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Abstract: - This article is dedicated to the study of the self-similar solutions of a nonlinear parabolic equation.
More precisely, we consider the following uni-dimensional equation:

(E) : ut(x, t) = (um)xx(x, t)− |x|q u−p(x, t), x ∈ R, t > 0,

where m > 1, q > 1 and p > 0.
Initially, we employed a fixed point theorem and an associated energy function to establish the existence of solu-
tions. Subsequently, we derived some important results on the asymptotic behavior of solutions near the origin.

Key-Words: - Singular parabolic equation, Self-similar solutions, Quenching solutions, Existence of solutions,
Asymptotic behavior.
Received: July 21, 2023. Revised: October 22, 2023. Accepted: November 4, 2023. Published: November 29, 2023. 

1 Introduction
In this article, we are studying the semi-linear
parabolic equation (E) with a strictly positive initial
datum{

ut(x, t) = (um)xx(x, t)− |x|q u−p(x, t),
(x, t) ∈ R× (0,∞),
u(x0, t0) > 0, x0 ∈ R, t0 > 0.

(1)

The case m = 1 has been widely studied in re-
cent years, due to its multiple applications in micro-
electro-mechanical system (MEMS), see for example
works, [1], [2], [3], [4], [5], [6], [7]. The main aim
of our paper is to generalize these results to the case
m > 1. For additional details on the context and
derivation of the MEMS model, we recommend the
reader to see papers, [8], [9], [10].

Physically, the function u is the distance between
an elastic membrane in the interior of a micro-electro-
mechanical system, and the fixed bottom plate. So
when u becomes zero, i.e., the membrane touches the
bottom plate, the system then breaks down. This phe-
nomenon is called "Quenching" or "Touchdown" or
deactivating phenomenon.

Using standard parabolic equations techniques,
the problem constituted by equation (E) and a strictly
positive initial datum, admits a unique local solution.
Such a solution can be vanish in a finite time, and
therefore the term u−p will not be defined. This is the
"Quenching" phenomenon in Mathematics, for more
details on this phenomenon, see the articles, [11],
[12], [13], [14]. In other words, there exists a finite

time T so that:
u(x, t) > 0 in R× (0, T ),

lim
t→T−

inf
[
inf
x∈R

u(x, t)

]
= 0.

(2)

A point x0 is said to be a quenching point if
there exists a sequence of points (xn, tn)n∈N such that
xn → x0, tn → T and u(xn, tn) → 0 when n tends
to infinity.

Now, wewill study the problem given by (1), using
"self-similar" solutions. These solutions are obtained
by looking for transformations that leave the equation
invariant see, [15], [16], [17], [18].

Afterwards, inspired by the works, [1], [19], [20],
the equation (E) possesses special self-similar solu-
tions of the form:

u(x, t) = (T − t)αU(y), y = (T − t)β |x| , (3)

where x ∈ R, 0 ≤ t ≤ T, and the two constants
α and β are given by:

α =
q + 2

2(p+ 1)− q(m− 1)

and
β = − m+ p

2(p+ 1)− q(m− 1)
.

So if 2(p + 1) − q (m − 1) ̸= 0, the function
U must verify the following ordinary differential
equation:
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(Um)
′′
(y) + βy U ′(y) + αU(y)− yqU−p(y) = 0,

(4)

with y > 0.

Note that the equation (4) is not necessarily ver-
ified to the point y = 0. Also, if U is a solution of
the equation (4) and it is well defined at the point
y = 0, then lim

t→T −
u(0, t) = u(0, T

−
) = 0. So for

the point zero to be the only quenching point it is nec-
essary and sufficient that U(y) >0 for all y > 0 and
that lim

y→+∞
U(y) ̸= 0. Moreover, in this case the de-

activating behavior is of the range (T − t)α. Indeed,
to obtain information on the deactivating behavior of
the solution of the parabolic equation (E), we need to
study the ordinary differential equation (4).

The other sections of this article are divided as fol-
lows. In Section 2, we provide a result on the exis-
tence of global positive solutions to (4) using a fixed-
point theorem and an associated energy functional,
where α and β are two reals verifying the following
condition:

α > 0, β < 0, and Γ := m
α

β
(1 +m

α

β
) > 0. (5)

Then we assume that:

0 ≤ p−m

m
< q <

2(p+ 1)

m− 1
. (6)

In Section 3, we study the asymptotic behavior of
solutions of equation (4) near the origin. First, we use
the monotonicity argument of the transformed solu-
tion using the associated energy function. Then, we
derive a result on the asymptotic behavior.

Finally, in Section 4, we summarize what we have
been able to prove about this equation in the previous
sections, and also we give some ideas that we will
develop in our future work.

2 Existence of global solutions
In this section, we use a fixed-point theorem and an
energy functional to demonstrate the existence of
global solutions of equation (4).

Note that if l = Γ−1/(m+p), then the function:

U0(y) = Γ−1/(m+p)y−α/β for y > 0, (7)

is a particular solution of equation (4) on [0,+∞] and
satisfies U0(0) = 0.

For this reason, we will restrict our study to the
case 0 < l ̸= Γ−1/(m+p) and we will be interested in

the solutions U of equation (4) which satisfy U(0) =

0 and behave near to infinity as l y −α/β where l is a
strictly positive constant. More precisely, we need to
study the following problem:

(P )


(Um)′′(y) + βyU ′(y) + αU(y)− yqU−p(y) = 0,

for y > 0,
U(0) = 0 and U ′(0) = 0,
lim

y→+∞
yα/βU(y) = l > 0.

It must be said that the equation (4) is not veri-
fied at the point y = 0. We will prove that there is a
positive solution of problem (P ) that vanishes, and its
derivative at the point y = 0. Due to this singular con-
dition, the standard ODE theory cannot be applied.

Theorem 2.1. Assume that 0 < l ̸= Γ−1/(m+p).
Then the problem (P ) has a positive solution U de-
fined on [0,+∞] and having the following asymptotic
behavior near to +∞:

U(y) = ly−α/β +
1

βµ
f(l) y−µ−α/β +O(y−2µ−α/β),

as y → +∞.
(8)

where

f(y) = Γym − y−p, for all y > 0, (9)

and

µ = 2 +
α(m− 1)

β
> 0. (10)

The proof of this theorem is divided into three
steps. The first step concerns the existence of a so-
lution near to infinity. The second step involves to
extend the solution on [0,+∞] , and the last step con-
sists to prove that the solutionU(y) > 0 for all y > 0.

Proof. We will proceed in three steps.
Step1: There exists a constantM > 0, such that the
problem (P ) admits a solution on [M,+∞[ .

We Set

V (x) = ymα/βUm(y), (11)

where y = ex, y> 0 and x ∈ R.
Hence the function V verifies for all x ∈ R the fol-
lowing equation:

V ′′(x)− aV ′(x) +
β

m
eµxV

1−m

m (x)V ′(x)+

f(V 1/m)(x) = 0, (12)
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where

a = 1 + 2m
α

β
< 0. (13)

Note that f(y) can only vanish at the point
y = Γ−1/(m+p), therefore Γ−m/(m+p) is the
unique constant that is a solution to the equation
(12).

Now we will express the equation (12) as the sys-
tem below:

dV (x)

dx
= W (x),

dW (x)

dx
= (a− β

m
eµxV

1−m

m (x))W (x)− f(V 1/m(x)).

Because of the term eµx which poses a problem near
infinity, we will introduce a new derivation variable,
t = e µx which transforms the system above to:

dV (t)

dt
=

W (t)

µt
, (14)

dW (t)

dt
= (

a

µt
− β

m
V

1−m

m (t))W (t)−f(V 1/m)(t)

µt
.

(15)

Hence

(e−A(t)W (t))′ = −e−A(t) f(V
1/m)(t)

µt
, (16)

where A(t) is a primitive of
a

µt
− β

m
V

1−m

m (t).

Assuming that lim
t→+∞

W (t) = 0 and integrating
(16) over the interval (t,∞), we obtain:

W (t) =
1

µ
eA(t)

∫ +∞

t

1

s
e−A(s)f(V 1/m)(s)ds.

(17)

From the expression of the function A, the integral
(17) becomes:

W (t) =
1

µ

∫ +∞

t

1

s
(
t

s
)a/µf(V 1/m)(s)× (18)

exp(−
∫ t

s
V

1−m

m (τ)dτ)ds.

Note that the condition at infinity ofU in the prob-
lem (P ) requires the function V to verify:

lim
t→+∞

V (t) = lm. (19)

Hence

V (t) = lm −
∫ +∞

t

W (s)

µs
ds. (20)

In what follows, we'll prove the existence of a func-
tion W near infinity that verifies (18) and (20) and
the limit:

lim
t→+∞

t

[
W (t) +

mf(l)

βt
lm−1

]
= 0.

For that, we define on the Banach space:

X =

{
φ ∈ C0([M,+∞[); sup |t φ(t)|

t∈[M,+∞[

≤ K

}
,

the functional H : ∀t ∈ [M,+∞[ and ∀φ ∈ X,

H(φ)(t) =
t

µ

∫ +∞

t

1

s
(
t

s
)a/µf(Ψ(φ)(s))×

exp(−
∫ t

s
Ψ1−m(φ)(τ)dτ)ds+

mf(l)

β
lm−1, (21)

where

Ψ(φ)(t) =

[
lm −

∫ +∞

t

φ(s)

µs2
ds+

mf(l)

µβt
lm−1

]1/m
.

(22)

By cutting the integral of the formula (21) into two
parts: the main part using a Taylor Expansion around
l (with a remainder term), we obtain estimations on
each part, then we prove thatH is a contraction ofX
in X for certain constants.
In this case, according to a fixed-point argument,
there will exist a function φ ∈ X such that:

H(φ)(t) = φ(t), for all t ≥ M.

So the function t → φ(t)

t
− mf(l)

βt
l

m−1

is a solution of the equation (18) in the set
[M,+∞[ . Consequently the function:

V (t) = lm +
mf(l)

µβt
l m−1 −

+∞∫
t

φ(s)

µs2
ds, ∀t ≥ M

(23)

is a solution of the equation (12). Or∣∣∣∣∫ +∞

t

φ(s)

µs2
ds

∣∣∣∣ ≤ K

∫ +∞

t

1

µs3
ds

=
K

4µt2
= O(

1

t2
) as t → ∞.

(24)
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Hence, for t sufficiently large

V 1/m(t) = l +
f(l)

µβt
+O(

1

t2
). (25)

In consequence, the function:

U(y) = y−α/βV 1/m(t), (26)

with t = eµx is a solution to the problem (P ) on
[M,+∞[ . Moreover replacing V 1/m(t) with its ex-
pression (25) in (26), we obtain:

U(y) = ly−α/β +
f(l)

µβeµx
y−α/β +O(

y−α/β

(eµx)2
),

as y → ∞.

Using the fact that y = ex from the expression (11),
we obtain:

U(y) = ly−α/β +
1

µβ
f(l)y−µ−α/β +O(y−2µ−α/β),

as y → ∞.

We've achieved the desired result, so the first step
has been accomplished.

Step2: U can be extended to [0,+∞] .

Let V be the function defined by the relation (11)
on an interval of the type [X,+∞[(with X > 0).
Using a symmetrization, we put:

ω(x) = V (−x), ∀x ∈ ]−∞,−X] (27)

Thus ω verifies on ]−∞,−X] the following equa-
tion:

ω′′(x) + aω′(x)− β

m
e−µxω

1−m

m (x)ω′(x)+

f(ω1/m) = 0. (28)

We consider the energy functional:

E(ω)(x) =
1

2
ω′ 2

(x) + F (ω(x)), (29)

where

F (ω(x)) =

∫ ω(x)

Γm

f (s1/m)ds (30)

=

∫ ω(x)

Γm

(µs− s−p/m)ds > 0. (31)

Hence

E′(ω)(x) =

[
−a +

β

m
e −µxω

1−m

m (x)

]
ω′ 2

(x).

Since β < 0 and a < 0 , then

E′(ω)(x) < −2aE(ω)(x) for all x ∈ ]−∞,−X] .

Therefore the energy E(ω) is finite for any finite
x and increases as an exponential, so ω can be
extended to x = +∞. In addition, we have by (19),
lim

x→−∞
ω(x) = lm > 0. Which completes the proof

of the second step .

Step3: U(y) > 0 for all y > 0.

From the expression of the energy functional E,
the integral F (ω)(x) exists, and as p ≥ m then
necessarily ω(x) > 0, hence U(y) > 0 for all y > 0.

Finally, we deduce the existence of a positive so-
lution U of the problem (P ) defined on [0,+∞] .
This completes the proof of Theorem 2.1.

3 Asymptotic behavior near the
origin

In this section, we propose to study the asymptotic
behavior of solutions of problem (P ) near the origin,
which is the same as studying the asymptotic behav-
ior of solutions V of equation (12) near to −∞.

Now, we introduce the following lemma.

Lemma 3.1. Let V be a monotone solution of equa-
tion (12). Then

(i) lim
x→−∞

E(V )(x) = +∞.

where E(V ) is given by the relation (29).

(ii) V is decreasing near to (−∞), moreover

lim
x→−∞

V (x) = +∞.

Proof. For (i), we suppose that lim
x→−∞

E(V )(x) ex-
ists and it is finite, i.e. lim

x→−∞
E(V )(x) = L ≥

0. Then, since V is monotone, lim
x→−∞

V (x) :=

d ∈ [0,+∞] . As L is finite so lim
x→−∞

F (V )(x) and
lim

x→−∞
|V ′(x)| are finite, and from the expression (30)

we deduce that d is finite. But V converges, then
lim

x→−∞
V ′(x) = 0. Considering that µ > 0 and that

d ̸= Γ−m/(m+p), as x → −∞ in the equation (12),
then we obtain:

V ′′(−∞) = −f(d 1/m) ̸= 0.

Which is impossible since V ′ converges. This contra-
diction gives that lim

x→−∞
E(V )(x) = +∞.
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For (ii), assuming that lim
x→−∞

V (x) = d is finite.
Then

+∞ = lim
x→−∞

E(V )(x)

= lim
x→−∞

[
1

2
V ′2(x) + F (V )(x)

]
= lim

x→−∞
F (V )(x) = F (d).

Hence necessarily d = 0. Otherwise, by integrating
the equation (12) over ]x, x1[ , we obtain:

V ′(x1)− V ′(x)− a [V (x1)− V (x)]

+
β

m

∫ x1

x
e µsV

1−m

m (s)V ′(s)ds

= −
∫ x1

x
f(V 1/m)(s)ds.

Note that

β

m

∫ x1

x
e µsV

1−m

m (s)V ′(s)ds =

βeµx1V
1

m (x1)−βeµxV
1

m (x)−βµ

∫ x1

x
e µsV

1

m (s)ds.

Since µ > 0, V is bounded and monotone then
V ′(−∞) = 0 and thus the first member is bounded
whereas p ≥ m the second member will not be
bounded, which is contradictory. In conclusion
lim

y→−∞
V (y) = +∞ and V is decreasing near to

(−∞). The proof is complete.

The following theorem gives the asymptotic be-
havior of the solution U of problem (P ) near the ori-
gin which is equivalent to giving the asymptotic be-
havior of the solution V of equation (12) near to−∞,
through the change of variable y = ex and the ex-
pression of V given by (11). Let us assume that V is
monotone. Then we have the following result.

Theorem 3.1. Assume that 0 < l ̸= Γ−1/(m+p). Let
U be a solution of problem (P ) on [0,+∞[. Then

lim
y→0+

y U ′(y)

U(y)
∈ {0, 1/m} . (32)

Proof. Using expression (11) and the change of vari-
able y = ex, then proving (32) is equivalent to prove:

lim
x→−∞

V ′(x)

V (x)
∈
{
m
α

β
, 1 +m

α

β

}
.

According to the previous Lemma, we have

lim
x→−∞

V ′(x)

V (x)
= L and lim

x→−∞
V ′(x) = +∞.

Dividing the equation (12) by V ′ , we obtain:

V
′′
(y)

V ′(y)
− a+

β

m
e µyV

1−m

m (y)

+µ
V

′
(y)

V (y)
− V −p/m(y)

V ′(y)
= 0.

Applying the Hopital's rule, we obtain:

L2 − aL+ µ = 0,

i.e.

L2 − (1 + 2m
α

β
)L+m

α

β
(1 +m

α

β
) = 0. (33)

Resolving this equation, we obtain:

L = m
α

β
or eslse L = 1 +m

α

β
.

Hence

lim
y→0+

y (Um)′ (y)

Um(y)
∈ {0, 1} .

Thus we proved the required result.

4 Conclusion
In the present paper, we have proven the global exis-
tence of positive solutions U of problem (P ). Under
some assumptions, These solutions behave like y−α/β

near+∞. We have given also their asymptotic behav-
ior near the origin.

The results obtained can be more developed by

finding the exact limit of
y U ′(y)

U(y)
at the origin and

also treating the case when the function yα/βU(y) is
not monotone. This will be part of our future work.
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