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Abstract: -In this paper, we are interested in solving the data completion problem for the Laplace equation. It
consists to determine the missing data on the inaccessible part of the boundary from overspecified conditions in
the accessible part. Knowing that this problem is severely ill-posed, we consider its formulation as an optimization
problem usingTikhonov regularization. Then, we consider an optimization approach based on adapted Real Coded
GeneticAlgorithm (RCGA) to minimize the cost function and recover the missing data. The performed numerical
simulations, with different domains, illustrate the accuracy and efficiency of the proposedmethodwith an adequate
regularization parameter, in addition to the good agreement between the numerical solutions and different noise
level of the given data.
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1 Introduction
According to [1], two problems are said to be ”in-
verses” of each other if the formulation of one of them 
has implications for the other. This definition is some-
what arbitrary, but it does give the two problems a 
symmetrical role. A more operational way to define 
an inverse problem is that it consists to determine 
causes knowing effects. In other words, an inverse 
problem is the opposite of a direct problem, which 
consists of deducing effects given known causes.

The data completion problem for the Laplace 
equation is a important type of inverse problem which 
aims to retrieve Cauchy data for the inaccessible part 
of a boundary using measurements obtained from the 
accessible one. This problem arises in various appli-
cations. For instance, in Electrocardiography (ECG),
[2], where the objective is to estimate the electrical 
activity within the heart based on surface measure-
ments, assuming constant conductivity. In Electroen-
cephalography (EEG), [3], the goal is to estimate the 
current source generated by neuronal activity, consid-
ering the electrical conductivity of tissue and mea-
surements taken at specific points on the head’s sur-
face. In fissure detection, [4], the aim is to pinpoint 
and characterize cracks in a material using measure-
ments obtained at the material’s boundaries. In cor-
rosion detection, [5], the emphasis is to deduce the 
shape of the corrosive boundary based on the col-
lected data.

The data completion problem for the Laplace 
equation is known to be severely ill-posed problem. It

does not satisfy the conditions of the well-posed prob-
lem, [6], as it is sensitive to measurement errors and 
can lead to unstable and inaccurate results. To rem-
edy this, we need to introduce regularization methods. 
Among the well-known methods for inverse prob-
lems, we can cite; sequential function specification 
methods, [7], iterative methods [8], [9], and Tikhonov 
regularization, [10]. These methods try to find a bal-
ance between accuracy and stability.

In inverse problems, we aim to find the model pa-
rameters that best explain the observed data. This can 
be done by defining an objective function which mea-
sures the discrepancy between the model output and 
the data, and then minimizing that function. There 
are two main classes of optimization methods: De-
terministic optimization methods are best suited for 
continuously differentiable objective functions with a 
limited number of local extrema. In contrast, stochas-
tic optimization methods involve random sampling of 
the objective function across the entire feasible space 
and can be applied to both differentiable and non-
differentiable objective functions.

Genetic algorithms (GAs) represent a subset of 
metaheuristics, which includes artificial bee colony,
[11], particle swarm optimization, [12], ant colony 
optimization, [13], and the Bat algorithm, [14], 
among others. These methodologies draw inspiration 
from natural phenomena and have demonstrated their 
effectiveness in addressing a multitude of challenges 
spanning various domains. Although, GAs do not of-
fer a guarantee of identifying the absolute best solu-
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tion, they excel in identifying solutions that closely 
approach the optimal outcome within a reasonable 
time frame.

GAs have demonstrated notable success in tack-
ling a range of inverse problems. For instance, they 
have been applied to estimate interaction mechanisms 
among system components, [15], solve groundwater 
source identification challenges, [16], address non-
linear IHCP scenarios, [17], compute minimizers of 
Tikhonov functionals, [18], detect the shape of un-
known boundary segments in the solution domain 
for the Laplace equation, [19], identification of the 
Robin coefficient, [20], solve support vector 
machines (SVMs), [21], reconstruct epicardial 
potentials from body surface potentials, [22], identify 
isotropic inclu-sions through a single boundary 
measurement, [23], solve IHCP by minimizing a 
modified version of Tikhonov’s functional, [24], 
and address the inverse problem of aerodynamic 
shape optimization, [25].

The main feature of our approach is the use of an 
optimization approach based on a Real Coded Genetic 
Algorithm (RCGA) as a powerful optimization tool 
capable of handling complex, non-monotonic objec-
tive functions. In [26], the authors addressed the data 
completion problem for the Laplace equation by re-
constructing the Dirichlet condition in the inaccessi-
ble part of the boundary of a regular domain, without 
resorting to Tikhonov regularization. In this study, we 
extend this approach to two scenarios: regular and 
irregular domains, aiming to estimate the unknown 
Dirichlet and Neumann conditions. In addition, we 
assess the stability of the proposed approach by ex-
amining the optimal choice of the regularization pa-
rameter. Finally, we conduct a thorough analysis of 
the solution’s stability under varying levels of noise.

The rest of this paper is organized as follows: Sec-
tion 2 provides the mathematical formulation of the 
problem, including the differences between the for-
ward and inverse problem, and its formulation as an 
optimization one. Section 3 provides a brief overview 
of GAs, in addition to the proposed approach based on 
adapted RCGA . Section 4 presents numerical results 
and discussion. Finally, Section 5, summarizes the 
main results and provides concluding thoughts.

2 Mathematical formulation

2.1 Forward and inverse problem
We consider the following Elliptic Cauchy problem:

−∆u = 0 in Ω

u = f on Γc

∂nu = g on Γc

(1)

where Ω ⊂ R2 is an open bounded set with Lips-
chitz continuous boundary Γ, which consists of tow

disjointed parts Γ = Γc ∪ Γi, with Γc is the accessi-
ble part of the boundary and Γi is the inaccessible 
part (Fig.1).

Figure 1: Example of the domain

The functions f and g are the given Dirichlet and
Neumann conditions, and ∂nu is the normal deriva-
tive of the unknown function u.

Forward problem: the aim of the forward prob-
lem is to find u, by solving the Cauchy problem for
Laplace equations from knowledge of the Cauchy
data uD = u/Γi

or the uN = ∂nu/Γi
.

Inverse problem: the aim of the inverse problem
is to estimate the Cauchy data (uD, uN ) on the inac-
cessible part of the boundary Γi from the knowledge
of the Cauchy data f and g on the accessible part of
the boundary Γc.

2.2 Optimization problem

Since the uD and uN on the boundary Γi is to be de-
termined, two direct problems are considered:

(PD) :


−∆u = 0 in Ω

∂nu = g on Γc

u = uD on Γi

(2)

(PN ) :


−∆u = 0 in Ω

u = f on Γc

∂nu = uN on Γi

(3)

It is important to note that if uD ∈ H1/2 (Γi) and

g ∈ H−1/2 (Γc) (respectively, f ∈ H1/2 (Γc) and

uN ∈ H−1/2 (Γi)), then it exists a unique solution
u(uD, g) (respectively, u(uN , f)) for the direct prob-
lem Eq.(2) (respectively, Eq.(3)). Our goal is to find
uD (respectively, uN ) that satisfies:

u(uD, g) =f on Γc

(respectively, ∂nu(uN , f) =g on Γc)
(4)

In doing so, we attempt to minimize the two well-
posed least-squares functional JD and JN defined
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by:

JD(u) =
1

2
‖u(uD, g)− f‖2L2(Γc)

+
α1

2
‖uD‖2L2(Γi)

(5)

JN (u) =
1

2
‖∂nu(uN , f)−g‖2L2(Γc)

+
α2

2
‖uN‖2L2(Γi)

(6)
where, α1 and α2 are the regularization parameters
and α1

2 ‖uD‖2L2(Γi)
and α2

2 ‖uN‖2L2(Γi)
are the well-

known Tikhonov regularization functional. The regu-
larization serves to stabilize the solution. The process
of minimizing JD and JN represents a delicate bal-
ance between achieving data fidelity and stabilizing
the solution. The selected values for α1 and α2 di-
rectly impact the stability of the solution.

3 Genetic Approach for the inverse

problem

3.1 Overview of Genetics Algorithms
Metaheuristics are a class of optimization algorithms
that are designed to solve complex optimization prob-
lems for which traditional methods might be imprac-
tical or ineffective, [27]. They provide a general
framework for exploring and searching large solution
spaces to find near-optimal solutions. Metaheuristics
are particularly useful when dealing with problems
that involve non-linearities, discontinuities, and other
challenging characteristics. Metaheuristic algorithms
are usually inspired by natural phenomena, social be-
haviors, or problem-specific strategies. They don’t
guarantee finding the global optimal solution but aim
to find good approximations in a reasonable amount
of time.

Genetic Algorithms (GAs) are a classic example
of metaheuristic algorithms based on the mechanisms
of natural selection and genetics, [28]. It combines a
”survival of the fittest” strategy with a random struc-
tured exchange of information. For a problem for
which a solution is unknown, a set of possible so-
lutions is created randomly. The characteristics (or
variables to be determined) are then used in gene se-
quences that will be combined with other genes to
form chromosomes and then individuals. Each solu-
tion is associated with an individual, and this individ-
ual is evaluated and classified according to its resem-
blance to the best, but still unknown, solution to the
problem. It can be shown that through a natural selec-
tion process inspired by Darwin’s theory of evolution,
this method gradually approaches a solution. Natu-
ral selection is a potent force in evolution, leading to
the development of intricate and well-adapted organ-
isms. It operates on the principle that organisms with
traits well-suited to their environment are more likely

to survive and reproduce. This dynamic ultimately
yields a population finely attuned to their surround-
ings. Genetic algorithms replicate this process by es-
tablishing a pool of potential solutions and favoring
the reproduction of the most successful ones. Selec-
tion is based on higher fitness scores, and as iterations
progress, the population refines, producing solutions
with increasingly superior fitness scores, approaching
an optimal solution, Fig.2 shows a flowchart of the se-
quential basic steps of a genetic algorithm.

Figure 2: Flowchart of genetic algorithm

GAs are a powerful tool for solving difficult prob-
lems. It is often used in practice and has been shown
to be effective in a wide variety of problems. How-
ever, it is important to note that the GA is not guar-
anteed to find the optimal solution to a problem. It is
also important to choose the parameters of the genetic
algorithm carefully, such as the size of the population
and the adapted crossover and mutation.

3.2 AREALCODED GENETIC

ALGORITHM

In this article, we employ a real-coded genetic algo-
rithm (RCGA) to address the data completion prob-
lem for the Laplace equation. In a RCGA, each chro-
mosome represents a vector of real parameters, where
each gene corresponds to a real number, and each al-
lele corresponds to a real value.

We have chosen to use anRCGAbecause, as a gen-
eral rule, RCGA demonstrate superior performance
compared to binary-coded GAs when it comes to
high-precision optimization problems. Additionally,
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the encoding of variables as floating-point numbers
allows for a seamless implementation of finely-tuned
local optimization processes, [29], [30]. In this al-
gorithm, we incorporate a specialized operator that
leverages the floating-point representation of the so-
lution space, thereby enhancing the convergence rate
of the algorithm

3.3 Genetic operators

3.3.1 Arithmitic crossover

Crossover is a genetic operation that combines two
parents to create offspring. Crossover works by swap-
ping parts of the chromosomes between the parents.
However, crossover is not performed on every pair of
parents. The probability of crossover is controlled by
a parameter called the crossover probability pc.
Typically, parents are denoted as:

F (1) =
(
F (1)
1 , . . . ,F (1)

n

)
F (2) =

(
F (2)
1 , . . . ,F (2)

n

) (7)

Similar representation is also used for offspring:

C(1) =
(
C(1)
1 , . . . ., C(1)

n

)
C(2) =

(
C(2)
1 , . . . , C(2)

n

) (8)

The number of parents and offspring may vary
depending on the crossover operator considered. In
arithmetic crossover, [31], two parents produce two
offspring. Thus the parents defined by equation
Eq.(7), produce two offspring, which can be deter-
mined as follows:

C(1)
i = αiF (1)

i + (1− αi)F (2)
i ,

C(2)
i = αiF (2)

i + (1− αi)F (1)
i ,

(9)

The αi are uniform random numbers between 0 and
1.
It should be noted that, we talk about the uniform
arithmetical crossover when the αi are constant.
However, in the non-uniform arithmetical crossover,
the αi may vary with the progression of generations.

3.3.2 Power mutation

The mutation operator introduces a potential modifi-
cation in selected elements of specific chromosomes.
The original chromosome, denoted by C, is defined
as:

C = (C1, C2, . . . , Ci, . . . , Cn) (10)

where, Ci refers to the element to be mutated. The
chromosome C after mutation is given by:

C′ = (C1, C2, . . . , C′
i, . . . , Cn) (11)

In this new configuration, C′
i represents the mutated

value of C.
The Power Mutation (PM), [32], for real-coded ge-
netic algorithm is one of the commonly used mutation
operators. This operator relies on a power distribu-
tion, defined by the following function:

f(x) = ξxξ−1, 0≤x≤1 (12)

The corresponding density function is:

F (x) = xξ, 0≤x≤1 (13)

In these equations, ξ signifies the distribution index.
This mutation serves to generate a solution C′ in prox-
imity to a parent solution C. It starts by generating a
uniform random number t between 0 and 1. Addition-
ally, it creates a random number ζ that adheres to the
aforementioned distribution.
To compute the mutated solution, the following for-
mula is applied:

C′
i =

{
Ci + ζ · (ui − Ci) if t ≥ η

Ci − ζ · (Ci − li) if t < η
(14)

where, li and ui denote the lower and upper bounds
of the decision variable, respectively. η is a uniformly
distributed random number ranging from 0 to 1.

The extent of mutation is governed by the muta-
tion index ξ. When ξ is small, one can expect less
disruption in the solution. Conversely, with larger ξ
values, greater diversity is achieved. The likelihood
of generating amutated solution C′ to the left (or right)
of C is proportionate to the distance of C from li (or
ui), ensuring that themutated solution always remains
feasible.

3.4 Process to estimate the Cauchy data

In this section, wewill outline the computational steps
involved in using the RCGA to address the consid-
ered inverse problem. The problem can be formally
stated as follows: Given the Cauchy data f and g
on the accessible part of the boundary Γc, our ob-
jective is to propose a polynomial approximation of
the Cauchy data uD and uN on Γi using the RCGA.
The RCGA will systematically explore potential so-
lutions through iterative updates, evaluating each in-
dividual’s fitness using the Finite Element Method
(FEM) to derive corresponding fitness values. Ulti-
mately, the optimal set of parameters will be deter-
mined by selecting the individual with the highest fit-
ness value.
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Algorithm 1Algorithm for solving the data comple-
tion problem for the Laplace equation via GA

1: Parameter setting:

• N : Population size,

• pc: Probability of Crossover,

• pm: Probability of Mutation,

• k: Maximum number of Generations,

• li and ui are the lower and the upper bounds,
respectively.

2: Initialize population:
(
UD

(0)
)
p
∼ U(li, ui) for

p = 0, · · · , N .
3: for it = 1, · · · , k do
4: for p = 0, · · · , N do
5: Solve the direct problem Eq.(15).

Pp :


∆up = 0 in Ω

up =
(
UD

(it−1)
)
p

on Γi

∂nup = g on Γc

(15)

6: Evaluate each individual using Eq.(5).
7: end for
8: U it = [u0, · · · , uN ]
9: Apply selection us = Se(U

it)
10: Apply crossover uc = Cr(us) using Eq.(9).
11: Apply mutation um = Mu(uc) using Eq.(4).
12: Sort and select the best individual

(UD
(it))p = argmin (JD(um),JD(uc)).

13: end for

4 Numerical Results and Discussion
In this section, we present the numerical results
achieved through the genetic procedure introduced in
Section 3, coupled with the Finite Element Method
(FEM), for solving the two mixed well-posed prob-
lems, Eq.(2) and Eq.(3), corresponding to the Laplace
equation. This analysis encompasses two case regu-
lar and irregular 2D domains. Furthermore, we assess
the stability of the genetic procedure under data per-
turbation induced by noise.
When dealing with inverse problems in the real world,
the boundary data is obtained through experimental
measurements, which makes it susceptible to mea-
surement errors. In our testing scenarios, we use the
following equation to produce synthetic noisy data:

uper = uexact × (1 + ν × θ) on Γc (16)

where θ is a random number that follows a uniform
distribution between −1 and 1, and the level of noise
is determined by the parameter ν.

The genetic operators and the parameters used for
this genetic algorithm were taken to be as follows:

• Maximum number of Generations k = 200,

• Population size Np = 70,

• Rate of crossover Rc = 0.8,

• Non-uniform Arithmetic Crossover with pc =
0.9,

• Random selection,

• Power mutation with pm = 0.1.

4.1 Example 1: Irregular domain
In the first case, the numerical tests are made on a 
unit square domain Ω = (0, 1)2 (Fig.3). The 
boundary Γ is divided into tow parts:

Γi = {(0, y) : 0 < y < 1},
Γc = Γ\Γi.

(17)

Figure 3: Unit square.

Figure 4: The analytical solution in 2D.

The over-specified Cauchy data in Γc are extracted
from the analytic solution, given by:

uex(x, y) = cos(x) cosh(y) + sin(x) sinh(y) (18)

Fig.4 presents the analytical solution in the whole 
domain.
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4.1.1 Choice of regulation parameter

Fig.5 and Fig.6 show the objective functions JD and
JN with respect to various values of the regulariza-
tion parametersα1 andα2, respectively. These results
are obtained for the data completion problem using
exact boundary data extracted from Eq. (18). These
figures reveal that, considering JD and JN , the op-
timal values for the regularization parameters α1 and
α2 are 1 × 10−5 and 1 × 10−4, respectively, for uD
and uN on Γi.

Figure 5: The cost function JD for various values of
α1.

Figure 6: The Cost function JN for various values of
α2.

Additionally, Fig.7 and Fig.8 show that the objec-
tive functions JD and JN significantly decrease dur-
ing the initial iterations. This decrease indicates that
the algorithm is successfully approaching the min-
imum of the objective function. As the iterations
progress, the convergence rate of the objective func-
tion gradually slows down, but it eventually reaches
a low value by iteration k = 200. These observations
suggest that the obtained solution is highly accurate
and provides an excellent fit to the available data.

Figure 7: The convergence of the cost function JD

during the genetic process.

Figure 8: The convergence of the cost function JN

during the genetic process.

Fig.9 and Fig.10 show how the numerical solution
gets closer and closer to the analytical solution as the
number of iterations increases. Initially, the numeri-
cal solution is significantly different from the analyti-
cal solution, but the difference quickly decreases with
each iteration. This shows that the iterative method is
effective at solving the problem under study.

Figure 9: The numerical solution uD on Γi for a spe-
cific iterations.
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Figure 10: The numerical solution uN on Γi for a spe-
cific iterations.

4.1.2 Stability of the Proposed Method

Fig.11 and Fig.12 compare the numerical solution to 
the analytical solution for different levels of noise in 
the measurement data ν = 1%, 2%, 5%, 7%. As the 
noise level increases, the numerical solution de-
viates slightly from the exact solution. However, the 
difference between the numerical and exact solutions 
remains small, even when the noise level reaches a 
high value of 7%. This suggests that the numerical 
solutions obtained for problem Eq.(18) in this study 
are stable with respect to the amount of noise ν added 
to the input data.

Figure 11: The numerical solution uD for various lev-
els of noise.

Figure 12: The numerical solution uN for various lev-
els of noise.

Fig.13 and Fig.14 show the cost function for differ-
ent noise levels, ν = 1%, 2%, 5%, and 7%. The fig-
ures indicate that as the noise level increases, the cost
function also increases, which means that the fit to the
data becomes less precise. However, evenwith higher
noise levels, the cost function remains relatively low,
suggesting that the numerical solution still provides a
satisfactory fit to the data.

Figure 13: JD for various levels of noise.

Figure 14: JN for various levels of noise.
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4.2 Example 2: regular domain

In the second case, the numerical tests are performed
on an unit disc Fig.15.
The boundary of this domain is divided into two parts:

Γi =
{
(x, y) : x2 + y2 = 1, y > 0 , x > 0

}
,

Γc = Γ\Γi.
(19)

Figure 15: Unit disc.

The over-specified Cauchy data inΓc are extracted
from the analytic solution:

uex(x, y) = cos(x) exp(y) (20)

Fig.16 shows the analytical solution in whole do-
main.

Figure 16: The analytical solution in 2D.

4.2.1 Choice of regulation parameter

Fig.17 and Fig.18 show the objective functions JD

and JN with respect to various values of the regu-
larization parameters α1 and α2, respectively, for the
data completion problem using exact boundary data
extracted from Eq. (20). The optimal value for the
regularization parameters α1 and α2 is 1 × 10−5 for
uD and uN on Γi, considering both JD and JN .

Figure 17: Objective function JD for various values
of α1.

Figure 18: Objective function JN for various values
of α2.

Figure 19: The convergence of the cost function JD

during the genetic process.

Fig.19 and Fig.20 show that the objective func-
tions JD and JN decrease significantly in the early
iterations. This indicates that the algorithm is suc-
cessfully converging to the minimum of the objective
function. As the iterations progress, the convergence
rate slows down, but the objective function eventually
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reaches a low value by iteration k = 200. These ob-
servations suggest that the obtained solution is highly
accurate and provides a good fit to the available data.

Figure 20: The convergence of the cost function JN

during the genetic process.

Figure 21: The numerical solution uD on Γi for a spe-
cific iterations.

Figure 22: The numerical solution uN on Γi for a spe-
cific iterations.

Fig.21 and Fig.22 illustrate the progressive con-
vergence of the numerical solution to the analytical

solution as the number of iterations increases. Ini-
tially, the numerical solution exhibits significant devi-
ation from the analytical solution, but this discrepancy
diminishes rapidly with each iteration. This demon-
strates the efficacy of the iterative method in effec-
tively resolving the problem under consideration.

4.2.2 Stability of the Proposed Method

Figure 23: The numerical solution uD for various lev-
els of noise.

Fig.23 and Fig.24 compare the numerical solution to
the analytical solution for different noise levels in the
measurement data ν = 1%, 2%, 5%, 7%. The numer-
ical solution deviates slightly from the analytical solu-
tion as the noise level increases. However, the differ-
ence between the numerical and analytical solutions
remains small, even when the noise level reaches a
high value of 7%. This suggests that the numerical
solutions obtained for problem Eq.(20) in this study
are stable with respect to the amount of noise ν added
to the input data.

Figure 24: The numerical solution uN for various lev-
els of noise.
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Figure 25: JD for various levels of noise.

Figure 26: JN for various levels of noise.

Fig.25 and Fig.26 show the cost function for dif-
ferent noise levels, ν = 1%, 2%, 5%, and 7%. The
figures indicate that the cost function increases as the
noise level increases. This means that the fit to the
data becomes less precise as the noise level increases.
However, even with higher noise levels, the cost func-
tion remains relatively low, suggesting that the nu-
merical solution still provides a satisfactory fit to the
data.

5 Conclusion
In this paper, we address the challenging ill-posed in-
verse problem associated with the Cauchy problem
for the Laplace equation. We propose a novel ap-
proach to solve this problem by converting it into
an optimization problem. We use the RCGA with
Tikhonov regularization to solve the optimization
problem. The effectiveness of our approach is eval-
uated through numerical experiments conducted on
both regular and irregular domains. The results
demonstrate the efficacy of RCGA, enhanced with
adapted genetic operators, in successfully solving the
Cauchy problem associated with the Laplace equa-
tion.
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