖, 6𝑛 + 1 + 𝑖, 6𝑛 + 1 − 𝑖), 1 ≤ 𝑖

≤ 3𝑛, 

𝑖 ≠
𝑛+1

2
. 

When 𝑖 = 𝑛+1

2
 , let 

𝑊5𝑖 = 0 + (
𝑛+1

2
, 12𝑛 + 2 −

𝑛+1

2
, 6𝑛 + 1 −

𝑛+1

2
, 6𝑛 + 1 +                       

𝑛+1

2
).  

Whereas, 𝑊4𝑛∗ = 0 + (4𝑛 + 2, 𝑃4𝑛−2
∗ ) and 𝑊4𝑛∗∗ =

0 + (8𝑛, 𝑃4𝑛−2
∗∗ ) are wheels of order 4𝑛 in which the 

paths {𝑃4𝑛−2∗ , 𝑃4𝑛−2
∗∗ } are represented below:  

𝑃4𝑛−2
∗ = [6𝑛 + 1, 2, 6𝑛, 3, … , 4𝑛 + 3, 2𝑛] 

= [⋃ 6𝑛 + 2 − 𝑖, 𝑖 + 12𝑛−1
𝑖=1 ], 

𝑃4𝑛−2
∗∗ = [6𝑛 + 1, 12𝑛, 6𝑛 + 2,12𝑛 − 1,… ,8𝑛 −

1,10𝑛 + 2], 

= [⋃ 6𝑛 + 𝑖, 12𝑛 + 1 − 𝑖 2𝑛−1
𝑖=1 ]. 

Meanwhile, 𝑊2𝑛+3
∗ = (8𝑛 + 1, 𝑃3

∗, 𝑃2𝑛−2
∗ ) and 

 𝑊2𝑛+3
∗∗ = 0 + (4𝑛 + 1, 𝑃3

∗∗, 𝑃2𝑛−2
∗∗ ) are considered 

the wheel graph such that the paths 
{𝑃3

∗, 𝑃2𝑛−2
∗ , 𝑃3

∗∗, 𝑃2𝑛−2
∗∗ } are written as: 

𝑃3
∗ = [2𝑛 + 2, 1, 2𝑛 + 1], 

𝑃2𝑛−2
∗ = [4𝑛, 2𝑛 + 3, 4𝑛 − 1, 2𝑛 + 4,… , 3𝑛

+ 3, 3𝑛, 3𝑛 + 2, 3𝑛 + 1 ] 

= [⋃ 4𝑛 + 1 − 𝑖, 2𝑛 + 2 + 𝑖𝑛−1
𝑖=1 ], 

𝑃3
∗∗ = [10𝑛, 12𝑛 + 1, 10𝑛 + 1], 

𝑃2𝑛−2
∗∗ = [8𝑛 + 2, 10𝑛 − 1, 8𝑛 + 3, 10𝑛 −

2,… , 9𝑛 − 1, 9𝑛 + 2, 9𝑛, 9𝑛 + 1], 

= [⋃ 8𝑛 + 1 + 𝑖, 10𝑛 − 𝑖𝑛−1
𝑖=1 ]. 

In order to prove that 𝒲 = {𝑊5
3𝑛,𝑊4𝑛

2 ,𝑊2𝑛+3
2 } 

is a starter set of cyclic (5∗, (4𝑛)∗, (2𝑛 + 3)∗)-
wheel system of 8K12n+2, the differences list of 𝒲 
will be determined as follows: 

𝐷( 𝒲) = 𝐶𝐷(𝑊𝑖) ∪ 𝐼𝐷(𝑊𝑖),        𝑊𝑖 ∈ 𝒲 

we begin with the cycle differences 𝐶𝐷(𝑊𝑖) as 
follows: 

𝐶𝐷(𝑊𝑖) =

⋃ 𝐷(𝐶4𝑖)
3𝑛
𝑖=1 ⋃ 𝐷(𝐶(4𝑛−1)𝑖)

2
𝑖=1 ⋃ 𝐷(𝐶(2𝑛+2)𝑖)

2
𝑖=1 ,  

Such that  
𝐷(𝐶4𝑖) = 𝐷(𝑐1,𝑖, 𝑐2,𝑖, 𝑐3,𝑖, 𝑐4,𝑖),    1 ≤ 𝑖 ≤ 3𝑛 

= 𝑑(𝑐1,𝑖, 𝑐2,𝑖) ∪ 𝑑(𝑐2,𝑖, 𝑐3,𝑖) ∪ 𝑑(𝑐3,𝑖, 𝑐4,𝑖)

∪ 𝑑(𝑐4,𝑖, 𝑐1,𝑖), 

1 ≤ 𝑖 ≤ 3𝑛, where  

𝑑(𝑐1,𝑖, 𝑐2,𝑖) = {𝑚𝑖𝑛 {| 𝑐2,𝑖 − 𝑐1,𝑖|, 12𝑛 + 2 −

| 𝑐2,𝑖 − 𝑐1,𝑖|}}  

                   = 2𝑖    , 1 ≤ 𝑖 ≤ 3𝑛,       𝑖 ≠ 𝑛+1

2
, 

    = {2, 4, … , 6𝑛} − {𝑛 + 1}. 

𝑑(𝑐2,𝑖, 𝑐3,𝑖) = {𝑚𝑖𝑛 {| 𝑐3,𝑖 − 𝑐2,𝑖|,

12𝑛 + 2 − | 𝑐3,𝑖 − 𝑐2,𝑖|}} 

= 6𝑛 + 1 − 2𝑖, 1 ≤ 𝑖 ≤ 3𝑛,   𝑖 ≠ 𝑛+1

2
, 

= {6𝑛 − 1, 6𝑛 − 3,… , 3, 1} − {5𝑛}, 

𝑑(𝑐3,𝑖, 𝑐4,𝑖) = {𝑚𝑖𝑛 {| 𝑐 4,𝑖 − 𝑐3,𝑖|, 12𝑛 + 2

− | 𝑐4,𝑖 − 𝑐3,𝑖|}} 

=  2𝑖, 1 ≤ 𝑖 ≤      3𝑛, 𝑖 ≠ 𝑛+1

2
, 
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= {2, 4, … , 6𝑛 − 2, 6𝑛} − {𝑛 + 1}, 

𝑑(𝑐4,𝑖, 𝑐1,𝑖) = {𝑚𝑖𝑛 {| 𝑐1,𝑖 − 𝑐4,𝑖|,

12𝑛 + 2 − | 𝑐1,𝑖 − 𝑐4,𝑖|}} 

= 6𝑛 + 1 − 2𝑖,      1 ≤ 𝑖 ≤ 3𝑛,         𝑖 ≠ 𝑛+1

2
, 

= {6𝑛 − 1, 6𝑛 − 3,… , 3, 1} − {5𝑛}. 

when 𝑖 = 𝑛+1

2
 , 𝐷(𝐶4𝑖) = {𝑛 + 1, 6𝑛 + 1, 𝑛 +

1, 6𝑛 + 1}.        

Since {𝐶4𝑛−1∗ , 𝐶4𝑛−1
∗∗ } and {𝐶2𝑛+2∗ , 𝐶2𝑛+2

∗∗ } are 
adjoined (4𝑛 − 1)-cycles and (2𝑛 + 2)-cycles 
respectively, then 𝐷(𝐶4𝑛−1

∗ ) = 𝐷(𝐶4𝑛−1
∗∗ ) and 

𝐷(𝐶2𝑛+2
∗ ), = 𝐷(𝐶2𝑛+2

∗∗ ) based on Lemma 10. Hence, 
it is sufficient to determine the lists of 𝐷(𝐶4𝑛−1∗ ) and 
𝐷(𝐶2𝑛+2

∗ ) as follows: 

𝐷(𝐶4𝑛−1
∗ ) = 𝐷( 4𝑛 + 2, 𝑃4𝑛−2

∗ ) ∪ 𝐷(𝑃4𝑛−2
∗ )  

                    ∪ 𝐷(𝑃4𝑛−2∗ , 4𝑛 + 2)  

𝐷( 4𝑛 + 2, 𝑃4𝑛−2
∗ ) = 𝑑( 4𝑛 + 2, 6𝑛 + 1) =

{2𝑛 − 1}.   

    𝐷(𝑃4𝑛−2
∗ ) = 𝐷(𝑃2(2𝑛−1)

∗ ) 

                     = {
𝑑(𝑎𝑖, 𝑏𝑖),                 1 ≤ 𝑖 ≤ 2𝑛 − 1,

𝑑(𝑎𝑖+1, 𝑏𝑖),             1 ≤ 𝑖 ≤ 2𝑛 − 2,
 

         = {6𝑛 + 1 − 2𝑖,               1 ≤ 𝑖 ≤ 2𝑛 − 1,
6𝑛 − 2𝑖,                       1 ≤ 𝑖 ≤ 2𝑛 − 2,

 

         = {
{6𝑛 − 1, 6𝑛 − 3,… , 2𝑛 + 3},
{6𝑛 − 2, 6𝑛 − 4,… , 2𝑛 + 4}.

 

 𝐷(𝑃4𝑛−2
∗ , 4𝑛 + 2) = 𝑑(2𝑛, 4𝑛 + 2) = {2𝑛 + 2}. 

For simplicity, ∆(𝐶4𝑛−1∗ ) can be written as:  

𝐷(𝐶4𝑛−1
∗ ) = {6𝑛 − 1, 6𝑛 − 2,… ,2𝑛 + 3,2𝑛 + 2} ∪

{2𝑛 − 1}  

Equally, ∆(𝐶2𝑛+2∗ ) is computed as: 

𝐷(𝐶2𝑛+2
∗ ) = 𝐷(8𝑛 + 1, 𝑃3

∗) ∪ 𝐷(𝑃3
∗) ∪

𝐷(𝑃3
∗, 𝑃2𝑛−2

∗ ) ∪                        𝐷(𝑃2𝑛−2
∗ ) ∪

𝐷(𝑃2𝑛−2
∗ , 8𝑛 + 1). 

Such that 

𝐷(8𝑛 + 1, 𝑃3
∗) = 𝑑(8𝑛 + 1, 2𝑛 + 1) = {6𝑛}, 

𝐷(𝑃3
∗) = {2𝑛, 2𝑛 + 1}, 

𝐷(𝑃3
∗, 𝑃2𝑛−2

∗ ) = 𝑑(2𝑛 + 2, 4𝑛) = {2𝑛 − 2}. 

𝐷(𝑃2𝑛−2
∗ ) = 𝐷(𝑃2(𝑛−1)

∗ ) 

= {
𝑑(𝑎𝑖, 𝑏𝑖),                1 ≤ 𝑖 ≤ 𝑛 − 1,       

𝑑(𝑎𝑖+1, 𝑏𝑖),             1 ≤ 𝑖 ≤ 𝑛 − 2,      
 

= {
2𝑛 − 2𝑖 − 1,                   1 ≤ 𝑖 ≤ 𝑛 − 1,
2𝑛 − 2𝑖 − 2,                    1 ≤ 𝑖 ≤ 𝑛 − 2,

 

= {
{2𝑛 − 3, 2𝑛 − 5,… , 3, 1},          
{2𝑛 − 4, 2𝑛 − 6,… , 4, 2}.          

 

𝐷(𝑃2𝑛−2
∗ , 8𝑛 + 1) = 𝑑(9𝑛 + 1, 8𝑛 + 1) = {𝑛}. 

Furthermore, the differences list of 𝐶2𝑛+2∗  can be 
expressed as:  

𝐷(𝐶2𝑛+2
∗ ) = {1, 2, … , 2𝑛 − 3, 2𝑛 − 2} ∪

{𝑛, 2𝑛, 2𝑛 + 1, 6𝑛}. 

In view of the former investigations, it can be 
noticed that the cycle differences of 𝒲, 
𝐶𝐷(𝑊𝑖),   𝑊𝑖 ∈ 𝒲, covers each nonzero integer of 
𝑍6𝑛+1 four times and the middle difference {6𝑛 +
1} occurs twice.  

On the other hand, it is easy to prove that the 
vertex set of cycles associated with the set of wheel 
graphs 𝒲 contains each element in 𝑍12𝑛+2∗  precisely 
twice, then it satisfy a near-four-factor by Lemma 
12. Based on Lemma 13, the internal differences of 
𝒲 covers each element of 𝑍6𝑛+1∗  four times and the 
middle difference {6𝑛 + 1} occurs twice, [20] 

Since wheel graph in 𝒲 has a trivial stabilizer by 
Lemma 14, then the set of wheel graphs is the 
starter set of (5∗, (4𝑛)∗, (2𝑛 + 3)∗)-wheel system of 
8𝐾𝑣 based on Theorem 5. 

Case 3. 𝑛 ≥ 4 is even. 

Consider that 𝒲 = {𝑊5
3𝑛,𝑊4𝑛

2 ,𝑊2𝑛+3
2 } is a set of 

wheels of 8𝐾12𝑛+2. Where the wheels of order 5 
and (4𝑛), {𝑊5

3𝑛,𝑊4𝑛
2 }, are the same wheels that 

mentioned in Case 2 with slightly different in the 
list of wheels of order 5 as follows:   
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𝑊5𝑖 = 0 + (𝑖, 12𝑛 + 2 − 𝑖, 6𝑛 + 1 + 𝑖, 6𝑛 + 1 − 𝑖), 

1 ≤ 𝑖 ≤ 3𝑛,    𝑖 ≠ 5𝑛+4

2
. 

When 𝑖 = 5𝑛+4

2
 , let 

𝑊4𝑖 = 0 + (
5𝑛+4

2
, 6𝑛 + 1 −

5𝑛+4

2
, 12𝑛 + 2 −

5𝑛+4

2
, 6𝑛 + 1 +

5𝑛+4

2
). 

Meanwhile, the wheels of order (2𝑛 + 3) are 
𝑊2𝑛+3

∗ = (8𝑛 + 1, 𝑃3
∗, 𝑃2𝑛−2

∗ ) and 𝑊2𝑛+3
∗∗ =

(4𝑛 + 1, 𝑃3
∗∗, 𝑃2𝑛−2

∗∗ ) in which the paths 
{𝑃3

∗, 𝑃2𝑛−2
∗ , 𝑃3

∗∗, 𝑃2𝑛−2
∗∗ } are represented below:    

𝑃3
∗ = [2𝑛 + 2, 1, 2𝑛 + 1], 

𝑃2𝑛−2
∗ = [8𝑛 + 1, 10𝑛 − 1, 8𝑛 + 2, 10𝑛 − 2,… , 9𝑛

−                 1, 9𝑛 + 1] 

= [⋃ 8𝑛 + 𝑖, 10𝑛 −  𝑖𝑛−1
𝑖=1 ], 

𝑃3
∗∗ = [10𝑛, 12𝑛 + 1, 10𝑛 + 1], 

𝑃2𝑛−2
∗∗ = [4𝑛 + 1, 2𝑛 + 3, 4𝑛, 2𝑛 + 4,… , 3𝑛 +

3, 3𝑛 + 1], 

= [⋃ 4𝑛 + 2 − 𝑖, 2𝑛 + 2 +  𝑖𝑛−1
𝑖=1 ]. 

Similarly, by following the same strategy used Case 
2, it is easy to check that the set of wheel graph 
𝒲 = {𝑊5

3𝑛,𝑊4𝑛
2 ,𝑊2𝑛+3

2 } is a starter of cyclic 
(5∗, (4𝑛)∗, (2𝑛 + 3)∗)-wheel system of 8𝐾12𝑛+2 
when 𝑛 > 2  is an even.                                                                                                 
 

 

4   Cyclic Triple Factorization 
We provide a new idea in this section called cyclic 
triple factorization, which is a kind of cyclic triple 
system. The decomposition of all 𝑍𝑣 triples into 
cyclic triple systems will be based on this novel 
method, [21]. 

Definition 16 A cyclic triple factorization with 
order v, labelled as 𝐶𝑇𝐹(𝑣), involves the 
arrangement of 𝑣 ×  2(𝑣 − 1) triples into 𝑣 rows 
while meeting the specified conditions: 

(i) Object 𝑟 appears precisely 2(𝑣 − 1) times 
in each row 𝑟. 

(ii) Each object except 𝑟 appears four times in 
each row 𝑟. 

(iii) The triples associated with row 𝑟 contains 
no repetitions.  

Note that condition (iii) in Definition 16 means 
that the triples in row 𝑟𝑖, for 0 ≤ 𝑖 < 𝑣 are distinct 
but not in whole 𝑣 × 2(𝑣 − 1) array. The 
construction of cyclic wheel system of 8𝐾𝑣 will be 
employed to prove the existence of a cyclic triple 
factorization of order 12𝑛 + 2 in the following 
theorem. 

Theorem 17 For 𝑛 > 1, there exists a near triple 
factorization of order 𝑣 = 12𝑛 + 2.  

Proof. To construct CTF(12n + 2), we need to have 
12n + 2 rows and 2 (12n + 1) columns based on 
Definition 16. Consider the starter set 𝒲 =

{𝑊5
3𝑛,𝑊4𝑛

2 ,𝑊2𝑛+3
2 } of (5∗, (4𝑛)∗, (2𝑛 + 3)∗)-wheel 

system of 8𝐾12n+2 that constructed in Theorem 15. 
To construct  𝐶𝑇𝐹(12𝑛 + 2), we partition the wheel 
graphs of 𝒲  into separated triangles (triples) by 
combining the centre of each wheel with every edge 
of its cycle. Hence, the number of triples of each 
row is equal to the number of edges of the cycles 
associated with the wheels in 𝒲. Since the cycles 
set associated with the wheel graphs of 𝒲 is  
{𝐶4

2𝑛, 𝐶4𝑛−1
2 , 𝐶2𝑛+2

2 }, then the number of the 
columns is computed as the following formula: 

4 × 3𝑛 + 2 × (4𝑛 − 1) + 2 × (2𝑛 + 2) =

2(12𝑛 + 1). 

Therefore, the center vertex 𝑟 in each row 𝑟, 0 ≤
𝑟 < 𝑣, will appears 2(2𝑛 + 1) times in the 
generated triples while other vertices will appear 
four times since the cycles set satisfies a near-four-
factor. On the other hand, all the triples in each row 
are distinct since there is no edge in 
{𝐶4

2𝑛, 𝐶4𝑛−1
2 , 𝐶2𝑛+2

2 } that it has the same endpoints. 
Then all conditions of 𝐶𝑇𝐹(𝑣) are satisfied for 𝑣 =
12𝑛 + 2.                                                                                                                                                                    

Example 18 Let 𝐺 = 8𝐾26 and 𝒲 =

{𝑊5
6,𝑊8

2,𝑊7
2} be a set of wheel graph of 𝐺 such 

that: 

𝑊51 = 0 + (1, 25, 14, 12), 𝑊52 = 0 +

(2, 24, 15, 11), 

𝑊53 = 0 + (3, 23, 16, 10), 𝑊54 = 0 +

(4, 22, 17, 9),  
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𝑊55 = 0 + (5, 21, 18, 8), 𝑊56 = 0 + (6, 7, 20, 19), 

𝑊8
∗ = 0 + (13, 2, 12, 3, 11, 4, 10), 

𝑊8
∗∗ = 0 + (13, 24, 14, 23, 15, 22, 16), 

𝑊7
∗ = 0 + (6, 1, 5, 17, 19, 18),  

𝑊7
∗∗ = 0 + (20, 25, 21, 9, 7, 8). 

From Lemma 12, 𝒲 = {𝑊5
6,𝑊8

2,𝑊7
2} is a 

starter set of cyclic (5∗, (8)∗, (7)∗)-wheel system 
of 8𝐾26, 𝐶𝑊𝑆(8𝐾26,𝒲)  that generates its wheels 
by adding one modular 26. To construct 𝐶𝑇𝐹(26), 
we partition all wheel graphs of 𝐶𝑊𝑆(8𝐾26,𝒲) 
into separate triangles (triples). Figure 1 shows that 
how the wheel graph 0 + 𝐶41 can be partitioned into 
separate triples. 
 

 

Fig. 1: Partition wheel graph into triples 

Similarly, we can partition the remaining wheels 
of 𝐶𝑊𝑆(8𝐾26,𝒲) into triples in the same way.  
Clearly, it can be noticed that the center 𝑟 of the 
wheels in each row 𝑟, 0 ≤ 𝑟 ≤ 25, of 
𝐶𝑊𝑆(8𝐾26,𝒲) will appear in 50 triples, the 
number of edges of cycles {𝐶46, 𝐶72, 𝐶62} that 
associated with 𝒲, and other vertices appear four 
times since the cycles set satisfies near-four-factor. 
Table 1 (Appendix) shows the construction of 
𝐶𝑇𝐹(26). 

In a 𝜆-fold triple system, denoted as 𝐶𝑇𝑆(𝑣, 𝜆), 
it is important to revisit the definition, wherein it is 
characterized as a pair (𝑉, 𝑇). Here, 𝑉 represents a 
set of 𝑣 elements, and 𝑇 constitutes a collection of 
3-subsets of 𝑉, referred to as triples. Notably, each 
pair of distinct elements from 𝑉 is precisely found 
together in 𝜆 triples within 𝑇. Therefore, no 
collection of triples may be regarded as a 𝐶𝑇𝑆(𝑣, 𝜆). 
Consequently, it is reasonable to inquire if the 𝜆-
fold triple system, 𝐶𝑇𝑆(𝑣, 𝜆), is formed via the 

creation of cyclic triple factorization. We must 
demonstrate that 𝐶𝑇𝐹(𝑣) has a balanced quality, 
namely that each pair of unique elements of v 
belongs to exactly 𝜆 triples, in order to demonstrate 
that 𝐶𝑇𝐹(𝑣) is 𝐶𝑇𝑆(𝑣, 𝜆). The difference set 
approach will be used in this manner. 

Definition 6 and Theorem 7 state that building an 
appropriate triples set 𝒜 is equivalent to the 
presence of a 𝜆-fold cyclic triple system, 𝐶𝑇𝑆(𝑣, 𝜆). 
such that the list of differences D(𝒜) covers every 
nonzero element of Zv+2

2

  exactly λ times except the 

middle difference (v
2
), which occurs (λ

2
) times. 

Theorem 19 For 𝑛 > 1, there exists a 12-fold 
cyclic triple factorization of order 12𝑛 + 2.  

Proof. Let 𝒲 = {𝑊5
3𝑛,𝑊4𝑛

2 ,𝑊2𝑛+3
2 } be the starter 

of (5∗, (4𝑛)∗, (2𝑛 + 3)∗)-wheel system of 8𝐾12𝑛+2 
mentioned in Theorem 15. Then, the list of 
differences: 

𝐷( 𝒲) = 𝐶𝐷(𝑊𝑖) ∪ 𝐼𝐷(𝑊𝑖),𝑊𝑖 ∈ 𝒲 

covers each nonzero integer of 𝑍6𝑛+1 eight times 
and the middle difference four times in which the 
cycle differences (𝐶𝐷(𝑊𝑖)) and the internal 
differences (𝐼𝐷(𝑊𝑖)) have the same list of 
differences. Let 𝒜 be the set of the generated triples 
from partition of the wheels in 𝒲, then the triples of 
𝒜 will be formed by linking every two internal 
edges with an edge that connected them. As shown 
in Figure 1, each internal edge of 𝒲 will appear 
twice in 𝒜 while the edge set of cycles associated 
with 𝒲 will occur once.  Hence, the list of 
differences of 𝒜, 𝐷(𝒜), contains 𝐼𝐷(𝑊𝑖) twice and  
𝐶𝐷(𝑊𝑖) once. Therefore, 𝐷(𝒜) covers each 
nonzero integer of 𝑍6𝑛+1 twelve times and the 
middle difference 6𝑛 + 1 six times. Based on 
Theorem 2.8, the set of triples 𝒜 is the starter of 
cyclic 12-fold triple system of order 𝑣 such that 
satisfies near triple factorization conditions.        
                          
                                                                                                                         

5 Algorithm of Starter Triples of 
𝑪𝑻𝑭 (𝟏𝟐𝒏 + 𝟐) 

In this section, we use the starter cycles of 
𝐶𝑊𝑆(8𝐾12𝑛+2,𝒲) to develop and formulate the 
algorithm of starter triples 𝒜 of 𝐶𝑇𝐹(12𝑛 + 2). 
The process of formulating an algorithm for the 
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starter triples 𝒜 will be split into three cases 
depending on 𝑛. 

Case 1. 𝑛 = 2.  

See Example 4.3, and Table 1 (Appendix). 

Case 2. 𝑛 > 1 is odd. 

The starter of 𝐶𝑇𝐹(12𝑛 + 2) is formed by 
partition the starter set 𝒲 = {𝑊5

3𝑛,𝑊4𝑛
2 ,𝑊2𝑛+3

2 }  of  
(5∗, (4𝑛)∗, (2𝑛 + 3)∗)-wheel system of 8𝐾12𝑛+2. 
Thus, we start with the generated triple from 
partition of wheels of order 5, {𝑊5

3𝑛}, as follows: 

𝑆1 = {
{0,

𝑛+1

2
,
23𝑛+3

2
} , {0,

23𝑛+3

2
,
11𝑛+1

2
} ,

 {0,
11𝑛+1

2
,
13𝑛+3

2
} , {0,

13𝑛+3

2
,
𝑛+1

2
}
}, 

𝑆2 = {{0, 𝑖, 12𝑛 + 2 − 𝑖},                 1 ≤ 𝑖 ≤ 3𝑛, 𝑖 ≠

𝑛+1

2
}, 

𝑆3 = {{0, 12𝑛 + 2 − 𝑖, 6𝑛 + 1 + 𝑖}, 1 ≤ 𝑖 ≤ 3𝑛, 𝑖 ≠

𝑛+1

2
}, 

𝑆4 = {{0, 6𝑛 + 1 − 𝑖, 6𝑛 + 1 + 𝑖}, 1 ≤ 𝑖 ≤ 3𝑛, 𝑖 ≠

𝑛+1

2
}, 

𝑆5 = {{0, 𝑖, 6𝑛 + 1 − 𝑖},                     1 ≤ 𝑖 ≤ 3𝑛, 𝑖 ≠

𝑛+1

2
}. 

Furthermore, the list of generated triples from 
wheels of order 4𝑛, {𝑊4𝑛2 }, could be expressed as 
follows: 

𝑆6 = {{0, 𝑖 + 1, 6𝑛 + 2 − 𝑖},                     1 ≤ 𝑖 ≤

2𝑛 − 1},  

𝑆7 = {{0, 𝑖 + 1, 6𝑛 + 1 − 𝑖},                     1 ≤ 𝑖 ≤

2𝑛 − 2},  

𝑆8 = {{0, 12𝑛 + 1 − 𝑖, 6𝑛 + 𝑖},                1 ≤ 𝑖 ≤

2𝑛 − 1},  

𝑆9 = {{0, 12𝑛 + 1 − 𝑖, 6𝑛 + 1 + 𝑖},        1 ≤ 𝑖 ≤

2𝑛 − 2},  

𝑆10 = {{0, 2𝑛, 4𝑛 + 2}, {0, 4𝑛 + 2, 6𝑛 +

1}, {0, 10𝑛 + 2, 8𝑛}, {0, 8𝑛, 6𝑛 + 1}}.    

Similarly, the produced triples from the wheels 
of order (2𝑛 + 3), {𝑊2𝑛+3

2 } that could be 
represented in the following subsets: 

𝑆11 = {{0, 2𝑛 + 2 + 𝑖, 4𝑛 + 1 − 𝑖},           1 ≤ 𝑖 ≤

𝑛 − 1}, 

𝑆12 = {{0, 2𝑛 + 2 + 𝑖, 4𝑛 − 𝑖},                 1 ≤ 𝑖 ≤

𝑛 − 2}, 

𝑆13 = {{0, 10𝑛 − 𝑖, 8𝑛 + 1 + 𝑖},                1 ≤ 𝑖 ≤

𝑛 − 1}, 

𝑆14 = {{0, 10𝑛 − 𝑖, 8𝑛 + 2 + 𝑖},                1 ≤ 𝑖 ≤

𝑛 − 2}, 𝑆15 = {{0, 3𝑛 + 1, 8𝑛 + 1}, {0, 8𝑛 +
1, 2𝑛 + 1}, {0, 1, 2𝑛 + 1}, {0, 1, 2𝑛 + 2}, {0, 2𝑛 +
2, 4𝑛}, {0, 9𝑛 + 1, 4𝑛 + 1}, {0, 4𝑛 + 1, 10𝑛 +
1}, {0, 12𝑛 + 1, 10𝑛 + 1}, {0, 12𝑛 + 1, 10𝑛},

{0, 10𝑛, 8𝑛 + 2}}. 

For simplicity, we will link the subsets together 
which have a relationship between their triples. As a 
result, the algorithm of the starter triples 𝒜 of 
𝐶𝑇𝐹(12𝑛 + 2), can be formulated as: 

𝒜 = 𝒜1 ∪𝒜2 

Such that: 

{
 
 
 
 
 

 
 
 
 
 
{0, 𝑖, 12𝑛 + 2 − 𝑖},                                  1 ≤ 𝑖 ≤ 6𝑛                                                  

{0, 12𝑛 + 2 − 𝑖, 6𝑛 + 1 + 𝑖},               1 ≤ 𝑖 ≤ 3𝑛, 𝑖𝑓 𝑖 ∉ {
𝑛 + 1

2
}                          

{0, 6𝑛 + 1 − 𝑖, 𝑖},                                    1 ≤ 𝑖 ≤ 3𝑛, 𝑖𝑓 𝑖 ∉ {
𝑛 + 1

2
}                          

{0, 6𝑛 + 2 − 𝑖, 𝑖 + 1},                            1 ≤ 𝑖 ≤ 3𝑛, 𝑖𝑓  𝑖 ∉ {2𝑛, 2𝑛 + 1}            
{0, 6𝑛 + 𝑖, 12𝑛 + 1 − 𝑖},                       1 ≤ 𝑖 ≤ 3𝑛, 𝑖𝑓 𝑖 ∉ {2𝑛, 2𝑛 + 1}             
{0, 6𝑛 + 1 − 𝑖, 𝑖 + 1},                            1 ≤ 𝑖 ≤ 3𝑛 − 1, 𝑖𝑓 𝑖 ∉ {2𝑛 − 1, 2𝑛}     
{0, 6𝑛 + 1 + 𝑖, 12𝑛 + 1 − 𝑖},               1 ≤ 𝑖 ≤ 3𝑛 − 1, 𝑖𝑓  𝑖 ∉ {2𝑛 − 1, 2𝑛}    

 

 

  𝒜2 = {{0,
23𝑛+3

2
,
11𝑛+1

2
} , {0,

13𝑛+3

2
,
𝑛+1

2
} , {0, 4𝑛 +

2, 2𝑛}, {0, 4𝑛 + 2, 6𝑛 + 1}, {0, 8𝑛, 6𝑛 + 1}, 

        {0, 3𝑛 + 1, 8𝑛 + 1}, {0, 8𝑛 + 1, 2𝑛 +
1}, {0, 2𝑛 + 1, 1},{0, 2𝑛 + 1, 1}, {0, 1, 2𝑛 + 2},  

        {0, 9𝑛 + 1, 4𝑛 + 1}, {0, 4𝑛 + 1, 10𝑛 +
1}, {0, 10𝑛 + 1, 12𝑛 + 1} , {0, 12𝑛 + 1, 10𝑛}}. 

Case 3. 𝑛 > 2 is even. 
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By following the same strategy of Case 2, the 
algorithm of starter triples 𝒜 of a 𝐶𝑇𝐹(12𝑛 + 2), 
will be formulated as 𝒜 = 𝒜1 ∪𝒜2 such that 

𝒜1

=

{
 
 
 

 
 
 {0, 𝑖, 12𝑛 + 2 − 𝑖},                                               1 ≤ 𝑖 ≤ 6𝑛, 𝑖𝑓 𝑖 ∉ {

5𝑛 + 4

2
,
7𝑛 − 2

2
}

{0, 12𝑛 + 2 − 𝑖, 6𝑛 + 1 + 𝑖} ∪ {0, 6𝑛 + 1 − 𝑖, 𝑖},                1 ≤ 𝑖 ≤ 3𝑛,           
{0,6𝑛 + 𝑖, 12𝑛 + 1 − 𝑖},                            1 ≤ 𝑖 ≤ 3𝑛 − 1, 𝑖𝑓 𝑖 ∉ {2𝑛, 2𝑛 + 1} 

{0, 6𝑛 + 2 − 𝑖, 𝑖 + 1},                                 1 ≤ 𝑖 ≤ 3𝑛 − 1, 𝑖𝑓 𝑖 ∉ {2𝑛, 2𝑛 + 1}

{0, 6𝑛 + 1 − 𝑖, 𝑖 + 1} ∪ {0, 6𝑛 + 1 + 𝑖, 12𝑛 + 1 − 𝑖},         1 ≤ 𝑖 ≤ 2𝑛 − 2   
{0, 8𝑛 + 𝑖, 10𝑛 − 𝑖} ∪ {0, 4𝑛 + 2 − 𝑖, 2𝑛 + 2 + 𝑖},              1 ≤ 𝑖 ≤ 𝑛 − 1     

 

 

𝒜2 = { {0,
7𝑛−2

2
,
19𝑛

2
} , {0,

17𝑛+6

2
,
5𝑛+4

2
} , {0, 4𝑛 +

2, 2𝑛}, {0, 4𝑛 + 2, 6𝑛 + 1},{0, 8𝑛, 6𝑛 +
1}, {0, 8𝑛, 10𝑛 + 2},  {0, 9𝑛 + 1, 9𝑛}{0, 9𝑛, 2𝑛 +

2}, {0, 2𝑛 + 2, 1}, {0, 1, 2𝑛 + 1}, {0, 2𝑛 + 1, 8𝑛 +

1}, {0, 3𝑛 + 1, 3𝑛 + 2}, {0, 3𝑛 +

2, 10𝑛}, {0, 10𝑛, 12𝑛 + 1}, {0, 12𝑛 + 1, 10𝑛 +

1}, {0, 10𝑛 + 1, 4𝑛 + 1}}.  
 
 

6    Conclusion 
In this paper, we have investigated new 
decomposition of complete multigraph. Especially, 
we have decomposed of 8𝐾𝑣 into wheel graphs for 
𝑣 ≡ 2 (mod 12). We have also defined and proven 
the existence of cyclic triple factorization, 𝐶𝑇𝐹(𝑣), 
for 𝑣 ≡ 2 (mod 12) along with the construction of 
𝐶𝑇𝐹(12𝑛 + 2) has been demonstrated that is a 
cyclic 12-fold triple system. Then, the algorithms of 
the starter triples of 𝐶𝑇𝐹(12𝑛 + 2) have been 
formulated. We expect the construction of 
𝐶𝑇𝐹(12𝑛 + 2) will be simple and can be extended 
it for all even cases, 𝑣 ≡ 0 (mod 2). 
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Table 1. Case 1. 𝑛 = 2. 
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𝑟
= 0 

{0,1,25} {0,25,14} {0,14,12} {0,12,1} ⋯ {0,9,7} {0,7,8} {0,8,20} 

𝑟
= 1 

{1,2,0} {1,0,15} {1,15,13} {1,13,2} ⋯ {1,10,8} {1,8,9} {1,9,21} 

𝑟
= 2 

{2,3,1} {2,1,16} {2,16,14} {2,14,3} ⋯ {2,11,9} {2,9,10} {2,10,22} 

⋮ ⋮ ⋮ ⋮ ⋮ ⋯ ⋮ ⋮ ⋮ 

𝑟
= 25 

{25,0,24} {25,24,13} {25,13,11} {25,11,0} ⋯ {25,8,6} {25,6,7} {25,7,19} 
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