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Abstract: The Riemann method is used to prove the global correctness theorem to Cauchy problem for a general
telegraph equation with variable coefficients under Cauchy conditions on a curved line in the plane. The global cor-
rectness theorem consists of an explicit Riemann formula for a unique and stable classical solution and a Hadamard
correctness criterion for this Cauchy problem. From the formulation of the Cauchy problem, the definition of its
classical solutions and the established smoothness criterion of the right-hand side of the equation, its correctness
criterion is derived. These results are obtained by Lomovtsev’s new implicit characteristics method which uses
only two differential characteristics equations and twelve inversion identities of six implicit mappings. If the right-
hand side of general telegraph equation depends only on one of two independent variables, then it is necessary and
sufficient that it be continuous with respect to this variable. If the right-hand side of this equation depends on two
variables and is continuous, then in its integral smoothness requirements it is necessary and sufficient the continu-
ity in one and continuous differentiability in the other variable. The correctness criterion represents the necessary
and sufficient smoothness requirements of the right-hand side of the equation and the Cauchy data. From the
established global correctness theorem, the well-known Riemann formulas for classical solutions and correctness
criteria to Cauchy problems for the general and model telegraph equations in the upper half-plane are derived. In
the works of other authors, there is no necessary (minimally sufficient) smoothness on the right-hand sides of the
hyperbolic equations of real Cauchy problems for the set of classical (twice continuously differentiable) solutions.
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1 Introduction

In this paper, by modification of the Riemann method
the Cauchy problem for a linear general inhomoge-
neous telegraph equation with variable coefficients
and Cauchy data on a smooth curved line in the plane
has been explicitly solved in a set of classical solu-
tions. In this paper a Hadamard correctness crite-
rion has also been found for this Cauchy problem.
The Hadamard correctness of this Cauchy problem
means the existence, uniqueness and stability on the
right-hand side of the equation and Cauchy data of
its twice continuously differentiable solution. The ex-
plicit Riemann formula of its unique and stable clas-
sical solution is derived and its correctness criterion
is established (Theorem 3). The correctness crite-
rion of the Cauchy problem is the necessary and suffi-
cient smoothness requirements to the right-hand side
of equation and the Cauchy data for existence of a

unique and stable classical (twice continuously dif-
ferentiable) solution. Previously, the necessary and
sufficient smoothness requirements for the right-hand
sides of telegraph equations had been studied. The re-
sulting Hadamard correctness theorem of the Cauchy
problem is global. The concept of global correctness
theorems of linear boundary value problems is intro-
duced in the article, [1]. In it, with the help of Zorn’s
lemma, a theorem on the existence of global correct-
ness theorems is proved: every correctly posed lin-
ear boundary value problem for a partial differential
equation has a global theorem of its correct Hadamard
solvability in the corresponding pair of locally con-
vex topological vector spaces. Global theorems are
called correctness theorems of boundary value prob-
lems with correctness criteria for the existence of a
unique and stable classical (twice continuously differ-
entiable) solutions, i.e. with necessary and sufficient
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conditions for their Hadamard correctness.
In this article, the well-known global correctness

theorems with explicit formulas of classical solutions
and Hadamard correctness criteria for Cauchy prob-
lems for the general telegraph equation (Theorem 8)
and the model telegraph equation (Theorem 11) in the
upper half-plane are derived from the proven global
theorem 3. The Riemann formula of the classical
solution and the Hadamard correctness criterion of
the Cauchy problem for the general telegraph equa-
tion in the upper half-plane are known. The article,
[2], contains an explicit formula for the classical so-
lution and the Hadamard correctness criterion of the
Cauchy problem for a model telegraph equation un-
der the critical characteristic g2(s, τ) = g2(0, 0) of
the first quarter of the plane, where there is no in-
fluence of the boundary mode of the first kind. The
latest results of Theorems 8 and 11 partially confirm
the validity of Theorem 3. In this paper, the general-
ized Cauchy problem for the general telegraph equa-
tion with variable coefficients is solved and studied in
a variety of classical solutions by a new implicit char-
acteristics method, which uses only two characteristic
differential equations and twelve inversion identities
from the definition of six implicit mappings. The re-
sults obtained in this article are needed to derive or-
dinary and Riemann formulas of classical solutions
of mixed problems for model and general telegraph
equations with variable coefficients in rectilinear and
curvilinear domains of the plane (see remark 14).

In the article, [3], il obtained formula allows us
to explicitly express the classical solution, and at zero
initial velocity for the initial displacement, sufficient
smoothness requirements are found to ensure its exis-
tence, uniqueness and continuous dependence on the
parameter λ > 0, the Cauchy problem for a homo-
geneous singular parameter Euler-Poisson-Darboux
wave equation with Dirac potential. The solution to
the Cauchy problem for the general Euler-Poisson-
Darboux equation is unique only for non-negative val-
ues of the parameter k in the Bessel operator with re-
spect to the time variable, [4]. The paper, [5], is de-
voted to the proof of the existence of a conformal scat-
tering operator for a nonlinear cubic wave equation
of defocusing on a nonstationary background. In it,
the proof is based on solving a characteristic problem
with an initial value by the Hermander method, which
consists in reducing the characteristic initial problem
to the standard Cauchy problem by slowing down the
wave propagation velocity. Solutions of the Dalem-
bert formula form of the Cauchy problem for linear
homogeneous partial differential equations with con-
stant coefficients of the third order in paper, [6], are
obtained. Using the solutions obtained, some com-
puter tests were carried out on three different roots.

These tests indicate the dispersion dynamics of waves
with some initial profile.

Using the Lomov regularization method, a reg-
ularized asymptotic solution to the linear singularly
perturbed Cauchy problem in the presence of a spec-
tral singularity in the form of a weak turning point
for the limit operator was constructed in the article,
[7]. The main singularities of this Cauchy problems
are written out explicitly. In paper, [8], an asymp-
totic expansion in powers of a small parameter was
obtained to solve the Cauchy problem for a first-order
differential equation with a small parameter at the
derivative. The conditions under which the boundary
layer phenomenon occurs have been found. The exis-
tence and destruction of weak generalized solutions
of two Cauchy problems for a wave equation with
two nonlinearities is studied, [9]. The Cauchy prob-
lem for a third-order model partial differential equa-
tion with power-law nonlinearity is studied in article,
[10]. For the linear part of the equation, analogues of
Green’s third formula for elliptic equations are con-
structed. An integral equation for classical solutions
of the Cauchy problem is obtained. It is proved that
every solution of the integral equation is a local-in-
time weak solution of the Cauchy problem.

A global correctness theorem (with necessary and
sufficient conditions for the coefficients of differen-
tial operators) of the Cauchy problem for linear com-
plex systems of first-order differential equations in the
scales of Banach spaces of complex-valued vector-
exponential functions with an integral metric was ob-
tained in journal, [11]. It turned out that the neces-
sary and sufficient conditions for the correctness of
his complex Cauchy problem in spaces of complex
functions with integral metrics and in spaces of com-
plex functions of vector-exponential type with supre-
mum norms from the monograph, [12], coincide. It is
proved the existence of local solution, global solution
and three conditions about the blow-up of solution to
the generalized damped Boussinesq equation, [13].

There are no global correctness theorems with
Hadamard correctness criteria for initial data and
right-hand sides of hyperbolic equations in real
Cauchy problems for classical solutions in the works
of other authors. In famous works, [3], [4], [5], [6],
[14], [15], [16], [17], [18], [19], and some others
there are theorems of existence, uniqueness and sta-
bility of classical solutions of real Cauchy problems
with their D’alembert, Riemann and others formulas
in some of them, but only if the right-hand sides of
hyperbolic equations have an overestimated sufficient
smoothness. In these works the right-hand sides of
the wave equations do not have a necessary (minimum
sufficient) smoothness. The minimum possible neces-
sary and sufficient smoothness of the right-hand side
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of the general telegraph equation, respectively, is ex-
pressed by fundamentally new smoothness conditions
(8) and (32), which are absent in the works of other
authors.

Remark 1 For example, in theorem 2.1 of the work,
[20], with condition (32) on page 26 the replacement
of integration variables on page 27 proves the ne-
cessity and sufficiency of only the continuity of the
right-hand side f of the string oscillation equation
for the doubly continuous differentiability of solution
to the Cauchy problem when the function f depends
only on the coordinates of the string points or time.
If f depends on the coordinates of the string points
x and time t, then in, [20], on page 52 there is an
example of a continuous function f(x, t) = 0 for
x ∈ [0,+∞), t ∈ [0, 1) and f(x, t) = x(t − 1) for
x ∈ [0,+∞), t ∈ [1,+∞) that satisfies conditions
(32) with a discontinuous time derivative ∂f(x, t)/∂t.

In our article, the same is also stated in Corollar-
ies 5, 9, 12 and 6, 10, 13, respectively.

2 Statement of the generalized
Cauchy problem

Solve the Cauchy problem for a general telegraph
equation with real variable coefficients under Cauchy
conditions on the curve l in the plane IR2:

Lu(x, t) ≡ utt(x, t)− a2(x, t)uxx(x, t)+

+b(x, t)ut(x, t) + c(x, t)ux(x, t)+

+ q(x, t)u(x, t) = f(x, t), (x, t) ∈ IR2\l, (1)

u|l = ϕ(x), u~n|l =
∂u

∂~n

∣∣∣
l

= ψ(x), ~n(x, t)⊥l, (2)

where the coefficients of the equation a, b, c, q are
real functions and the input data of the problem
f, ϕ, ψ are the given real functions of their inde-
pendent variables x and t, (∂u/∂~n)|l is the deriva-
tive of the normal to the curve l of the equation t =
χ(x), x ∈ IR, IR = (−∞,+∞). Without excluding
the generality of the Cauchy problem in the plane IR2,
we study in detail this Cauchy problem (1), (2) only in
part of the plane G = {(x, t) ∈ IR2 : t ≥ χ(x), x ∈
IR} (see after the remark 4). By the number of sub-
scripts of functions, we denote the orders of their par-
tial derivatives.

Let Ck(Ω) be the set of k times continuously dif-
ferentiable functions on a subset Ω ⊂ IR2, C(Ω) be
the set of continuous functions on a subset Ω ⊂ IR2.

By the number of strokes over the functions of one
variable, we denote the orders of their ordinary deriva-
tives with respect to this variable.

Definition 1 Classical solutions of the Cauchy
problem (1), (2) onG are called functions u ∈ C2(G),

satisfying equation (1) on Ġ = {(x, t) ∈ IR2 : t >
χ(x), x ∈ IR} in the usual sense, and the Cauchy
conditions (2) in the sense of the values of the limits
of the functions u(ẋ, ṫ) and u~n(ẋ, ṫ) at internal points
(ẋ, ṫ) ∈ Ġ when ẋ→ x and ṫ→ t = χ(x).

Equation (1) has characteristic differential equa-
tions

dx = (−1)ia(x, t)dt, i = 1, 2, (3)

which inG correspond to two different families of im-
plicit characteristics

gi(x, t) = Ci, Ci ∈ IR, i = 1, 2. (4)

If the coefficient a(x, t) ≥ a0 > 0, (x, t) ∈ G,
then the characteristics g1(x, t) = C1, C1 ∈ IR, are
strictly decreasing, and the characteristics g2(x, t) =
C2, C2 ∈ IR, strictly increase with respect to the vari-
able x on the set G of the plane Oxt, since by virtue
of equations (3) the derivative dx/dt = −a(x, t) ≤
−a0 < 0 for i = 1 and dx/dt = a(x, t) ≥ a0 > 0 for
i = 2. Therefore, implicit functions yi = gi(x, t), t ≥
χ(x), x ∈ IR, have explicit strictly monotone in-
verse functions x = hi{yi, t}, t ≥ χ(x), and t =

h(i)[x, yi], x ∈ IR, i = 1, 2, for which, by definition
of inverse functions, the following conversion identi-
ties from the article, [2], are fulfilled:

gi(hi{yi, t}, t) = yi, t ≥ χ(x),

hi{gi(x, t), t} = x, x ∈ IR, i = 1, 2, (5)

gi(x, h
(i)[x, yi]) = yi x ∈ IR,

h(i)[x, gi(x, t)] = t, t ≥ χ(x), i = 1, 2, (6)

hi{yi, h(i)[x, yi]} = x, x ∈ IR,

h(i)[hi{yi, t}, yi] = t, t ≥ χ(x), i = 1, 2. (7)

If the function a ∈ C2(G), then the implicit func-
tions gi, hi, h(i) ∈ C2(G) by x, t, yi, i = 1, 2, [2].

The Cauchy problem (1), (2) is studied in a set of
classical solutions by Lomovtsev’s new implicit char-
acteristics method, which uses only differential equa-
tions (3) and conversion identities (5)–(7).
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Remark 2 In the case of a(x, t) = a = const >
0, (x, t) ∈ G, they are functions: g1(x, t) = x + at,
g2(x, t) = x − at, h1{y1, t} = y1 − at, h2{y2, t} =

y2 + at, h(1)[x, y1] = (y1 − x)/a, h(2)[x, y2] = (x−
y2)/a, [20].

For unique solvability of the Cauchy problem, the
curve l must be expressed by some, at least, con-
tinuously differentiable function on plane and sat-
isfy natural requirement that characteristics gi(x, t) =
Ci, Ci ∈ IR, i = 1, 2, of equation (1) were not tan-
gent to curve l and could intersect l no more than once.

3 The Riemann formula for the clas-
sical solution of the generalized
Cauchy problem

If the carrier l of the Cauchy data ϕ, ψ is given by the
equation t = χ(x), where χ ∈ C2(IR), then the Rie-
mann formula for the classical solution of this Cauchy
problem contains the following

Theorem 3 Let the coefficients are a(x, t) ≥ a0 >
0, ∈ G, a ∈ C2(G), b, c, q ∈ C1(G), and each of the
characteristics gi(x, t) = Ci, i = 1, 2, is not tangent
to curve l of smoothness χ ∈ C2(IR) and intersects l
at most once. There is a unique and stable on f, ϕ, ψ
classical solution u ∈ C2(G) of the Cauchy problem
(1), (2) if and only if the input data has smoothness
f ∈ C(G), ϕ ∈ C2(IR), ψ ∈ C1(IR) and

Hi(x, t) ≡
t+χ(x)∫
χ(s0)

f(hi{gi(x, t), τ}, τ) dτ ∈ C1(G)

∀ (s0, χ(s0)) ∈ l, i = 1, 2. (8)

The classical solution u ∈ C2(G) to the Cauchy
problem (1), (2) for (x, t) ∈ G is the function

u(x, t) =
(a u v)

(
s1(x, t), χ(s1(x, t))

)
2a(x, t)

+

+
(a u v)

(
s2(x, t), χ(s2(x, t))

)
2a(x, t)

+

+
1

2a(x, t)

s1(x,t)∫
s2(x,t)

{[
ψ(s)

(
1− χ′2(s)a2(s, χ(s))

)
+

+χ′(s)ϕ′(s)
(
1 + a2(s, χ(s))

) ] v(s, χ(s))√
1 + χ′(s)2

−

−ϕ(s)

[
vτ (s, τ)|τ=χ(s) − b(s, χ(s))v(s, χ(s)) +

+χ′(s)
(
(a2(s, τ)v(s, τ))s|τ=χ(s)+

+c(s, χ(s))v(s, χ(s))
)]}

ds+

+
1

2a(x, t)

∫
4MPQ

f(s, τ)v(s, τ ; x, t) ds dτ. (9)

It is here u
(
si(x, t), χ(si(x, t))

)
= ϕ(si(x, t)), i =

1, 2, due to Cauchy conditions (2), si ∈ C2(G) are
solutions of equations gi(si, χ(si)) = gi(x, t), i =
1, 2, triangle MPQ is a curved characteris-
tic triangle with vertex M(x, t) and vertices
P
(
s2(x, t), χ(s2(x, t))

)
, Q
(
s1(x, t), χ(s1(x, t))

)
of

its curved base PQ and v(s, τ) = v(s, τ ;x, t) is a
corresponding Riemann function.

Proof. First, we derive the formula for the formal
solution of the Cauchy problem. Equation (1) for any
functions u ∈ C2(G) multiply by any functions v ∈
C2(G) and using obvious equalities

utt v = (ut v)t − ut vt =

= (ut v)t − (u vt)t + u vtt,

a2uxx v = (ux a
2v)x − ux (a2v)x =

= (ux a
2v)x − (u (a2v)x)x + u (a2v)xx,

but v = (ubv)t − u (bv)t,

cux v = (ucv)x − u (cv)x

we come to the identity

(Lu(x, t)) v(x, t)− u(x, t) (M v(x, t)) =

=
∂H(u(x, t), v(x, t))

∂t
+
∂K(u(x, t), v(x, t))

∂x
(10)

for all u, v ∈ C2(G). It is here

M v = vtt − (a2v)xx − (bv)t − (cv)x + qv,

H(u, v) = ut v − u vt + buv =

= (uv)t − u[2vt − bv], (11)

K(u, v) = −ux a2v + u (a2v)x + cuv =

= −(a2uv)x + u[2(a2v)x + cv]. (12)
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Figure 1: Curvilinear characteristic triangle 4MPQ
in IR2.

The differential operator M, which is the conjugate
operator to the differential operator L in the sense of
Schwartz distributions D′(Ġ), [21], is usually called
the formally conjugate operator to the operator L. In
view of the well-known Green formula, the double in-
tegral of the identity (10) over the curved characteris-
tic triangle 4MPQ in G with any vertex M(x, t) ∈
G and the vertices of its base P (s2(x, t), χ(s2(x, t)))
and Q(s1(x, t), χ(s1(x, t))) on the curve l is equal to∫

4MPQ

[(Lu(s, τ)) v(s, τ)−

−u(s, τ) (Mv(s, τ))]ds dτ =

=

∫
4MPQ

[
∂H(u(s, τ), v(s, τ))

∂τ
+

+
∂K(u(s, τ), v(s, τ))

∂s

]
ds dτ =

=

∫
l+

[K(u(s, τ), v(s, τ))dτ−

−H(u(s, τ), v(s, τ))ds], (13)

where l+ = QM ∪ MP ∪ PQ is the contour of a
curved triangle4MPQ with a positive bypass direc-
tion, due to the right orientation of the plane Osτ in
Fig. 1.

Since the curve l is given by the equation τ =
χ(s) ∈ C2(IR) on the planeOsτ , then the coordinates
of the points P (s2, τ2) and Q(s1, τ1) are solutions of
equation systems:

gi(si, τi) = gi(x, t),

τi = χ(si), i = 1, 2.

Each of these two systems of equations has at
most one solution, since, according to the assump-
tions of Theorem 3, the strictly monotone charac-
teristics gi(x, t) = Ci, Ci ∈ IR, i = 1, 2, inter-
sect the curve l no more than once. Solutions of
these equation systems are solutions of implicit equa-
tions si = hi{gi(x, t), τi} = hi{gi(x, t), χ(si)}, i =
1, 2. This means that the functions si = si(x, t) ∈
C2(G), i = 1, 2, depend only on the coordinates
of the point M(x, t). Therefore, the coordinates of
the vertices Q and P of the base of the triangle
4MPQ are expressed as Q

(
s1(x, t), χ(s1(x, t))

)
and P

(
s2(x, t), χ(s2(x, t))

)
.

In the curvilinear integral (13) using expressions
(11) and (12), the differential equation of the charac-
teristic from (3) for i = 1 and the obvious equalities

(u v)τa = (a u v)τ − aτu v,

(a2u v)s(1/a) = (a u v)s − a2uv(1/a)s =

= (a u v)s + asu v,

we calculate the integral along the characteristic QM
of the equation g1(s, τ) = g1(x, t):

M∫
Q

[K(u(s, τ), v(s, τ))dτ −H(u(s, τ), v(s, τ))ds] =

=

M∫
Q

[(a2u v)s(1/a) ds+ (u v)τ a dτ ]+

+

M∫
Q

(
u[2(a2v)s + cv]dτ + u[2vτ − bv] ds

)
=

=

M∫
Q

d(a u v) +

M∫
Q

(
u[2(a2v)s+

+(c− aτ )v]dτ + u [2vτ + (as − b)v] ds

)
=

=

M∫
Q

d(a u v) +

M∫
Q

(
u[2(a2v)s + (c− aτ )v]−

−au [2vτ + (as − b)v]

)
dτ =

=

M∫
Q

d(a u v)+
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+

M∫
Q

u{4aas v + 2a2vs + (c− aτ )v−

−2avτ − (as − b)av} dτ =

=

M∫
Q

d(a u v) +

M∫
Q

u{ − 4avτ+

+[4aas + (c− aτ )− (as − b)a]v} dτ =

= (a u v)(M)− (a u v)(Q)−
t∫

χ(s1(x,t))

u{4a vτ − [ab− 4aτ + c]v} dτ =

= (a u v)(x, t)− (a u v)
(
s1(x, t), χ(s1(x, t))

)
−

−
t∫

χ(s1(x,t))

u(s, τ){4a(s, τ) vτ (s, τ)−[a(s, τ)b(s, τ)−

−4aτ (s, τ) + c(s, τ)]v(s, τ)} dτ. (14)

Here on the characteristic QM for i = 1, we
used the well-known differential equation (3) of the
implicit characteristics from (4) and for the functions
w ∈ C1(G) a new representation from

ws(s, τ) = (−1)iwτ (s, τ)/a(s, τ), i = 1, 2. (15)

Since on each of the characteristics QM and MP
variables s = s(τ), τ = τ(s) are simultaneously
mutually dependent, that is, respectively for i = 1
and i = 2 variables s = hi{gi(x, t), τ} and τ =

h(i)[s, gi(x, t)], according to the inversion formula
(5)–(7), then these representations follow from the ob-
vious formulas of the first partial derivatives

ws (s, τ(s)) =

= ws (s, τ) |τ=τ(s) + wτ (s, τ) |τ=τ(s)τ ′(s) =

= ws (s, τ) |τ=τ(s) + (−1)iwτ (s, τ) |τ=τ(s)/a(s, τ),

wτ (s(τ), τ) =

= wτ (s, τ) |s=s(τ) + ws (s, τ) |s=s(τ)s′(τ) =

= wτ (s, τ) |s=s(τ) + (−1)iws (s, τ) |s=s(τ)a(s, τ)

since τ ′(s) = (−1)i/a(s, τ), s′(τ) = (−1)ia(s, τ),
i = 1, 2, also due to the formulas (4).

In the previous equation from (14), to reduce a
curved integral of the second type along the charac-
teristic QM to an ordinary definite integral, we ap-
plied the parametric representation of the curve QM :

s = s1(τ) = h1{g1(x, t), τ}, τ ′ = τ, χ(s1) ≤ τ ≤ t,
and the differential equation from (3) for i = 1. Using
the inversion identities (5) – (7), we conclude that if
integration occurs over the variable s, then the vari-
able τ = h(1)[s, g1(x, t)], and if by the variable τ ,
then the variable s = h1{g1(x, t), τ}.

Using the characteristic differential equation from
(3) for i = 2, we similarly calculate the integral
(13) along the characteristic MP with the equation
g2(s, τ) = g2(x, t) :

P∫
M

[K(u(s, τ), v(s, τ))dτ −H(u(s, τ), v(s, τ))ds] =

= −
P∫

M

[(u v)τ a dτ + (a2u v)s(1/a) ds]+

+

P∫
M

(
u[2vτ − bv] ds+ u[2(a2v)s + cv]dτ

)
=

= −
P∫

M

d(a u v) +

P∫
M

(
u [2vτ−

−(as + b)v] ds+ u[2(a2v)s + (c+ aτ )v]dτ

)
=

= (a u v)(M)− (a u v)(P )−

−
t∫

χ(s2(x,t))

u{4a vτ − [ab− 4aτ − c]v} dτ =

= (a u v)(x, t)− (a u v)
(
s2(x, t), χ(s2(x, t))

)
−

−
t∫

χ(s2(x,t))

u{4a(s, τ) vτ (s, τ)− [a(s, τ)b(s, τ)−

−4aτ (s, τ)− c(s, τ)]v(s, τ)} dτ. (16)

In the previous equation from (16), to reduce a
curved integral of the second type along the character-
istic MP to an ordinary definite integral, we applied
the parametric representation of the curve MP : s =
s2(τ) = h2{g2(x, t), τ}, τ ′ = τ, χ(s2(x, t)) ≤ τ ≤
t. In this previous equation, we also applied the differ-
ential equation from (3) and the above partial deriva-
tive representations from (15) for i = 2. In all ex-
pressions under the integral sign, all functions of two
variables depend on s, τ . Moreover, using formulas
(5)–(7), we conclude that if the integration occurs with
the variable s, then the variable τ = h(2)[s, g2(x, t)],
and if with τ , then s = h2{g2(x, t), τ}.
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Let the function v(s, τ) = v(s, τ ;x, t) with pa-
rameters (x, t) be a classical solution of a homoge-
neous formally conjugate differential equation

M v(s, τ) = 0, (s, τ) ∈ ∆MPQ (17)

with conditions, respectively, on the characteristics of
QM and MP

4a(s, τ)vτ (s, τ)− [a(s, τ)b(s, τ)−

−4aτ (s, τ) + c(s, τ)]v(s, τ) = 0,

4a(s, τ)vτ (s, τ)− [a(s, τ)b(s, τ)−

−4aτ (s, τ)− c(s, τ)]v(s, τ) = 0 (18)

in integrals (14) and (16) and the matching condition

v(M) = 1 (19)

The conditions (18), (19) are obviously equivalent to
the two agreed Goursat conditions

v(s, τ) = exp

{ τ∫
t

k1(h1{g1(x, t), ρ}, ρ) dρ

}
,

g1(s, τ) = g1(x, t), τ ∈ [χ(s1(x, t)), t],

v(s, τ) = exp

{ τ∫
t

k2(h2{g2(x, t), ρ}, ρ) dρ

}
,

g2(s, τ) = g2(x, t), τ ∈ [χ(s2(x, t)), t], (20)

where the functions k1(s, τ) = {a(s, τ)b(s, τ) −
4aτ (s, τ) + c(s, τ)}/4a(s, τ) on the curve QM
and k2(s, τ) = {a(s, τ)b(s, τ) − 4aτ (s, τ) −
c(s, τ)}/4a(s, τ) on the curve MP. It is well known
that the Goursat problem (17), (20) with coefficients
a ∈ C2(G), b, c, q ∈ C1(G) has a unique classical
solution v ∈ C2(∆MPQ), which is naturally called
the Riemann function of the Cauchy problem (1), (2)
on G. In the general case, the Riemann function is
uniquely found by the method of successive approxi-
mations, [19], p. 129–135.

According to the Cauchy conditions (2), the
values of the solution at the base vertices of
the triangle are known: u

(
si(x, t), χ(si(x, t))

)
=

ϕ(si(x, t)), i = 1, 2. In formulas (13) we assume
Lu(s, τ) = f(s, τ), M v(s, τ) = 0 on the triangle
∆MPQ and in by virtue of the relations (17)–(20)
and the equalities (14), (16) we obtain a formal solu-
tion of the Cauchy problem (1), (2) for all (x, t) ∈ G :

u(x, t) =
(a u v)

(
s1(x, t), χ(s1(x, t))

)
2a(x, t)

+

+
(a u v)

(
s2(x, t), χ(s2(x, t))

)
2a(x, t)

+

+
1

2a(x, t)

Q∫
P

[H(u(s, τ), v(s, τ)) ds−

−K(u(s, τ), v(s, τ))dτ ]+

+
1

2a(x, t)

∫
4MPQ

f(s, τ)v(s, τ ;x, t) ds dτ. (21)

If ~e is a tangent vector to the curve l, then from
(2) the derivative u~e|l = ∂u/∂~e|l = ϕ′(x) and the
first partial derivatives from u are calculated by the
formulas from, [19], p. 139:

us|l = u~e|l cos(~e, s) + u~n|l cos(~n, s) =

=
ϕ′(s)− χ′(s)ψ(s)√

1 + χ′(s)2
, (22)

uτ |l = u~e|l cos(~e, τ) + u~n|l cos(~n, τ) =

=
ϕ′(s)χ′(s) + ψ(s)√

1 + χ′(s)2
(23)

Substituting partial derivatives (22), (22) in (11), (12)
and under a curved integral of the second type along
the curve PQ in (21) and considering dτ = χ′(s)ds,
we find

Q∫
P

[H(u(s, τ), v(s, τ))ds−K(u(s, τ), v(s, τ))dτ ] =

=

s1(x,t)∫
s2(x,t)

{[
uτ (s, τ)|τ=χ(s) v(s, χ(s))−

−u(s, χ(s)) vτ (s, τ)|τ=χ(s)+

+b(s, χ(s))u(s, χ(s))v(s, χ(s))
]
ds+

+
[
us(s, τ)|τ=χ(s) a2(s, χ(s))v(s, χ(s))−

−u(s, χ(s)) (a2(s, τ)v(s, τ))s|τ=χ(s)−

−c(s, χ(s))u(s, χ(s))v(s, χ(s))
]
χ′(s)ds

}
=

=

s1(x,t)∫
s2(x,t)

{
ϕ′(s)χ′(s) + ψ(s)√

1 + χ′(s)2
v(s, χ(s))−

−u(s, χ(s)) vτ (s, τ)|τ=χ(s)+
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+b(s, χ(s))u(s, χ(s))v(s, χ(s))+

+
ϕ′(s)− χ′(s)ψ(s)√

1 + χ′(s)2
×

× a2(s, χ(s))v(s, χ(s))χ′(s)−

−u(s, χ(s)) (a2(s, τ)v(s, τ))s|τ=χ(s)χ′(s)−

−c(s, χ(s))u(s, χ(s))v(s, χ(s))χ′(s)

}
ds =

=

s1(x,t)∫
s2(x,t)

{
ϕ′(s)χ′(s) + ψ(s)√

1 + χ′(s)2
v(s, χ(s))−

−ϕ(s) vτ (s, τ)|τ=χ(s)+

+b(s, χ(s))ϕ(s)v(s, χ(s))+

+
ϕ′(s)− χ′(s)ψ(s)√

1 + χ′(s)2
×

× a2(s, χ(s))v(s, χ(s))χ′(s)−

−ϕ(s) (a2(s, τ)v(s, τ))s|τ=χ(s)χ′(s)−

−c(s, χ(s))ϕ(s)v(s, χ(s))χ′(s)

}
ds =

=

s1(x,t)∫
s2(x,t)

{[
ψ(s)

(
1− χ′2(s)a2(s, χ(s))

)
+

+χ′(s)ϕ′(s)
(
1 + a2(s, χ(s))

) ] v(s, χ(s))√
1 + χ′(s)2

−

−ϕ(s)

[
vτ (s, τ)|τ=χ(s) − b(s, χ(s))v(s, χ(s))+

+χ′(s)
(
(a2(s, τ)v(s, τ))s|τ=χ(s)+

+c(s, χ(s))v(s, χ(s))
)]}

ds =

=

s1(x,t)∫
s2(x,t)

{[
ψ(s)

(
1− χ′2(s)a2(s, χ(s))

)
+

+χ′(s)ϕ′(s)
(
1 + a2(s, χ(s))

) ] v(s, χ(s))√
1 + χ′2(s)

−

−ϕ(s)

[
vτ (s, τ)|τ=χ(s)+

+χ′(s)a2(s, χ(s))vs(s, τ)|τ=χ(s)+

+
(
χ′(s)(c(s, χ(s))+

+2a(s, χ(s))as(s, τ)|τ=χ(s))−

−b(s, χ(s))
)
v(s, χ(s))

]}
ds. (24)

We substitute the expression (24) into the formula
(21). As a result, the final formula for the formal solu-
tion of the Cauchy problem (1), (2) on the set G takes
the form (9).

Now we justify the necessity and sufficiency of
the smoothness for the right-hand side of the equa-
tion indicated in Theorem 3 and the initial data for
the doubly continuous differentiability of the func-
tion (9) on G. Directly from the telegraph equation
(1), Cauchy conditions (2) and definition 1 of clas-
sical solutions u ∈ C2(G) of this Cauchy problem
implies the need for smoothness of the input data
f ∈ C(G), ϕ ∈ C2(IR), ψ ∈ C1(IR). With the Rie-
mann function v ∈ C2(G) smoothness of the initial
data ϕ ∈ C2(IR), ψ ∈ C1(IR) is obviously sufficient
for twice continuous differentiability on G of the first
term and the curvilinear integral of the function (9) on
G. In the plane of Osτ by replacing variables

s̃ = s, τ̃ = τ − χ(s) (25)

with a non-degenerate Jacobian J(s, τ) = s̃′sτ̃
′
τ −

s̃′τ τ̃
′
s = 1 6= 0 characteristic triangle 4MPQ

with curved base PQ from Fig. 1 is reduced
to the corresponding characteristic triangle 4M̃P̃ Q̃

with vertex M̃(x, t), vertices P̃ (h̃2{g̃2(x, t), 0}, 0),

Q̃(h̃1{g̃1(x, t), 0}, 0) of rectilinear base P̃ Q̃ with the
equation τ̃ = 0, where the functions h̃i, g̃i are found
by replacing (25) from our functions hi, gi, i = 1, 2.

The double integral of the triangle4MPQ from
(9) after replacing (25) becomes the corresponding
double integral of the triangle 4M̃P̃ Q̃. These tri-
angles are simultaneously twice continuously differ-
entiable by x, t, since for χ ∈ C2(IR) replacement
(25) is non-degenerate and twice continuously differ-
entiable on G.

Moreover, this triangle 4M̃P̃ Q̃ even has the
form of a triangle from Fig. 2, because the transfor-
mation (25) preserves the first variable s and has the
type of rotation by the second variable τ.

Therefore, additional to the image f̃ ∈ C(G̃) of
the right-hand side f after the change (25), the neces-
sary and sufficient requirements

H̃i(x, t) ≡
t∫

0

f̃(h̃i{g̃i(x, t), τ̃}, τ̃) dτ̃ ∈ C1(G̃),

i = 1, 2, (26)

after the reverse to (25) replacement of variables (see
below (32))

s = s̃, τ = τ̃ + χ(s̃) (27)
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Figure 2: Characteristic triangle4M̃P̃ Q̃ in IR2.

become additional to f ∈ C(G) necessary and suffi-
cient smoothness requirements (8) on the double inte-
gral of (9) in Theorem 3.

If in the reverse substitution (27) the variable
τ̃ = 0, then the variable τ = χ(s̃) = χ(s) for all
points (s, χ(s)) ∈ l of the curve in the lower limits of
integrals (8). If in (27) the variable τ̃ = t, then the
variable τ = t + χ(s̃) = t + χ(x) in the upper limits
of integrals (27), since s̃ = s = x. Indeed, if in a tri-
angle4MPQ the second coordinate is τ = t, then it
is obvious that the first coordinate must necessarily be
s = x. This is also the second inversion identities (5)
confirms when one variable τ = t, then the other vari-
able s = hi{gi(x, t), τ} = hi{gi(x, t), t} = x and
vice versa. In integrals (26), the Jacobian of the in-
verse substitution to (25) is J̃(s̃, τ̃) = s′s̃τ

′
τ̃−s′τ̃τ ′s̃ = 1

and the upper half-plane G̃ is the image of the task set
G of the Cauchy problem (1), (2) after replacement
(25).

The uniqueness of the classical solution (9) of the
Cauchy problem (1), (2) can be justified in the same
way as in the textbook, [19], p. 139. Its stability with
respect to f, ϕ, ψ ensures the established existence
and uniqueness of the classical solution (9) by Ba-
nach’s closed graph theorem or Banach’s open map-
ping theorem. To conclude the proof of Theorem 3,
we say that stability also follows from the formula (9).

Remark 4 The Riemann formula for the classical so-
lution of the Cauchy problem (1), (2) on G with the
coefficient a(x, t) ≡ 1 is given in, [19], p. 139.

For the lower half-plane IR2\G in (13) the ori-
entation of the contour l+ of the characteristic tri-
angle 4MPQ, does not change if, as before, at the
points P and Q respectively intersect the characteris-
tics g2(s, τ) = g2(x, t) and g1(s, τ) = g1(x, t) with
the curve l, since the points P and Q are swapped in
IR2\G. Thus, the unique and stable classical solution
of the Cauchy problem (1), (2) on the lower half-plane
IR2\G is also given by the formula (9).

Corollary 5 If the right-hand side f of the equa-
tion (1) depends only on x or t and is continuous
f ∈ C(IR), then Theorem 3 is true without smooth-
ness requirements (8).

Proof. It is easier to verify the continuous dif-
ferentiability of the integrals from (26) on G̃, which
is equivalent to the continuous differentiability of the
integrals from (8) onG. If the function f̃ = f̃(τ̃) does
not depend on s̃, then the integrals from (26) are equal
to the integral

H̃i(t) ≡
t∫

0

f̃(τ̃) dτ̃ , i = 1, 2, (28)

which is continuously differentiable with respect
to t for continuous functions f̃ , since the first deriva-
tive ∂H̃i(t)/∂t = f̃(t) is continuous. If the func-
tion f̃ = f̃(s̃) does not depend on τ̃ , then inte-
grals from (26) after change of integration variables
s̃i = h̃i{g̃i(x, t), τ̃}, i = 1, 2, are equal to integrals

H̃i(x, t) ≡
t∫

0

f̃(h̃i{g̃i(x, t), τ̃}) dτ̃ =

=

t∫
h̃i{g̃i(x,t),0}

f̃(s̃i)

(∂h̃i{g̃i(x, t), τ̃}/∂τ̃)

∣∣∣
τ̃=h̃(i)[g̃i(x,t),τ̃ ]

ds̃i

∈ C1(G̃), i = 1, 2. (29)

Here the functions H̃i(x, t), i = 1, 2, are indeed
continuously differentiable with respect to x and t for
a continuous function f̃ = f̃(s̃), because in the last in-
tegrals, it is explicitly independent of variables x and
t. Corollary 5 is proved.

Corollary 6 If the right-hand side f of the equation
(1) depends on x and t, then in Theorem 3 the in-
tegrals (8) belong to the set C1(G) is equivalent to
their belonging to the set C(0,1)(G) or C(1,0)(G). The
setsC(0,1)(G) andC(1,0)(G) are sets of continuous or
continuously differentiable with respect to x and con-
tinuously differentiable or continuous with respect to
t functions on G.

Proof. Firstly for smoother functions f̃ ∈
C1(G̃), by changing the integration variables, we de-
rive special equalities for the first partial derivatives
of the integrals (26), which are equivalent to the in-
tegrals (8). Then the equalities of their first and last
parts, which do not contain explicit derivatives of the
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functions f̃ ∈ C1(G̃). are extended by passing to the
limit along f̃ from smoother functions f̃ ∈ C1(G̃)

to continuous functions f̃ ∈ C(G̃), satisfying the in-
tegral smoothness requirements (26). Corollary 6 is
proved.

We apply the derived Riemann formula of the
classical solution and the correctness criterion of the
Cauchy problem (1), (2) on G in global theorem 3 to
its two important special cases, which partially con-
firm the validity of the results obtained.

4 The Cauchy problem for the gen-
eral telegraph equation in the up-
per half-plane

A special case of the Cauchy problem (1), (2) in the
plane is the following Cauchy problem in the upper
half-plane:

utt(x, t)− a2(x, t)uxx(x, t) + b(x, t)ut(x, t)+

+c(x, t)ux(x, t) + q(x, t)u(x, t) = f(x, t),

(x, t) ∈ Ġ∞ = IR× (0,+∞), (30)

u|t=0 = ϕ (x), ut|t=0 = ψ(x),

x ∈ IR = (−∞,+∞), (31)

where the coefficients a, b, c, q are real functions
and the input data f, ϕ, ψ are given real functions of
their variables x and t. By the lower indices of the
functions we indicate the variables of partial deriva-
tives of these functions.

As above, the characteristic equations dx −
(−1)ia(x, t)dt = 0 give the characteristics gi(x, t) =
Ci, i = 1, 2. If a(x, t) ≥ a0 > 0, then they decrease
strictly by t at i = 1 and increase at i = 2 with the
growth of x, since dx/dt = −a(x, t) ≤ −a0 < 0
at i = 1 and dx/dt = a(x, t) ≥ a0 > 0 for
i = 2. Therefore, the functions yi = gi(x, t) have
inverse functions x = hi{yi, t}, t = h(i)[x, yi], i =
1, 2. Moreover, each of the characteristics gi(x, t) =
Ci, i = 1, 2, intersects the curve l of the equation
t = 0 only once. If the coefficient is a ∈ C2(G∞),

then the functions gi, hi, h(i), i = 1, 2, are twice
continuously differentiable by their variables in G∞,
[2]. By definition of inverse functions, the conversion
identities (5)–(7) are fulfilled.

Definition 7 Classical solutions of the Cauchy prob-
lem (30), (31) on G∞ are called functions u ∈
C2(G∞), G∞ = IR × [0,+∞), satisfying equation

(30) on Ġ∞ = IR × (0,+∞) in the usual sense and
the initial conditions (31) in the sense of the values of
the limits of the functions u(ẋ, ṫ) and uṫ(ẋ, ṫ) at inter-
nal points (ẋ, ṫ) ∈ Ġ∞ when ẋ→ x and ṫ→ 0.

Theorem 8 Let in equation (30) the coefficients be
a(x, t) ≥ a0 > 0, (x, t) ∈ G∞, a ∈ C2(G∞),
b, c, q ∈ C1(G∞). The Cauchy problem (30), (31)
on G∞ has a unique and stable on f, ϕ, ψ classi-
cal solution u ∈ C2(G∞) if and only if when the
right-hand side of the equation and the initial data
are f ∈ C(G∞), ϕ ∈ C2(IR), ψ ∈ C1(IR) and

t∫
0

f(hi{gi(x, t), τ}, τ) dτ ∈ C1(G∞), i = 1, 2. (32)

The classical solution u ∈ C2(G∞) of the Cauchy
problem (30), (31) for all (x, t) ∈ G∞ is the function

u(x, t) =
(auv)(h2{g2(x, t), 0}, 0)

2a(x, t)
+

+
(auv)(h1{g1(x, t), 0}, 0)

2a(x, t)
+

+
1

2a(x, t)

h1{g1(x,t), 0}∫
h2{g2(x,t), 0}

[ψ(s)v(s, 0)−

−ϕ(s)vτ (s, 0) + b(s, 0)ϕ(s)v(s, 0)] ds+

+
1

2a(x, t)

t∫
0

dτ

h1{g1(x,t),τ}∫
h2{g2(x,t),τ}

f(s, τ)v(s, τ ;x, t)ds. (33)

By virtue of (31) u(h2{g2(x, t), 0}, 0) =
ϕ(h2{g2(x, t), 0}), u(h1{g1(x, t), 0}, 0) =
ϕ(h1{g1(x, t), 0}), Riemann function v(s, τ) =
v(s, τ ;x, t) is solution of Goursat problem:

vττ (s, τ)− (a2(s, τ)v(s, τ))ss−

−(b(s, τ)v(s, τ))τ − (c(s, τ)v(s, τ))s+

+ q(s, τ)v(s, τ) = 0, (s, τ) ∈ ∆MPQ, (34)

v(s, τ) = exp

{ τ∫
t

k1(h1{g1(x, t), ρ}, ρ) dρ

}
,

g1(s, τ) = g1(x, t),

v(s, τ) = exp

{ τ∫
t

k2(h2{g2(x, t), ρ}, ρ) dρ

}
,
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g2(s, τ) = g2(x, t), τ ∈ [0, t], (35)

with functions k1(s, τ) = {a(s, τ)b(s, τ) −
4aτ (s, τ) + c(s, τ)}/4a(s, τ) on the curve QM
and k2(s, τ) = {a(s, τ)b(s, τ) − 4aτ (s, τ) −
c(s, τ)}/4a(s, τ) on the curve MP.

Proof. In the Cauchy problem (30), (31), the ini-
tial conditions are given at t = 0. Therefore, in Theo-
rem 3, the function t = χ(x) = 0 and hence its deriva-
tive χ′(x) = 0. Therefore, we have the functions
si(x, t) = hi{gi(x, t), 0}, i = 1, 2, and hence the
coordinates of the points Q(h1{g1(x, t), 0}, 0) and
P (h2{g2(x, t), 0}, 0). In addition, the smoothness re-
quirements for the right-hand side f of the equation
(30) and the initial data (31), including integral re-
quirements (8) for G, from Theorem 3 for χ(x) = 0
turn into equivalent smoothness requirements, includ-
ing integral requirements (32), on G∞ from Theorem
8. The Goursat problem (17), (20) on the triangle
4MPQ with a curved base PQ at χ(x) = 0 be-
comes the Goursat problem (34), (35) on the trian-
gle4MPQ with a rectilinear base PQ. Formulas (9)
of the classical solution u ∈ C2(G) from Theorem 3
takes the form of formula (33) of the classical solu-
tion u ∈ C2(G∞) from Theorem 8, since the double
repeated integral of (33) is equal to the double integral
of (9) for χ(x) = 0. Theorem 8 is proved.

Corollaries 9, 10 follow from Corollaries 5, 6.

Corollary 9 If the right-hand side f of the equa-
tion (30) depends only on x or t and is continuous
f ∈ C(IR), then Theorem 8 is true without smooth-
ness requirements (32).

Corollary 10 If the right-hand side f of the equation
(30) depends on x and t, then in Theorem 8 the be-
longing of the integrals (32) to the set C1(G∞) is
equivalent to their belonging to the set C(0,1)(G∞)

or C(1,0)(G∞). The sets C(0,1)(G∞) and C(1,0)(G∞)
are sets of continuous or continuously differentiable
with respect to x and continuously differentiable or
continuous with respect to t functions on G∞.

5 The Cauchy problem for the model
telegraph equation in the upper
half-plane.

In the half-plane G∞ = IR × (0,+∞), to solve the
Cauchy problem for the model telegraph equation:

L̂u(x, t) ≡ utt(x, t)− a2(x, t)uxx(x, t)−

−a−1(x, t)at(x, t)ut(x, t)−

−a(x, t)ax(x, t)ux(x, t) = f(x, t), (x, t) ∈ Ġ∞ (36)

with the initial conditions

u|t=0 = ϕ(x), ut|t=0 = ψ(x), x ∈ IR. (37)

The correctness criterion and the formula of the
classical solution of this problem Cauchy gives

Theorem 11 Let the coefficient be a(x, t) ≥ a0 >
0, (x, t) ∈ G∞, a ∈ C2(G∞). The Cauchy problem
(36), (37) has a unique and stable on f, ϕ, ψ classical
solution u ∈ C2(G∞) if and only if f ∈ C(G∞),
ϕ ∈ C2(IR), ψ ∈ C1(IR) and (32) is true.

The classical solution u ∈ C2(G∞) of the
Cauchy problem (36), (37) on G∞ is the function

u(x, t) =
ϕ(h2{g2(x, t), 0}+ ϕ(h1{g1(x, t), 0})

2a(x, t)
+

+
1

2

h1{g1(x,t), 0}∫
h2{g2(x,t), 0}

ψ(s)

a(s, 0)
ds+

+
1

2

t∫
0

dτ

h1{g1(x,t),τ}∫
h2{g2(x,t),τ}

f(s, τ)

a(s, τ)
ds, (x, t) ∈ G∞. (38)

Proof. Equation (36) of this Cauchy problem is
a special case of the general telegraph equation (30)
considered above for b(x, t) = −a−1(x, t)at(x, t),
c(x, t) = −a(x, t)ax(x, t), q(x, t) = 0. Firsly we de-
rive the formula (38) of the Cauchy problem (36), (37)
of Theorem 11 from the formula (33) of the Cauchy
problem (30), (31) of Theorem 8. For all (x, t) ∈ G∞
the Riemann function is well known

v(s, τ) = v(s, τ ;x, t) =
a(x, t)

a(s, τ)
, (s, τ) ∈ G∞, (39)

which is a solution of the Goursat problem (34), (35)
for the conjugate equation to the model telegraph
equation (36). For (x, t) ∈ G∞, using the Riemann
function (39) and the initial conditions (37), we cal-
culate the first term of the formula (33)

(auv)(h2{g2(x, t), 0}, 0)

2a(x, t)
+

+
(auv)(h1{g1(x, t), 0}, 0)

2a(x, t)
=

=
(au)(h2{g2(x, t), 0}, 0)a(x, t)

2a(x, t)a(h2{g2(x, t), 0}, 0)
+

+
(au)(h1{g1(x, t), 0}, 0)a(x, t)

2a(x, t)a(h1{g1(x, t), 0}, 0)
=
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=
u(h2{g2(x, t), 0}, 0) + u(h1{g1(x, t), 0}, 0)

2
=

=
ϕ(h2{g2(x, t), 0}) + ϕ(h1{g1(x, t), 0})

2
. (40)

For all (s, τ) ∈ G∞, we similarly calculate the
second term of the formula (33)

vτ (s, τ)|τ=0 − v(s, 0)b(s, 0) =

=
(a(x, t)

a(s, τ)

)
τ

∣∣∣
τ=0

+
a(x, t)

a(s, 0)

aτ (s, τ)|τ=0

a(s, 0)
=

= a(x, t)
(
− aτ (s, τ)|τ=0

a2(s, 0)
+
at(s, τ)|τ=0

a2(s, 0)

)
= 0, (41)

ψ(s)v(s, 0)

a(x, t)
=

ψ(s)a(x, t)

a(x, t)a(s, 0)
=

ψ(s)

a(s, 0)
. (42)

We calculate the third term of the formula (33)
1

2a(x, t)

∫
4MPQ

f(s, τ)v(s, τ : x, t) ds dτ =

=
1

2

∫
4MPQ

f(s, τ)

a(s, τ)
ds dτ =

=
1

2

t∫
0

dτ

h1{g1(x,t), τ}∫
h2{g2(x,t), τ}

f(s, τ)

a(s, τ)
ds, (x, t) ∈ G∞. (43)

Since the smoothness on f, ϕ, ψ of the Cauchy
problems (30), (31) and (36), (37) coincide, then
from the equalities (40)–(43) we conclude that for the
Cauchy problem (36), (37) the formula of the classi-
cal solution (33) is equal to the formula of the classical
solution (38). Theorem 11 has been proved.

By Corollaries 9, 10, Corollaries 12, 13 hold.

Corollary 12 If the right-hand side f of the equa-
tion (36) depends only on x or t and is continuous
f ∈ C(IR), then Theorem 11 is true without integral
smoothness requirements (32).

Corollary 13 If the right-hand side f of the equa-
tion (36) depends on x and t, then in Theorem 11,
the belonging of integrals (32) to the set C1(G∞) is
equivalent to their belonging to the sets C(0,1)(G∞)

or C(1,0)(G∞).

Remark 14 The results of this work are needed to
solve mixed problems for wave equations in curvilin-
ear domains. The first and second mixed problems for
model and general telegraph equations with variable
coefficients have been solved by Lomovtsev F.E. us-
ing his new methods: implicit characteristics method
from, [2], and generalization of Riemann method to
these mixed problems on a half-line and a segment.

6 Conclusion
The generalized Riemann formula (9) of the classical
solution and the Hadamard correctness criterion of the
generalized real Cauchy problem (1), (2) for a general
linear inhomogeneous telegraph equation with vari-
able coefficients under Cauchy conditions on a dou-
bly continuously differentiable and noncharacteristic
curve l of the plane are obtained. In global Theorem
3, the Riemann formula (9) of its unique and continu-
ous on right-hand side f of the equation and Cauchy
data ϕ, ψ of the classical solution u ∈ C2(G) is es-
tablished by a modification of the Riemann method
and new implicit characteristics method. From the
formulation of the Cauchy problem and the definition
of classical solutions, its Hadamard correctness crite-
rion is found: f ∈ C(G), ϕ ∈ C2(IR), ψ ∈ C1(IR)
and new integral smoothness requirements (8). If the
right-hand side f of the equation (1) depends on one
of two variables x and t, then it is necessary and suffi-
cient that it be continuous with respect to this variable.
If the right-hand side f of the equation (1) depends
on two variables and is continuous with respect to x
and t, then in its integral smoothness requirements it
is necessary and sufficient to have continuity in one
and continuous differentiability in the other variable.
From Theorem 3, the already known Riemann formu-
las of classical solutions and the correctness criteria
of Cauchy problems in Theorem 8 for general and in
Theorem 11 for model telegraph equations in the up-
per half-plane are derived. These Riemann formulas
contain implicit functions of characteristics for tele-
graph equations. They partially confirm the correct-
ness of the main results of this work in Theorem 3.
In this work, the necessary and sufficient smoothness
of the right-hand side of the telegraph equation with
real variable coefficients under Cauchy conditions on
a curved line of the plane for twice continuously dif-
ferentiable solutions was proven for the first time.
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