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Abstract: - In this paper, we introduce a nonlinear scaled conjugate gradient method, operating on the premise 
of a descent and conjugacy relationship. The proposed algorithm employs a conjugacy parameter that is 
determined to ensure that the method generates conjugate directions. It also utilizes a parameter that scales the 
gradient to enhance the convergence behavior of the method. The derived method not only exhibits the crucial 
feature of global convergence but also maintains the generation of descent directions. The efficiency of the 
method is established through numerical tests conducted on a variety of high-dimensional nonlinear test 
functions. The obtained results attest to the improved behavior of the derived algorithm and support the 
presented theory. 
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1  Introduction 
Our concern in this paper is problems of the form: 
 

𝑚𝑖𝑛 (𝑥), where 𝑥∈𝑅௡  ,                       (1) 
 
for which 𝑓 is a differentiable convex function. For 
large dimension n, conjugate gradient (CG) methods 
are among the most sophisticated and 
straightforward approaches proposed to solve (1), 
due to storage considerations. Starting with a guess 
𝑥଴ ∈ 𝑅௡, the CG method produces the sequence 
ሼ𝑥௞ሽ using the recurrence: 
 

𝑥௞ାଵ ൌ 𝑥௞ ൅ 𝛼௞𝑑௞,   for 𝑘 ൌ 0,1, …    (2) 
 
where 𝛼௞ is a positive scalar representing the step 
length along the search direction 𝑑௞, which is 
calculated using some line search method. The 
search vectors are derived using: 
 

𝑑௞ାଵ ൌ ൜
െ𝑔௞ାଵ     if k ൌ 0
െ𝑔௞ାଵ ൅ 𝛽௞𝑑௞     if k ൐ 0. 

       
ሺ3ሻ

The parameter 𝛽௞ in (3) is referred to as the 
conjugacy parameter and 𝑔௞ାଵ is the gradient vector 
evaluated at 𝑥௞ାଵ. The primary factor in CG 
strategies is that they generate search directions 𝑑௞, 
which are downhill. The particular choice of the 
scalar parameter 𝛽௞  defines different and new 
conjugate gradient algorithms. For convergence 
purposes and for aiding in ensuring that the 
generated search directions are downhill, the step 
length 𝛼௞ in (2) is computed subject to satisfying the 
strict conditions, [1,2], given by: 

 
𝑓ሺ𝑥௞ ൅ 𝛼௞𝑑௞ሻ ൑ 𝑓ሺ𝑥௞ሻ ൅ 𝛿𝛼௞𝑔௞

்𝑑௞                       ሺ4ሻ
𝑑௞

்𝑔ሺ𝑥௞ ൅ 𝛼௞𝑑௞ሻ ൒ 𝜎𝑑௞
்𝑔௞ ,                                     ሺ5ሻ

 

 
where 0 ൏ 𝛿 ൏ 𝜎 to guarantee that 𝑑௞ is a 
downward direction. 
         For a quadratic convex problem with positive 
definite A of the form: 
 

𝑓ሺ𝑥ሻ ൌ
ଵ

ଶ
𝑥் 𝐴𝑥 ൅ 𝑏்𝑥 ൅ 𝑐             (6) 
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and for accurate line searches used to solve: 
  

𝛼௞ ൌ 𝑎𝑟𝑔 𝑚𝑖𝑛
ఈவ଴

𝑓ሺ𝑥௞ ൅ 𝛼௞𝑑௞ሻ ,                   ሺ7ሻ

the following conjugacy condition holds: 
                               𝑑௜

்𝐴𝑑௝ ൌ 0,                  ሺ8ሻ 

for any 𝑖 ് 𝑗. The CG techniques, typically used 
to solve systems of linear equations, are derived 
with satisfying conditions (8), as is the case with the 
original algorithm in, [6]. Almost all CG algorithms, 
such as those in, [3], [4], [5], [6], [7], [8], [9], satisfy 
(8) for quadratic objective functions and positive 
definite Hessian matrix. 

In this paper, we provide new variants of the 
CG relations in (2) and (3) that are similar 
conceptually to those in,  [10], [11], [12], that 
always satisfy:  

𝑔௞ାଵ
் 𝑑௞ାଵ ൏ 0.                      ሺ9ሻ    

By the mean value theorem, for a nonlinear function 
𝑓 there is a value 𝜉 such that: 
 

𝑑௞ାଵ
் 𝑦௞ ൌ 𝛼௞𝑑௞ାଵ

் ∇ଶ𝑓ሺ𝑥௞ ൅ 𝜉𝛼௞𝑑௞ሻ𝑑௞.    (10) 
 
As a result of this, the following conjugacy criterion 
appears to be an appropriate substitute for (8): 

𝑑௞ାଵ
் 𝑦௞ ൌ 0.   ሺ11ሻ 

Using ሺ3ሻ and (11) leads to the relation (upon pre-
multiplying both sides by 𝛼௞): 
 

𝛽௞𝑣௞
்𝑦௞ െ 𝑔௞ାଵ

் 𝑦௞ ൌ 0,               ሺ12ሻ 
 

for 𝑣௞ ൌ 𝑥௞ାଵ െ 𝑥௞ or, equivalently, the conjugacy 
parameter, [13]: 

 

𝛽௞
ுௌ ൌ

௚ೖశభ
೅ ௬ೖ

௩ೖ
೅௬ೖ

.    (13) 

 
This paper has the following outline. We 

provide a novel scaled conjugate gradient approach 
in subsection 2. In Section 3, the proof that the 
suggested algorithm generates a search direction 
that complies with the descent requirements at each 
iteration is provided. The new CG-methods' global 
convergence property is proven in Section 4. The 
effectiveness of the suggested CG method is 
established with some numerical findings in Section 
5. The final Section offers some conclusions and 
future research suggestions. 
 
 
 

2  New Scaled CG Method 
We focus attention in this paper on solving 
unconstrained minimization problems using the 
recurrence: 

𝑥௞ାଵ ൌ 𝑥௞ ൅ 𝛼௞𝑑௞ ,                   ሺ14ሻ 
 
where 𝛼௞ ൐ 0 is acquired to satisfy the conditions 
for line search in (4) and (5), and 𝑑௞ is some 
computed search direction using: 
 

  𝑑௞ାଵ ൌ െ𝜙௞𝑔௞ାଵ ൅ 𝛽௞𝑣௞,             ሺ15ሻ 

for some scalars 𝜙௞ and 𝛽௞, whose derivation 
specifies the fingerprints of the CG method. 

  The scalar parameters 𝜙௞ and 𝛽௞ in Equation 

(15) are obtained in our approach for all 0k  
based on the descent condition: 

 
𝑔௞ାଵ

் 𝑑௞ାଵ ൌ െ𝜙௞𝑔௞ାଵ
் 𝑔௞ାଵ ൅

𝛽௞𝑔௞ାଵ
் 𝑣௞ ൏ 0.   

         ሺ16ሻ 

 
From ሺ15ሻ and (16), we get:  
 
𝑔௞ାଵ

் 𝑑௞ାଵ ൌ െ𝜙௞𝑔௞ାଵ
் 𝑔௞ାଵ ൅ 𝛽௞𝑔௞ାଵ

் 𝑣௞ ൅ 𝛿 ൌ 0, 
 
which gives: 
 
𝑔௞ାଵ

் 𝑑௞ାଵ ൌ െ𝜙௞𝑔௞ାଵ
் 𝑔௞ାଵ ൅

𝛽௞𝑔௞ାଵ
் 𝑣௞ ൅ 𝛿.   

             ሺ17ሻ 

 
Now, using the conjugacy condition ሺ11ሻ also 

gives: 
 
𝑦௞

்𝑑௞ାଵ ൌ െ𝜙௞𝑦௞
்𝑔௞ାଵ ൅ 𝛽௞𝑦௞

்𝑣௞ ൌ 0.        (18) 
 
Let us define: 
 

𝜔௞ ൌ െ‖𝑔௞ାଵ‖ଶ൫𝑦௞
்𝑣௞൯.                (19) 

 
Assuming that 𝜔௞ ് 0, if using (17) and (18) 

leads to:  

𝜙௞ ൌ െ
𝛿൫𝑦௞

்𝑣௞൯
𝜔௞

 

and 

𝛽௞ ൌ െ
ఋ൫௬ೖ

೅௚ೖశభ൯

ఠೖ
.                     (20) 

 
Therefore, from ሺ15ሻ and ሺ20ሻ we obtain:  

𝑑௞ାଵ
ே௘௪ ൌ െ

ఋ

‖௚ೖశభ‖మ 𝑔௞ାଵ ൅
ఋሺ௬ೖ

೅௚ೖశభሻ

‖௚ೖశభ‖మሺ௬ೖ
೅௩ೖሻ

𝑣௞ , 

or, equivalently, 
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𝑑௞ାଵ
ே௘௪ ൌ

𝛿
‖𝑔௞ାଵ‖ଶ ቈെ𝑔௞ାଵ ൅

𝑦௞
்𝑔௞ାଵ

ሺ𝑦௞
்𝑣௞ሻ

𝑣௞቉ 

ൌ 𝛾௞ ൤െ𝑔௞ାଵ ൅
௬ೖ

೅௚ೖశభ

ሺ௬ೖ
೅௩ೖሻ

𝑣௞൨.              (21) 

 
 

3 The Descent Feature of the 
Algorithm 

The following is a presentation of the scaled 
conjugate gradient (CG) approach. 
 
Step one. Choose 𝑥ଵ ∈ 𝑅௡ and the line search 
parameters 𝛿ଵ and 𝛿ଶ such that 0 ൏ 𝛿ଵ ൏ 𝛿ଶ ൏ 1. 
 Compute  𝑓ሺ𝑥ଵሻ and 𝑔ଵ. Take 𝑑ଵ ൌ െ𝑔ଵ and 𝛼ଵ ൌ
1/‖𝑔ଵ‖. 
Step two. Check if the looping can be continued. If 
‖𝑔௞ାଵ‖ ൑ 10ି଺, we will cease.  
Step three. Update the variables 𝑥௞ାଵ ൌ 𝑥௞ ൅ 𝛼௞𝑑 
and compute 𝛼௞ାଵ ൐ 0 that satisfies the  
line search criteria (4) and (5). 
Step four. Compute the parameter 𝛽௞ using 
equation (13). 
Step Five. Compute 𝑑௞ାଵ ൌ െ𝛾௞ሺ𝑔௞ାଵ ൅ 𝛽௞𝑑௞ሻ. If 
the restart strategy in, [5], namely ห𝑔௞ାଵ

் 𝑔௞ห ൒
0.2‖𝑔௞ାଵ‖ଶ, is met, then use 𝑑௞ାଵ ൌ െ𝛾௞𝑔௞ାଵ. 
Else, define 𝑑௞ାଵ using (21). Compute 𝛼௞ ൌ
ఈೖషభ‖ௗೖషభ‖

‖ௗೖ‖
. Set 𝑘 ൌ 𝑘 ൅ 1, and continue to step 2. 

 
The following next theorem establishes that the 

search vectors generated by the derived scaled CG 
technique are guaranteed to meet the descent 
property, for Wolfe conditions-satisfied line 
searches. 
       
Theorem 1  
Assuming 𝛼௞ meets conditions (3) and (4), hence, 
𝑑௞ାଵ given byሺ21ሻ is a downhill direction. 
Proof: Since 𝑑଴ ൌ െ𝑔଴, we have 𝑔଴

்𝑑଴ ൌ
െ‖𝑔଴‖ଶ ൑ 0. Multiplying ሺ21ሻ by 𝑔௞ାଵ

் , we have 
  

𝑔௞ାଵ
் 𝑑௞ାଵ ൌ

ఋ

∥∥௚ೖశభ∥∥మ ൤െ𝑔௞ାଵ
் 𝑔௞ାଵ ൅

௬ೖ
೅௚ೖశభ

൫௬ೖ
೅௩ೖ൯

𝑔௞ାଵ
் 𝑣௞൨

ൌ
ఋ

∥∥௚ೖశభ∥∥మ൫௬ೖ
೅௩ೖ൯

మ ൥
െ𝑔௞ାଵ

் 𝑔௞ାଵ൫𝑦௞
்𝑣௞൯

ଶ

൅൫𝑦௞
்𝑔௞ାଵ൯൫𝑦௞

்𝑣௞൯𝑔௞ାଵ
் 𝑣௞

൩ .

 

 
ሺ22ሻ 

 

Applying ( 𝑢்𝑣 ൑
ଵ

ଶ
ሺ‖𝑢‖ଶ ൅ ‖𝑣‖ଶሻ to (22) with 

𝑢 ൌ ሺ𝑦௞
்𝑣௞ሻ𝑔௞ାଵ and 𝑣 ൌ ሺ𝑔௞ାଵ

் 𝑣௞ሻ𝑦௞ , we get: 
 

𝑔௞
்𝑑௞ାଵ

൑
𝛿

|𝑔௞ାଵ|ଶሺ𝑦௞
்𝑣௞ሻଶ ቈെ|𝑔௞ାଵ|ଶ൫𝑦௞

்𝑣௞൯
ଶ

൅
1
2

ቂ|𝑔௞ାଵ|ଶ൫𝑦௞
்𝑣௞൯

ଶ
൅ ൫𝑔௞ାଵ

் 𝑣௞൯
ଶ

ሺ|𝑦௞|ଶሻቃ቉ 

or 

    
ሺ23ሻ 

𝑔௞ାଵ
் 𝑑௞ାଵ ൑

ఋ

∥∥௚ೖశభ∥∥మ൫௬ೖ
೅௩ೖ൯

మ ቂെ
ଵ

ଶ
∥

𝑔௞ାଵ|ଶ൫𝑦௞
்𝑣௞൯

ଶ
൅

ଵ

ଶ
൫𝑔௞ାଵ

் 𝑣௞൯
ଶ

ሺ∣ 𝑦௞ ∥ଶሻቃ.
              
ሺ24ሻ 

The last term in equation (24) tends to zero 
closer to the minimum, so ሺ24ሻ can be expressed as: 

𝑔௞ାଵ
் 𝑑௞ାଵ ൑

ఋ

∥௚ೖశభ|మ൫௬ೖ
೅௩ೖ൯

మ ቂെ
ଵ

ଶ
|𝑔௞ାଵ|ଶ൫𝑦௞

்𝑣௞൯
ଶ

ቃ

൑ െ
ఋ

ଶ
.

   

As a result, the direction 𝑑௞ାଵ meets the criteria for 
a descent:  

𝑔௞ାଵ
் 𝑑௞ାଵ ൑  0. 

 
4   Convergence Analysis 
Using similar approaches to those in, [5], [14], [15], 
we assume that the objective function 𝑓 satisfies the 
Lipschitz continuity criterion on the level set L and 
is also substantially convex. So,   
 

𝐿଴ ൌ ሼ𝑥 ∈ R୬: 𝑓ሺ𝑥ሻ ൑ 𝑓ሺ𝑥଴ሻሽ. 
 
Assumption A: There are values of 𝜇 ൐ 0 and 𝐿 
such that, [11]:  

ሺ∇𝑓ሺ𝑥ሻ െ ∇𝑓ሺ𝑦ሻሻ்ሺ𝑥 െ 𝑦ሻ ൒ 𝜇 ∥ 𝑥 െ 𝑦|ଶ 
and 

ሺ∇𝑓ሺ𝑥ሻ െ ∇𝑓ሺ𝑦ሻሻ ൑ 𝐿 ∥ 𝑥 െ 𝑦 ∥ଶ 
from 𝐿଴, for all  𝑥 and 𝑦.  
 
Lemma 1: 
Let us assume that Assumption A is true. Then 
consider the general conjugate gradient approach in 
(2) and (3), where 𝑑௞ is a downhill direction and 𝛼௞ 
is computed to satisfy the line search conditions (4) 
and (5). If 

∑  ௞ୀଵ
ଵ

∥∥ௗೖశభ∥∥మ ൌ ∞. 

Then it follows that   
𝑙𝑖𝑚
௞→ஶ

 𝑖𝑛𝑓 ∥ 𝑔௞ ∣ൌ 0.                    (31) 

Similar details can be found in [16], [17]. 
 
Theorem 2:  
 Assume that Assumption A holds, then ሼ𝑥௞ሽ 
is computed by the Algorithm (3.1) with 𝛾௞ ൐ 0. 
Then 

𝑙𝑖𝑚
௞→ஶ

𝑖𝑛𝑓‖𝑔௞‖ ൌ 0.                     (32)  

Proof:  
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We assume the conclusion is false because of the 
seeming conflict. Suppose that 𝑔௞ ് 0 for all 𝑘. By 
then ሺ28ሻ, we get   

𝑦௞
்𝑑௞ ൌ ሺ𝑔௞ାଵ െ 𝑔௞ሻ்𝑑௞ ൒ 𝜇𝛼௞‖𝑑௞‖ଶ.      (33) 

 
In contrast, ‖𝑦௞‖ ൌ ‖𝑔௞ାଵ െ 𝑔௞‖ ൑ 𝐿‖𝑣௞‖ଶ. 
Hence,  

ห𝑔௞ାଵ
் 𝑦௞ห ൑ ‖𝑔௞ାଵ‖‖𝑦௞‖ ൑ 𝐿‖𝑔௞ାଵ‖‖𝑣௞‖. (34) 

 
Therefore, from ሺ21ሻ, we have  

∥∥𝑑௞ାଵ∥∥ ൑∥ 𝑔௞ାଵ ቈ𝛾௞ ൅ 𝛾௞
𝐿∥∥𝑔௞ାଵ∥∥𝑣௞ ∥

𝜇𝛼௞∥∥𝑑௞∥∥ଶ ∥∥𝑣

൑ ∥∥𝑔௞ାଵ∥∥ ൤𝛾௞ ൅ 𝛾௞
𝐿 ∣ 𝑔௞ାଵ ∥

𝜇 ∣ 𝑑௞ ∥
∥∥𝑣௞

൑ ∥∥𝑔௞ାଵ∥∥ ൤𝛾௞ ൅ 𝛾௞
𝐿𝜀𝛼௞

𝜇
൨

൑ √𝜔 ∥ 𝑔௞ାଵ ∣

. . . . . . ሺ35ሻ

where  √𝜔 ൌ 𝛾௞ ൅ 𝛾௞
௅ఌఈೖ

ఓ
.  This relation implies 

that 
∑  ଶ

௞ୀଵ
ଵ

∥∥ௗೖశభ∥∥మ ൒
ଵ

ఠாమ ∑  ௞ୀଵ 1 ൌ ∞.      (36) 

 
Therefore, 𝑙𝑖𝑚

௞→ஶ
 𝑖𝑛𝑓∥∥𝑔௞∥∥ ൌ 0. 

 
 

4   Numerical Outcomes 
This section presents the outcomes of the 
computational experiments. A comparison has been 
made between the standard HS algorithm and the 
new scaled conjugate gradient method. Both 
methods were tested using a Fortran 
implementation. The test problems can be found in 
references, [1], [16], [17], [18], [19]. In the 
numerical experiments, the dimensions evaluated 
were n=1000 and 10000 for each test function. We 
selected fifteen large-scale, generalized, and 
unconstrained problems. To determine the 
termination of the process, we utilized the inequality 
‖𝑔௞ାଵ‖ ൑ 10ି଺ as the criterion. Table 1 provides a 
view of the results derived from testing both 
methods using the line parameters σ=0.001 and 
𝛿 ൌ 0.9  in equations (4) and (5). The columns in 
Table 1 indicate the following items 
        Problem: function name; 
        Dim: the dimension of the problem; 
        TNOI:  total iterations number; 
        TIRS:  total restarts number. 
 
 
 

Table 1. Numerical comparison between the new 
algorithm and HS Algorithm Comparison of 

algorithms for 𝑛 ൌ 1000 

Test Problems 

New HS
k

NOI                    
IRS 

NOI                    
IRS 

Freudenstein and 
Roth 

137 125 838 810 

Perturbed 
Quadratic 

328 94 392 116 

Diagonal 2 199 56 200 64 
Diagonal 3 1745 1591 F* F* 
Extended Three 
Expo Terms 

28 21 25 18 

Extended Powell 75 20 75 20 
Extended 
Maratos 

64 29 85 44 

Extended Cliff 11 9 13 10
Extended Wood 28 11 28 11 
Quadratic QF2 395 122 403 121 
EG2(CUTE) 113 48 F* F* 
Tridiagonal 
Perturbed Quad. 

348 101 356 108 

Drench (CUTE) 48 32 84 69 
Diagonal 6 20 12 20 12 
Sinquad (CUTE) 167 75 172 76 
 1848 707 2693 1479 
 
 

Table 2. Numerical comparison between the 
new algorithm and HS Algorithm for 𝑛 ൌ

10000 

Test Problems 

New HS
k

NOI                
IRS 

NOI             
IRS 

Freudenstein and 
Roth 

15 8 F* F* 

Perturbed 
Quadratic 

1223 326 1243 332 

Diagonal 2 684 207 686 203 
Diagonal 3 F* F* F* F* 
Extended Three 
Expo Terms 

65 57 215 207 

Extended Powell 82 26 97 29 
Extended Maratos 64 29 64 28 
Extended Cliff 16 11 24 22 
Extended Wood 27 9 29 9 
Quadratic QF2 1235 361 1285 368 
EG2(CUTE) F* F* F* F* 
Tridiagonal 
Perturbed Quad. 

1157 331 1297 376 

Drench (CUTE) 51 40 102 89 
Diagonal 6 18 9 22 11 
Sinquad (CUTE) 437 29 1005 358 
 5059 1435 6069 2032 
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Table 2 above presents a numerical comparison 
between the new algorithm and the HS Algorithm 
for n=10000. 
 
 

5   Conclusion 
In this study, a novel method of scaled nonlinear 
conjugate gradient is developed that, under certain 
assumptions, boosts its global convergence property 
for uniformly convex functions. Additionally, it 
successfully fulfills the essential descent condition, 
which is commonly observed in standard gradient 
algorithms. The utility of the suggested new scaled 
types was shown in the reported numerical 
experiments. The obtained results reveal, for at least 
the chosen set of test problems, that the developed 
algorithm reduces by an overall 61% NOI and 
78.82% IRS against the standard Hestenes-Stiefel 
(HS) algorithm. The relative utility of the new 
approach ሺ𝑛 ൌ 1000, 10000ሻ is presented in Table 
3. 
 
Table 3. Relative utility of the new approach ሺ𝑛 ൌ

1000, 10000ሻ 
Tools NOI IRS 
HS-Algorithm 100 % 100% 
New-Algorithm  39% 21.18 % 

 
The new method is promising and deserves 

further exploration of a wider spectrum of problems 
by extending the method to constrained 
optimization, exploring parallel and distributed 
implementations for scalability, [8], [20], [21], 
developing adaptive parameter tuning schemes, and 
analyzing sensitivity to initial conditions. It is also 
worth integrating the method with machine learning 
models, [22], assessing robustness to noisy 
objectives, comparing it with state-of-the-art 
methods, exploring real-world applications, and 
developing user-friendly interfaces for wider 
accessibility. These directions aim to enhance the 
algorithm's versatility, efficiency, and practical 
applicability across diverse optimization scenarios. 
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