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Abstract: - In this study, the real quaternions and spinors are studied. The motivation of this study is to express 
the Hamilton matrices of real quaternions more shortly and elegantly, namely spinors. Therefore, firstly, two 
transformations between real quaternions and spinors are defined. These transformations are defined for two 
different spinor matrices corresponding to the left and right Hamilton matrices since the quaternion product is 
not commutative. Thus, the fundamental spinor matrix corresponding to the fundamental matrix of real 
quaternions is obtained and some properties are given for these spinor matrices. Finally, the eigenvalues and 
eigenvectors of the fundamental spinor matrix are obtained. 
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1  Introduction 
Quaternions were obtained by generalizing complex 
numbers to develop a new number system. The 
studies, [1], [2], [3], introduced a new multiplication 
operation with this into vector algebra and obtained 
the quaternions that may be possible in its division. 
Moreover, real quaternions have no commutative 
property. Quaternion product is a combination of the 
scalar multiplication, the Euclidean inner product, 
and the vector product. Thus, the set of real 
quaternions is a two-dimensional vector space on 
the set of complex numbers and a four-dimensional 
vector space on the set of real numbers. Today, the 
matrices are used in many branches of science and 
have a great importance. For this reason, the 
relationship of matrices with quaternions has 
attracted much attention. Since the quaternion 
product is not commutative, the product of the right 
and the product of the left with another quaternion 
are not equal. This is paired matrices with 4 4x  the 
type quaternions with two separate multiplications, 
thanks to a transformation. Thus, the left product 
represents the left matrix representation of a 
quaternion, and the right product represents the right 
matrix representation of a quaternion. These matrix 
representations are called Hamilton matrices 
corresponding to the Hamilton operators of the real 

quaternions. On the other hand, a lot of studies have 
been done about matrices whose elements are 
composed of quaternions. The studies on 
quaternions date back to 1936. The study, [4], gave 
the concept of similarity for matrices whose 
elements are real quaternions. Later, the study, [5], 
made a study on the eigenvalue and diagonalization 
of quaternion matrices. In addition, the study, [6], 
showed that every quaternion matrix, including a 
square, has a characteristic root, and in addition, 
similar matrices have the same characteristic root.  
The study, [7], gave one of the most important 
studies on quaternion matrices. 

With the introduction of Hamilton in 1843, 
quaternions have found many uses until today. 
Quaternions, which provide great convenience in 
engineering fields apart from geometry and algebra, 
are also of great importance in the mathematics of 
today's technology. It is also used in computer 
graphics, physics, mechanics, kinematics, computer 
games, animations, and digital imaging. Quaternions 
are of great importance in geometry, especially in 
the representation of the rotation of objects in 3-
dimensional space. Quaternions also have many 
uses in physics. The use of complex numbers in 
mechanical and electrical applications, especially in 
circuit analysis, limits the applications since they are 
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two-dimensional. In 3-dimensional applications, in 
cases where vectors are insufficient in some 
applications, quaternions add a fourth dimension to 
applications, providing great convenience. The most 
important of the fields where quaternions find 
applications in physics is Einstein's special and 
general relativity theories. Quaternions are used to 
describe electron spin in quantum mechanics. 
Quantum operators operating on a spinor can be 
represented by quaternions considering the 
relationship of 2 2x  matrices with quaternions. With 
the help of this approach, B. L. Van der Waerdan 
developed the mathematical formula of spinors in 
1930. Pauli in 1927 and Dirac in 1938 demonstrated 
spinor equations to describe the electron spin 
physically. 

The introduction of spinors is one of the most 
difficult topics in quantum mechanics. Even if spin-
1/2 is considered, some fundamental aspects of 
spinors, such as the effects of rotation on spinors, 
turn out to be difficult to explain. According to 
physicists, spinors are multilinear transformations. 
Thanks to this feature, spinors are mathematical 
entities somewhat like tensors and allow a more 
general treatment of the notion of invariance under 
rotation and Lorentz boosts. For mathematicians, 
spinors are vectorial objects and their multilinear 
features do not play any role. In addition, spinors 
have one index. In discussing vectors and tensors, 
there are two ways, in which we can proceed: the 
geometrical and analytical. To use the geometrical 
approach, we describe each kind of quantity in 
terms of its magnitudes and directions. In the 
analytical treatment, we use components. The study, 
[8], while investigating linear representations of 
simple groups developed the most general 
mathematical form of spinors. In geometric terms, 
the study, [9], introduced spinors. The study, [9], 
developed the spinor theory geometrically by giving 
only the geometric definition of spinors. Then, the 
spinor formulation of curves is given by the study, 
[10], considering Frenet vectors of curves in three-
dimensional Euclidean space. That study is an 
important study for the relationship between curve 
theory and spinors in differential geometry. Pauli 
matrices, which are a basis  2SU , and spinor 
algebra, which have two complex components, 
provide a nice representation of rotations in three-
dimensional real space. In this context, the study, 
[11], established a new relationship between 
quaternions and spinors and expressed quaternion 
kinematics with spinors. In the study, [11], a one-to-
one and linear relationship was established between 
spinors and real quaternions, and spinor formulation 

and thus spinor kinematics of spins represented by 
real quaternions were obtained. On the other hand, 
the study, [12], investigated quaternions and spinors 
in quantum mechanics by establishing a relationship 
between  3SO and  2SU . The study, [13], 
obtained a main expression of quaternions with 
matrices by 2 2x  by considering the isomorphism 
between real quaternions and spinors. Moreover, the 
properties of the fundamental real matrix associated 
with a quaternion were investigated and a frequently 
considered quaternion equation was examined, from 
which the nth power of a quaternion can be 
determined, [14]. Therefore, the spinor 
representations in Euclidean 3-space were studied 
using different frames such as Darboux, Bishop, q-
frame, [15], [16], [17]. The study, [18], obtained the 
Frenet spinor equations of Lie groups in Euclidean 
space with a bi-invariant metric and gave some 
special situations for these Lie groups with three-
dimensional. Later, studies on spinors in this field of 
differential geometry focused on special curves. The 
study, [19], revealed the spinor representations of 
the involute-evolute curves and the relationship 
between these spinors. Then, Bertrand curves were 
represented by spinors in the complex plane, and the 
study, [20], proved the relationship between spinors 
corresponding to these Bertrand curves. After that, 
the successor curve couple corresponded to two 
different spinors, and geometric interpretations were 
derived, [21]. In addition to that, the spinor 
representations of some curve pairs selected in 
Minkowski space were obtained, [22], [23], [24], 
[25] 

The motivation of this study is to obtain a new 
and easier matrix representation of the Hamilton 
matrices corresponding to the Hamilton operators of 
the real quaternions. For this, first, considering the 
isomorphism between spinors and quaternions, the 
spinor matrices corresponding to the right and left 
Hamilton matrices of real quaternions have been 
created. Since the quaternion product is not 
commutative, two separate spinor matrices 
corresponding to these Hamilton matrices have been 
formed. These matrices have been called the left and 
right Hamilton spinor matrices. Moreover, some 
properties of these right and left Hamilton spinor 
matrices have been given. Consequently, 
considering the left Hamilton spinor matrix as the 
fundamental spinor matrix some theorems and 
results about the eigenvalues and eigenvectors of the 
fundamental spinor matrix have been obtained. 
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2  Preliminaries 
 
2.1   Quaternions and Spinors 
In this section, we give some propositions and 
theorems about the real quaternions and spinors. Let 

0 1 2 3q q q q q    i j k  be real quaternions in the set 
of real quaternions H  where 0 1 2 3, , ,q q q q   and 

3, , i j k   such that 1= = = ii jj kk , 
=  ij ji k , = =jk kj i , = =ki ik j . In this 

case, the set of real quaternions H  can be 
expressed

3

0 1 2 3 0 1 2 3{ , , , , , , , }.q q q q q q q q q q       i j k i j kH R R

 
 
Now, we assume that the real quaternion 

0 1 2 3q q q q q    i j k  is q qq S V  where the 
scalar part of q  is 0qS q  and the vector part of q  
is 1 2 3 q q q q  V i j k , [26]. Let any two real 
quaternions be p pp S V  and q qq S  V H . 
Therefore, the addition of these real quaternions is 
expressed 

       p p q q p q p qp q S S S S        V V V V

 where :  H H H . Moreover, the scalar 
product of the real quaternion q qq S  V H  is 

written by  q q q qq S S      V V  where 

R  and :  R H H . Consequently, with the 
aid of these operations, we say that the system 
 , , , ,., H R  is a real vector space, briefly, this 
space can be denoted by H  where 

 pS , , , 1 i j kH  and  dim 4H , [26]. Assume 
that any two real quaternions are 

,p p q qp S q S    V V H . In this case, this 
quaternion product is 

,p q p q p q q p p qpq S S S S     V V V V V V  where 

“ , ” and “ ” are Euclidean scalar and vector 
products in 3E . We know that the product of two 
quaternions is a quaternion, the product of 
quaternions has the properties of associative and 
distributive. But the quaternion product is not 
commutative. Thanks to these properties, the system 
{ , , , ,., } H R  is an associative algebra, [26]. Let 
any real quaternion be q qq S  V H . Therefore, 
the conjugate of the quaternion q  is expressed as 

*
q qq S V . On the other hand, the norm of the 

real quaternion q  is defined by 

* 2 2 2 2
0 1 2 3( )N q qq q q q q     . In this case, if 

the norm of the quaternion qH  is ( ) 1N q   then, 
this quaternion is called the unit quaternion. In 
addition that, the inverse of the real quaternion q  is 

*
1

2 ( )
q

q
N q

     where 0q  , [26]. 

 
On the other hand, assume that the real quaternion 
qH . Therefore, we can write this quaternion as 

   0 1 2 3 0 1 2 3q q q q q q q q q       i j k   i  i j  
and we say that 

 1 2 1 0 1 2 2 3,q z z z q q z q q       j i iH C  is 

isomorphic with 2C  since the real quaternion q  
matches with the complex number 2

1 2z z j C , 
[26], [27]. In addition to that, the real quaternion can 
be written as 

   0 1 2 3 0 1 2 3 1 2 .q q q q q q q q q z z         i j k    i j ji

In this case, H  has the basis  ,1 j . Therefore, the 
transformation ( )qT p pq  is linear and the 2×2  
matrix corresponding to this linear transformation is 

0 1 2 3

2 3 0 1

q q q q

q q q q

  
 
   

i i

i i
, 

[26]. The algebra of the real quaternions H  
contains infinite sub-algebras derived from bases 
such as      , , ,......, , ,1 i 1 j 1 k , [28]. Therefore, 
the set of quaternions H  can be written according 
to many bases. Moreover, the study, [28], wrote the 
real quaternion q  as 

   0 1 2 3 0 2 1 3q q q q q q q q q       i j k j i j  
with the aid of the basis  ,1 i  and obtained the 

complex matrix 0 1 1 3

1 3 0 2

q q q q

q q q q

   
 

  

j j

j j
. 

 
Assume that 33C  is the complex vector space and 
the vector 3

1 2 3( , , )x x x x
3C  is isotropic vector 

where 2 2 2
1 2 3 0x x x   . The set of the isotopic 

vectors in the complex vector space 33C  
corresponds to a surface with two dimensional in 

23C . If this surface with two dimensional is 
parameterized by the complex numbers 1  and 2  
then, the equations ,2 2

1 1 2x = -   2 2

2 1 2x = ( + ) i , 
2 2 2

3 1 2x = -    are provided where i  is the complex 
unit, 2 1 i  and 1 2,  C . It can be easily seen 
that every isotopic vector in the complex vector 
space 33C  corresponds to two vectors in 2C  such 
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that 1 2( , )   and 1 2( , )   . On the contrary, these 
both vectors are given in this way in 2C  correspond 
to a single isotropic vector x . Cartan expressed that 
the complex vector with two dimensional such that 

1

2






 
  
 

 is called as spinor, [9]. Moreover, the 

study, [9], gave that the conjugate of the spinor 
1 2( , )    is C  i .  SO 3 , the group of 

rotations about the origin in a three-dimensional real 
vector space 3R , is homomorphic to  2SU , the 
group of unitary matrices with two dimensional 
2 2 . The elements of group  SO 3  move vectors 

in vector space 3R , while elements of group 
 2SU  move vectors with two complex 

components, i.e. spinors, [10], [29], [30]. With the 
aid of this homomorphism, the study, [31], paired an 

isotropic vector with a spinor 1

2






 
  
 

. Now, we 

assume that   is a vector whose Cartesian 
components are the complex symmetric 2 2  
matrices such that                     

1 2 3

1 0 0 0 1
, ,

0 1 0 1 0
  

     
       

      

i

i
. 

These matrices are produced in Pauli matrices 

1 2 3

0 1 0 1 0
, ,

1 0 0 0 1
P P P

     
       

     

i

i
 with the 

help of the matrix 
0 1
1 0

C
 

  
 

, [31]. Therefore, the 

isotropic vector 3+ a b Ci  can be written by any 
spinor   such that = t+  a bi . In addition to that, 
the real vector 3c R , orthogonal with the vectors 

3, a b R , can be expressed  


 c  in terms of 

the spinor   where  " "


 is the mate of the spinor 

such that  C 


  , [31]. 
 
The study, [11], gave the relation between real 
quaternions and spinors with the transformation

:f H S  such that                           

3 0
0 1 2 3

1 2

( ) ( )
q q

q f q f q q q q
q q


 

        
 

 
 

i j k
i

i
.                         

In addition, the study, [11], obtained that the 
bijective transformation f  provides the following 
equations 

i) ( ,
ii) ( ) ( ),

f q+ p)= f(q)+ f(p)

f q f q   R
      

for ,p qH . Therefore, the transformation f  is 
linear.  
 
2.2 The Hamilton Operators of Real 

Quaternions 
We assume that any real quaternion is 

0 1 2 3q q q q q     i j k H  and the linear 
transformation h  is as  

                    
 

:h

p h p qp







  

H H
.                      (1) 

In this case, we can write the matrix corresponding 
to basis  , , , 1 i j k  

              

0 1 2 3

1 0 3 2

2 3 0 1

3 2 1 0

( )

q q q q

q q q q
H q

q q q q

q q q q



   
 


 
 
 

 

 

with the aid of the transformation h . Similarly, 
with the aid of the linear transformation 

                   
 

( ) :
.

h q

p h p pq







  

H H
                       (2) 

Therefore, the matrix corresponding to the basis 
 , , , 1 i j k  can be obtained as 

           

0 1 2 3

1 0 3 2

2 3 0 1

3 2 1 0

( )

q q q q

q q q q
H q

q q q q

q q q q



   
 


 
 
 

 

                                     

according to the transformation h . Here, the 
matrices ( )H q  and ( )H q  are called the left and 
right Hamilton matrices corresponding to the 
Hamilton operators h  and h  of the real 
quaternion q , [27], [32]. On the other hand, we 
suppose two real quaternion 0 1 2 3p p p p p    i j k  
and 0 1 2 3q q q q q    i j k . In this case, the matrix 
form of the product qp  of these real quaternions is  

0 0 1 1 2 2 3 3

1 0 0 1 3 2 2 3

2 0 3 1 0 2 1 3

3 0 2 1 1 2 0 3

0 1 2 3 0

1 0 3 2 1

2 3 0 1 2

3 2 1 0 3

( )

q p q p q p q p

q p q p q p q p
qp

q p q p q p q p

q p q p q p q p

q q q q p

q q q q p
H q P

q q q q p

q q q q p



   
 

  
 
   
 

   

     
   


    
   
   

   

. 
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Similarly, the matrix form of the product pq  of 
these real quaternions is 

0 0 1 1 2 2 3 3

1 0 0 1 3 2 2 3

2 0 3 1 0 2 1 3

3 0 2 1 1 2 0 3

0 1 2 3 0

1 0 3 2 1

2 3 0 1 2

3 2 1 0 3

( )

q p q p q p q p

q p q p q p q p
pq

q p q p q p q p

q p q p q p q p

q q q q p

q q q q p
H q P

q q q q p

q q q q p



   
 

  
 
   
 

   

     
   


    
   
   

   

,  [27]. 

 
Moreover, the representation ( )H q  of a quaternion 
q  is well-known in algebra. Since ( )H q  plays a 
crucial role in our subsequent considerations, we 
call it as the fundamental matrix. 
 
Theorem 2.1: Let any real quaternion be qH . In 
this case, the Hamilton matrices H   and H 

produced from the operators h  and h  are 
orthogonal, [27]. 
 
Theorem 2.2: The product of Hamilton matrices 
H   and H   are commutative. Therefore, there is 
equality ( ) ( ) ( ) ( )H q H p H p H q    , [27]. 
 
Theorem 2.3: Let any two real quaternions be 

,p qH  and R . Hence, the Hamilton matrices  
H   and H   provide the following properties; 

2 ( )

i)  p = q H (p)= H (q) H (p)= H (q)

ii)  H (p + q)= H (p)+ H (q),  

H (p + q)= H (p)+ H (q)

iii) H (pq)= H (p)H (q),  H (pq)= H (q)H (p)

iv) H ( q )= H (q), H ( p)= H (q)

2v) det H (q) = N (q), det H (q) = N q

vi) 

   

    

  

  

     

   

      
      

 

 

11

11 , ( ) 0

H (q )= H (q) ,

H (q )= H (q) N q


   


   

 
 

3   Main Theorems and Proofs 
In this section, we establish a relationship between 
quaternions and spinors and we give spinors 
corresponding to real quaternions. Then, we express 

the spinor matrices corresponding to Hamilton 
matrices of real quaternions. In addition to that, we 
calculate the eigenvalues and eigenvectors of these 
spinor matrices, which we call Hamilton spinor 
matrices, after giving some properties of these 
matrices. Consequently, we obtain some 
conclusions. 
 
3.1 Spinor Representation of Real 

Quaternions 

Let 0 1 2 3 q q q q q    i j k H  be an arbitrary real 
quaternion where 0 1 2 3, , ,q q q q  , 3, , i j k , and 
H  is real quaternion space. In this case, we can 
write the real quaternion q  with regard to the basis 
 k,i  with left multiplication as  
                    3 0 1 2( ) ( )q q q q q   i ik i                 (3) 
where = = i ji k  and since 2 1 i  we can consider 
that i  is imaginer unit. Therefore, the quaternion q  
can be expressed in terms of two complex numbers 

1 3 0 2 1 2q q q q      i i C . So, we can give the 
following definition. 
 
Definition 3.1: Let 0 1 2 3 q q q q q   i j k  be a real 
quaternion in H . In this case, the set of real 
quaternions is defined by  

                         
 1 2 1 3 0 2 1 2,q q q q q          k iH Ci i                                      

(4) 
where ‘’  ‘’ is a complex conjugate. 
As a result of Definition 3.1, according to the 
expression given in equation (4) the following 
transformation can be given. 
 
Let the real quaternion be q  written by in terms of 
the spinor  . Therefore, we can give the 
transformation between quaternions and spinors as       

3 0
0 1 2 3

1 2

:

( ) ( )

f

q q
q f q f q q q q

q q




 
        

 
i j k

H S

i

i

                                                                                 
(5) 

with aid of the equation (3), [11]. As is known, the 
vector space H  is isomorphic to the space 2C , 
[33]. Therefore, the transformation f  defined in 
equation (5)  is isomorphism. 
 
Now, we give the following definition about the 
conjugate of spinors based on the relationship 
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between quaternions and spinors in the equation the 
transformation f . 
 
Definition 3.2: Suppose that the quaternion 

0 1 2 3 q q q q q    i j k H  matches the spinor 

3 0

1 2

q q

q q


 
  

 
S

i

i
. In this case, the four different 

definitions of conjugate for spinors; 
 
i) The complex conjugate   of the spinor 

1

2






 
  
 

S  corresponding to the real quaternion 

qH  is defined by  

                   1 3 0

1 22

.
q q

q q






   
    

   

i

i
 

ii)  The spinor  *  corresponding to the quaternionic 
conjugate *

0 1 2 3 q q q q q   i j k  of the real 
quaternion qH  is defined by 

                   3 0* 1

1 22

.
q q

q q






   
     

   

i

i
                                                                        

iii)  The spinor conjugate   of the spinor S  by 
given, [9], is defined by 

      2 11 2

0 32 1

0 1
.

1 0
q q

q q

 


 

      
                    

i
i i

i
         

(6)                                         
iv)  The mate of the spinor S  by given, [31], is 
defined by 

        1 21 2

3 02 1

0 1
1 0

q q

q q

 


 

        
                   

i

i
.     

                                                  
Therefore, the following corollaries can be given. 
 
Corollary 3.1: Let q  be an arbitrary real 
quaternion and   be the spinor corresponding to 
this quaternion  q . There is the relationship  

                                


 i  
between the spinor conjugate and the mate of the 
spinor  . 
 
Corollary 3.2: Consider that the spinor S  
corresponds to the real quaternion qH . In this 
case, the spinor equation of the norm of  q  is given 
that 

                        t t t tN C C    


  i  

where 
0 1
1 0

C
 

  
 

. 

 
Proof: Suppose that the spinor S  corresponds 
to the real quaternion qH . Therefore, we write  
                    

1
2 1

2

2 2 2 2
1 1 2 2 0 1 2 3

0 1
1 0

( )

t

tC

q q q q N


   



    

                  

      

 

and  

               
2 2 2 2
0 1 2 3 ( )

tt
t t t t tC C C C C

q q q q N

     



  

    

i i i
 

where  
0 1
1 0

C
 

  
 

. 

 
3.2   Hamilton-Spinor Matrices 
The quaternion product is not commutative in the 
quaternion algebra therefore, the Hamilton matrices 
corresponding to the right and left quaternion 
products are different. In this case, in this section, 
we obtain the spinor matrices for the right and left 
Hamilton matrices, separately. Moreover, we call 
these spinor matrices the left and right Hamilton 
spinor matrices. Then, we give some properties and 
theorems for these spinor matrices. 

We know that the set of quaternions can be 
written as in equation (4). In this case, the operator 
in equation (1) is linear transformation therefore, 
this linear transformation corresponds to a matrix. 
Therefore, the following theorem can be given. 
 
Theorem 3.3: Let 0 1 2 3 q q q q q    i j k H  be 
an arbitrary real quaternion written as 1 2q   k i  
where 1 3 0 2 1 2,q q q q      Ci i . Therefore, 
the left Hamilton-spinor matrix corresponding to the 
left Hamilton matrix of quaternion qH  is given 
by 

                0 3 2 1

2 1 0 3

.L

q q q q

q q q q


   
  

  

i i

i i
                        

(7) 
 
Proof: Suppose that the real quaternion 

0 1 2 3 q q q q q    i j k H  is written as 

1 2.q   k i  In this case, if we consider Hamilton 
operator in equation (1) then, we obtain  
             1 2 1 2h        k k k i k k k i k           
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(8) 
and  
             1 2 2 1h         i k i i i k k i k            

(9)  
where 1 1 k k , 2 2 k k , 1 1 i i  and 

2 2 i i . Therefore, we find that the matrix form 
of the equations (8) and (9) is  

0 3 2 1

2 1 0 3
L

q q q q

q q q q


   
  

  

i i

i i
. 

This matrix 
L  is called the left Hamilton spinor 

matrix corresponding the left Hamilton matrix of 
real quaternion qH . The proof is completed. 
 
Moreover, since ( )H q  is the fundamental matrix 
for the real quaternion q  we can call the left 
Hamilton spinor matrix 

L  the fundamental spinor 
matrix. 

 
Corollary 3.4: For the fundamental spinor matrix  

L  the statement  
( ) Lq p H q P      

is provided where   is the spinor corresponds to 
real quaternion p  with the aid of the transformation 
f , [11]. 

 
Now, for the right Hamilton spinor matrix, we need 
to define a new transformation similar to the 
equation (5). For this, we can write that the real 
quaternion q  with regard to the basis  k,i  as 
                   3 0 1 2( ) ( )q q q q q   i ik i                     

(10) 
with right multiplication where = = i ji k . 
Therefore, the quaternion q  can be expressed in 
terms of 1 3 0 2 1 2,q q q q     i i C . In this 
case, the set of real quaternions can be defined by   

 1 2 1 3 0 2 1 2,q q q q q          k iH Ci i

where ‘’ ‘’ is a complex conjugate. Moreover, 
similar to the transformation f , with the aid of 
equation (10) the transformation *f  can be given as  

*

3 0
* 0 1 2 3 *

1 2

:

( ) ( ) .

f

q q
q f q f q q q q

q q




 
        

 
i j k

H S

i

i

                      (11) 
 

Theorem 3.5: Let the real quaternion qH  be 

1 2 1 2q       k i k i  where 1 3 0q q   i  and 

2 1 2q q   Ci . The right Hamilton spinor matrix 
of this quaternion is 

                   0 3 2 1

2 1 0 3

.R

q q q q

q q q q


  
  

   

i i

i i
                  

(12) 
 
Proof: Assume that the real quaternion 

0 1 2 3 q q q q q    i j k H  is 1 2q   k i . Then, 
with the aid of the Hamilton operator in equation (2) 
we can write 

  1 2 1 2( (h        k k k k i k )k k )i  
and, similarly 

  1 2 2 1( (h         i i k i i k )k k )i  

where  1 1 k k , 2 2 k k , 1 1 i i  and 

2 2 i i . Consequently, we get  

                0 3 2 1

2 1 0 3
R

q q q q

q q q q


  
  

   

i i

i i
. 

Therefore, the matrix 
R  is called the right 

Hamilton spinor matrix corresponding to the left 
Hamilton matrix of the real quaternion q . 
 
Corollary 3.6: For the right Hamilton spinor matrix 
we can write  

*( ) Rp q H q P      
where *  is the spinor corresponding to the real 
quaternion p  with the aid of the function *f . 
 
Now, we give the relationship between the Hamilton 
spinor matrices 

R , 
L  and the Pauli matrices. 

 
Theorem 3.7: Let 0 1 2 3 q q q q q    i j k H  be 
any real quaternion and 

R  and 
L  be the left and 

right Hamilton spinor matrices corresponding to the 
real quaternion q . Therefore, these spinor matrices 
can be written as  

0 2 1 1 2 2 3 3L q I q P q P q P    i i i  
and 

0 2 1 1 2 2 3 3R q I q P q P q P    i i i  
where 2

2 2I C   is unit matrix with 2 2  and 
2

1 2 3 2, ,P P P C  are Pauli matrices.  
 
Proof: Let the left Hamilton spinor matrix be 

L . 
Then, from the equation (7) we get 
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1
2

1

2

3

1 0
1,

0 1

0 1
,

1 0

0
,

1

1 0
, .

0 1

L

i

L

j

L

k

L

for q I

for q i P

for q j P

for q k P









 
   

 

 
     

 

 
     

 

 
     

 

i i

i
i i

i

i i

 

Hence, we have 0 2 1 1 2 2 3 3L q I q P q P q P    i i i . 
Similarly, for the right Hamilton spinor matrix in 
equation (12) we obtain for 1q   1

2R I  , for q  i  

1
i

R P  i , for q  j  2
j

R P  i  and for q  k  

3
k

R P  i . Consequently, the equation 

0 2 1 1 2 2 3 3R q I q P q P q P    i i i  is found. 
 
Theorem 3.8: Let any two real quaternions be 

,p qH  and the left and right Hamilton spinor 
matrices corresponding to these quaternions be 

,L R   and ,L R  , respectively. Then, the 
following statement is provided; 

   

* *

*

2 2

1 * 1

*

( ) , ( ) ,
) ( ) , ( ) ,

( ) , ( ) ,
1 , 1 ,

ˆ , ,

( ) , ( ) .

L L L R R R

L L R R

L L R R

L R

L RL
R

L L L L R R R R

i)  = + = +

ii = =

iii) = =

iv) I I

v) = P = P

vi) = =

       

   

   

   

       

 

 

 

 i i

 

where  ,  R C1 and 2
2

0

0





 
   

 
C  . 

Proof:  Assume that ,L R   and ,L R  , are the left 
and right Hamilton spinor matrices corresponding to 
any two real quaternions p  and q , respectively. 
Therefore, we can give the proof. 
 
i)  Let , S   be two spinors corresponding to 
the real quaternions p  and q , respectively. Then, 
with the aid of the transformation f  in the equation 
(5) we write 

 

 
3 3 0 0

1 1 2 2

p q p q

p q p q
 

    
   

   

i

i
  

and the left Hamilton spinor matrix of the spinor 
    is obtained as  

 
       

       
0 0 3 3 2 2 1 1

2 2 1 1 0 0 3 3

0 3 2 1 0 3 2 1

2 1 0 3 2 1 0 3

.

L

L L

p q p q p q p q

p q p q p q + p q

p p p p q q q q

p p p p q q q + q

 

 

      
 

    

     
 

  

 

 
 
 

   
   
   

i i

i i

i i i i

i i i i


 
Similarly, for the right Hamilton spinor matrix, the 
proof is completed easily.  
 
ii) We assume that R  and the spinor 

3 0

1 2

.
q q

q q

 


 

 
  

 

i

i
 Then, we get the left Hamilton 

spinor matrix of the spinor   

          
  0 3 2 1

2 1 0 3

0 3 2 1

2 1 0 3

.

L

L

q q q q

q q q q

q q q q

q q q q

   


   

 

   
  

  

   
  

  

i i

i i

i i

i i

 

On the other hand, we suppose that the spinor *  
corresponds to the real quaternion q  with the aid of 
the transformation *f  in the equation (11). In this 
case, the right Hamilton spinor matrix of the spinor 

*  is 

          
  0 3 2 1

*
2 1 0 3

0 3 2 1

2 1 0 3

.

R

R

q q q q

q q q q

q q q q

q q q q

   


   

 

  
  

   

  
  

   

i i

i i

i i

i i

 

 
iii)  Suppose that the spinor   corresponds to the 
real quaternion qH with the aid of the 
transformation f  and a b   Ci  . Then, we get 

   

   
3 0 0 3

1 2 2 1

aq bq aq bq

aq bq aq bq


    
  

   

i

i
 

and have the left Hamilton spinor matrix of the 
spinor   

 
   

   

   

   

 

 

0 3 3 0 2 1 1 2

2 1 1 2 0 3 3 0

0 3 2 1

2 1 0 3

0
.

0

L

aq bq aq bq aq bq aq bq

aq bq aq bq aq bq aq bq

q q q q a b

q q q q a b


      


      

   


  

 
 
 

   
   
   

i i

i i

i i i

i i i

 
Consequently, we obtain   LL

    where 

0

0





 
   

 
. Similarly, the proof for the right 

Hamilton spinor matrix can be obtained.  
 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2023.22.93 Tülay Eri̇şi̇r, Emrah Yildirim

E-ISSN: 2224-2880 861 Volume 22, 2023



iv)  We consider that the real quaternion q  is 1q  . 
In this case, the spinor corresponding to  1q   is 

1
0


 

  
 

. Consequently, we find that the left 

Hamilton spinor matrix related to the spinor   is 

2

1 0
0 1L I
 

  
 

. Similarly, we get the right 

Hamilton spinor matrix for the real quaternion 1q   

as 2

1 0
.

0 1R I
 

  
 

 

 
v)  Let the spinor corresponding to the real 
quaternion q  be   and the spinor conjugate of the 

spinor   be 2 1

0 3

ˆ
q q

q q


 
  

  

i

i
 in the equation (6). In 

this case, the left Hamilton spinor matrix of the 
spinor ̂  can be obtained 

  1 2 3 0

3 0 1 2

0 3 2 1
1

2 1 0 3

ˆ

0 1
.

1 0

L

L

q q q q

q q q q

q q q q
P

q q q q





  
  

   

     
        

i i

i i

i i
i i

i i

 

Similarly, we obtain that the right Hamilton spinor 
matrix of the spinor *  is  

    
  1 2 3 0

*
3 0 1 2

0 3 2 1
1

2 1 0 3

0 1
.

1 0

R

R

q q q q

q q q q

q q q q
P

q q q q





  
  

   

    
         

i i

i i

i i
i i

i i

 

vi)  For the spinors   and   corresponding to the 
real quaternions ,p qH  we can write 

 

 

0 3 2 1 3 0

2 1 0 3 1 2

0 3 3 0 2 1 1 2 0 0 1 1 2 2 3 3

2 3 1 0 0 1 3 2 2 0 1 3 0 2 3 1

.

L

q q q q p p

q q q q p p

q p q p q p q p q p q p q p q p

q p q p q p q p q p q p q p q p

 
   


  

      


      

   
   

  

 
 
 

i i i

i i i

i

i

 
Therefore, we get the left Hamilton spinor matrix 
corresponding to the spinor L S  as 

  0 3 2 1 0 3 2 1

2 1 0 3 2 1 0 3

.L L LL

q q q q p p p p

q q q q p p p p
   

        
    

      

i i i i

i i i i

 
Similarly, we obtain  

 

 

0 3 3 0 2 1 1 2 0 0 1 1 2 2 3 3

*

2 3 1 0 0 1 3 2 2 0 1 3 0 2 3 1

R

q p q p q p q p q p q p q p q p

q p q p q p q p q p q p q p q p
 

      


       

 
 
 

i

i

 

and consequently  * .R R RR
     

 
Proposition 3.9: The left and right Hamilton spinor 
matrices 

L  and 
R  related with the real quaternion 

q  are normal. 
 
Proof: Suppose that   is the left Hamilton spinor 
matrix related to the real quaternion .q  Then, we 
obtain  

0 3 2 1 0 3 2 1

2 1 0 3 2 1 0 3

2 2 2 2
0 1 2 3

2 2 2 2
0 1 2 3

2
2

0
0

( ) .

t

L L

q q q q q q q q

q q q q q q q + q

q q q q

q q q q

N q I

 
       

    
      

   
  

   



i i i i

i i i i

 

Similarly, if we calculate the equation t

L L   then, 

we have 2
2( )t

L L N q I   . Consequently, we get 
t t

L L L L     and we say that the left Hamilton 
spinor matrix 

L  is normal. Similar to the left 
Hamilton spinor matrix we get 

2
2( )t t

R R R RN q I      and we see easily that the 
right Hamilton spinor matrix 

R  is normal. 
Consequently, the proof is completed.  
 
Now, we calculate the determinant of the left and 
right Hamilton spinor matrices for the real 
quaternion 0q  . Hence, we get 

2det( ) det( ) ( )L R N q   . 
In this case, we can give the following corollaries. 
 
Corollary 3.10: The left and right Hamilton spinor 
matrices 

L  and 
R  related with the real quaternion 

0q    are regular. 
 
Corollary 3.11: The inverses of the left and right 
Hamilton spinor matrices where 0q  H  are 

0 3 2 11
2

2 1 0 3

0 3 2 11
2

2 1 0 3

1 ,
( )

1 .
( )

L

R

q q q q

q q q qN q

q q q q

q q q qN q









  
  

  

   
  

 

+

+

i i

i i

i i

i i

 

 
Corollary 3.12: The inverses of the left and right 
Hamilton spinor matrices can be written as  

   1 * 1 *
*2 2

1 1,
( ) ( )L RL RN q N q

       
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respectively, where  *

L
  and  *

* R
  are the left 

and right Hamilton spinor matrices related with the 
quaternion conjugate *q . 
 
Especially, if we consider that the real quaternion q  
is unit then, we get    1 * 1 *

*,L RL R
       

 
Corollary 3.13: The left and right Hamilton spinor 
matrices are unitary matrices. It should be 
emphasized that , (2)L R SU    
 
3.3  The Eigenvalues and Eigenvectors of the 

Fundamental Spinor Matrix 
In this section, we obtain the eigenvalue and 
eigenvector of the fundamental spinor matrix (i.e. 
left Hamilton spinor matrix) 

L . Similar equations 
can be obtained for the right Hamilton spinor matrix 

R .  
 
We consider that the real quaternion q  is pure real 
quaternion q  q . Therefore, the fundamental spinor 
matrix p

L  corresponding to the pure quaternion q  
is obtained as        

                   3 2 1

2 1 3

q q q

q q q

   
  

 
L

i i

i i
 . 

 

Lemma 3.14: Let the fundamental spinor matrices 
be 

L ,
L  corresponding to the real quaternion q  

and the pure real quaternion q . Hence, the 
relationship between these fundamental spinor 
matrices is 

0 2 .L q I   L  
Proof: Suppose that the fundamental spinor 
matrices

L  and 
L  are related with q  and the pure 

quaternion q , respectively. Then, we obtain that 

0 3 2 1

2 1 0 3

3 2 1
0 0 2

2 1 3

1 0
.

0 1

L

q q q q

q q q q

q q q
q q I

q q q


   

  
  

    
         

L

i i

i i

i i

i i


 

 
Theorem 3.15: The eigenvalues of the fundamental 
spinor matrix 

L  are 1 0 ( )q N   qi  and

2 0 ( )q N   qi  where 0q q  q  and q  is vectorial 
part of the real quaternion .q  
 
Proof: We suppose that the 

L  is the fundamental 
spinor matrix. We know that the eigenvalues of the 

spinor matrix 
L  are obtained with the equation 

L     where C  are the eigenvalues. 
Therefore, if we calculate the equation 

 2det 0L I    we get  

  0 3 2 1
2

2 1 0 3

det 0L

q q q q
I

q q q q


 



    
   

   

i i

i i
 

and we obtain that the characteristic polynomial is  
2 2 2 2 2

0 2 1 0 32 0q q q q q       . 
Moreover, if we solve this second-order equation 
then we get  
      1 0 2 0( ), ( ) .q N q N     q q C.i i           

(13)                                            
 
Corollary 3.16: Let  0 1 2 3q q q q q   i j k  be any 
real quaternion 

L  be the fundamental spinor matrix 
corresponding to the real quaternion q  and 

L  be 
the fundamental spinor matrix corresponding to the 
pure real quaternion 1 2 3q q q  q i j k . Therefore, 
the eigenvalues of the fundamental spinor matrix 

L  are found by adding 0q  to the eigenvalues of  

L . 
 
Proof: Let  

L  and 
L  be the fundamental spinor 

matrices corresponding to the real quaternion q  and 
the pure real quaternion q  respectively. Now, we 
calculate the roots of the characteristic polynomial 

 2det 0L I  . Therefore, we get  

  2 2 2 2
2 3 2 1det 0L I q q q        

and 
              1 2( ), ( ) .N N    q q Ci i                    

(14) 
Consequently, if we use equations (13) and (14) we 
say that the eigenvalues of the fundamental spinor 
matrix 

L  are found by adding 0q  to the 
eigenvalues of the fundamental spinor matrix  

L . 
 
Theorem 3.17: Assume that 

L  is the fundamental 
spinor matrix corresponding to the pure real 
quaternion  q . Moreover, we consider that the 
eigenvalue of 

L  is  . Therefore, the eigenvalue of 
the spinor matrix  2

L  is 2 . 
 
Proof: Suppose that the fundamental spinor matrix 
corresponding to the real pure quaternion q  is 

L . 
Now, we find the spinor matrix 2

L  therefore, we 
obtain  
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 
2 2 2

23 2 1
22 2 2

3 2 1

0
.

0
q q q

N I
q q q

   
   

   

2

L q  

If we assume that the roots of the characteristics 
polynomial 2

2det( ) 0L I   are 1  and 2  then, 
we have   
                                 2

1,2 ( ).N   q                           
(15)                                                                                                      

 
Consequently, considering the equations (14) and 
(15) we say easily that if the eigenvalue of the 
spinor matrix 

L  is   then, the eigenvalue of the 
spinor matrix  2

L  is 2 . 
 
Corollary 3. 18: The fundamental spinor matrix 

L  
corresponding to the real quaternion q  is a non-
defective matrix. 
 
Proof: We see that the number of eigenvalues of the 
fundamental spinor matrix 

L  is equal to its number 
of dimensions. In this case, the fundamental spinor 
matrix is a non-defective matrix. 
 
Theorem 3.19: The eigenspaces corresponding to 
the  1 0q N   qi  and  2 0q N   qi  
eigenvalues of the fundamental spinor 

L  are, 
respectively, 

 L  S    and    L  S  

where the spinors are 3

1 2

( )q N

q q


 
  

 

q

i
, 

3

1 2

( )q N

q q


 
  

 

q

i
 and ,L L   are the fundamental 

spinor matrices of the spinors , .   
Proof: Let the fundamental spinor matrix of the 
spinor S  corresponding to the real quaternion 
qH  be 

L . Firstly, we obtain the eigenspace for 
the eigenvalue  1 0 .q N   qi Then, we consider 

the spinor  3

1 2

( )
.

q N

q q


 
  

 

qi i

i
 In this case, the 

fundamental spinor matrix of the spinor   is 

             
 

 
3 2 1

2 1 3

( )
.

( )L

N q q q

q q N q


    
  

  

q

q

i i

i i
                                  

Moreover, let S  be any spinor such that 
3 0

1 2

 


 

 
  

 

i

i
. In this case, the spinor 

L  S  is 

calculated as 

                  
 

 

3 0 2 1 1 2 0 1 1 2 2 3 3 3

2 3 1 0 3 2 2 2 0 1 3 3 1 1

( ) ( )

( ) ( )
L

q q q N q q q N

q q q N q q q N

       
 

       

       



      

 
  

q q

q q

i

i

 

On the other hand, for the fundamental spinor 
matrix 

L  we know that 

       
 

 
3 2 1

1 2
2 1 3

( )
.

( )L

N q q q
I

q q N q
 

    
   

   

q

q

i i

i i
 

                                  
If we calculate the equation  1 2L LI     then, 

we obtain  1 2

0
0.

0L LI   
 

   
 

 Consequently, 

the eigenspace for the eigenvalue  1 0q N   qi  
consists of the spinors .L    
 
Similarly, the eigenspace for the eigenvalue 

 2 0q N   qi  of the fundamental spinor matrix 

L  can be obtained. For this, we consider the spinor 
 3

1 2

( )
.

q N

q q


  
  

 

qi i

i
 Therefore, the fundamental 

spinor matrix of the spinor   is 

            
 

 
3 2 1

2 1 3

( )
.

( )L

N q q q

q q N q


    
  

   

q

q

i i

i i
                                                  

Consequently, if we make the necessary 
arrangements we obtain  1 2 0L LI      and see 
that the eigenspace for the eigenvalue 

 2 0q N   qi  consists of the spinors .L   
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