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1 Introduction
Many scholars, [1], [2], [3], [4], [5], [6], [7], [8],
have studied the dynamic behaviors of the mutualism
model over the last two decades. Many interesting
results were obtained, for example, The study, [1],
showed that for a cooperative community, stage struc-
ture and the death rate of mature species are two of the
most important factors that influence the persistence
or extinction of the system, and cooperation has no
influence on the persistent property of the model.

Commensalism is a a mutually beneficial relation-
ship between two populations, where one population
gets the benefit from the other species while the other
is neither harmed nor benefited due to the interaction
with the previous species, [9]. There are many real-
life examples of commensalism, for example, the re-
lationship between squirrel and the oak, the clown-
fish and the sea anemone, etc. However, only re-
cently have scholars paid attention to this direction,
see, [10], [11], [12], [13], [14], [15], [16], [17], [18],
[19], [20], [21], [22], [23], [24], [25], [26], [27], [28],
[29], [30], [31], [32], [33], [34], [35], [36], [37], [38],
[39], [40], [41], [42], [43], [44], [45], [46], and the
references cited therein.

The most basic commensalism model is as fol-
lows:

dx

dt
= r1x

(
1− x

K1
+ α

y

K1

)
,

dy

dt
= r2y

(
1− y

K2

)
,

(1.1)

where the constants r1, r2,K1,K2, and α are all pos-
itive. [15] investigated the local stability property of
the system (1.1).

On the other hand, harvesting of the species is re-
quired to obtain the resource required for human de-
velopment. Based on the model (1.1), [19], proposed
the following non-selective harvesting Lotka-Volterra
amensalism model incorporating partial closure for
the populations:

dx

dt
= r1x

(
1− x

K1
+ α

y

K1

)
− q1Emx,

dy

dt
= r2y

(
1− y

K2

)
− q2Emy,

(1.2)
where the constants r1, r2,K1,K2, and α are all pos-
itive. E is the combined fishing effort used to harvest
and m(0 < m < 1) is the fraction of the stock avail-
able for harvesting. Their study showed that depend-
ing on the fraction of the stock available for harvest-
ing, the systemmay be extinct, partial survival, or two
species coexist in a stable state. The dynamic behav-
iors of the system becomes complicated compared to
the dynamic behaviors of the system (1.1).

Vargas-De-León andGómez-Alcaraz proposed the
following two species commensal system in [26],
based on the May type cooperation system:

dx

dt
= r1x

(
1− x

K1 + b1y

)
,

dy

dt
= r2y

(
1− y

K2

)
.

(1.3)

By constructing some suitable Lyapunov function
and after careful calculation, the authors showed that
the unique positive equilibrium of the system (1.3) is
globally stable.

Now, inspired by the works of [19], [26], we now
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incorporate nonselective harvesting in a partial clo-
sure to the system (1.3), and this leads to

dx

dt
= r1x

(
1− x

K1 + b1y

)
− q1Emx,

dy

dt
= r2y

(
1− y

K2

)
− q2Emy,

(1.4)

where r1, r2, K1, K2 are all positive constants, and
ri, i = 1, 2 are the intrinsic growth rates of the species
x and y, respectively. ki, i = 1, 2 are the carry-
ing capacity of the species x and y, respectively. E
is the combined fishing effort used to harvest, and
m(0 < m < 1) is the fraction of the stock avail-
able for harvesting, where qi, i = 1, 2 is the harvest-
ing coefficients. In this system, the first species gets
benefit from the second species by means of the sec-
ond species enlarging the carrying capacity of the first
species fromK1 toK1 + b1y.

We will try to investigate the dynamic behaviors
of the systems (1.4), and find out the influence of the
harvesting and the fraction of the stock.

The paper is arranged as follows. We will inves-
tigate the local and global stability properties of the
equilibria of systems (1.4) in sections 2 and 3, respec-
tively. An example together with its numerical simu-
lations is presented in Section 5 to show the feasibility
of the main results. We end this paper with a brief dis-
cussion.

2 Local stability of the equilibria
The system always admits the boundary equilibrium
E1(0, 0).

If
r1 > Emq1 (2.1)

is true, the system admits the boundary equilibrium
E2(x0, 0), where

x0 =
K1(r1 − Emq1)

r1
. (2.2)

If
r2 > Emq2 (2.3)

, the system admits the boundary equilibrium
E3(0, y0), where

y0 =
K2(r2 − Emq2)

r2
. (2.4)

If (2.1) and (2.3) hold, then the system admits a
unique positive equilibrium

x∗ =
(qEm− r1)

(
K2b1(Emq2 − r2)−K1r2

)
r1r2

,

y∗ =
K2(r2 − Emq2)

r2
.

We shall now investigate the local stability prop-
erty of the above equilibria.
Theorem 2.1
(1)Suppose

m > max
{ r1
Eq1

,
r2
Eq2

}
(2.5)

is true, thenE1(0, 0) is locally asymptotically stable,
otherwise, it is unstable;
(2) Suppose

r2
Eq2

< m <
r1
Eq1

(2.6)

is true, then E2(x0, 0) is locally asymptotically sta-
ble, otherwise, it is unstable;
(3) Suppose

r1
Eq1

< m <
r2
Eq2

(2.7)

is true, then E3(0, y0) is locally asymptotically sta-
ble, otherwise, it is unstable;
(4) Suppose

m < min
{ r2
Eq2

,
r1
Eq1

}
(2.8)

is true, then E4(x
∗, y∗) is locally asymptotically sta-

ble.
Proof. The variational matrix of the system of Eq.
(1.4) at (x, y) is

J(x, y) =

 A11
x2r1b1

(K1 + b1y)2

0 A22

 . (2.9)

where

A11 = r1
(
1− x

K1 + b1y

)
− r1x

K1 + b1y
− q1Em,

A22 = r2
(
1− y

K2

)
− r2y

K2
− q2Em.

The characteristic equation of the variational matrix
is

λ2 − tr(J)λ+ det(J) = 0. (2.10)

Obviously, both eigenvalues of (2.10) have negative
real parts if tr(J) < 0 and det(J) > 0, and the corre-
sponding equilibrium solution is asymptotically sta-
ble.
(1) For the steady-state solution E1(0, 0),

tr
(
J(0, 0)

)
= r1 + r2 − Emq1 − Emq2,

det
(
J(0, 0)

)
= (r1 − Emq1)(r2 − Emq2).

Under assumption (2.5), tr(J(0, 0)) <
0, det(J(0, 0)) > 0, and thus E1(0, 0) is locally
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asymptotically stable, otherwise, it is unstable;
(2) For the steady-state solution E2(x0, 0),

tr
(
J(x0, 0)

)
= −r1 + r2 + Emq1 − Emq2,

det
(
J(x0, 0)

)
= (Emq1 − r1)(r2 − Emq2).

Under assumption (2.6), tr(J(x0, 0)) <
0, det(J(x0, 0)) > 0, and thus E2(x0, 0) is lo-
cally asymptotically stable, otherwise, it is unstable;
(3) The system’s Jacobian about the equilibrium
point E3(0, y0) is given by r1 − q1Em 0

0 Emq2 − r2

 .

Under the assumption (2.7), The matrix’s two eigen-
values satisfy λ1 = r1 − q1Em < 0, λ2 = Emq2 −
r2 < 0. Consequently, E3(0, y0) is locally stable,
otherwise, it is unstable;
(4) It should be noted that the positive equilibrium
E4(x∗, y∗) satisfies

r1
(
1− x∗

K1 + b1y∗

)
− q1Em = 0,

r2
(
1− y∗

K2

)
− q2Em = 0.

(2.11)

By using (2.11), the Jacobian of the system about the
equilibrium point E4(x

∗, y∗) is given by

J(x∗, y∗) =


− r1x

∗

K1 + b1y∗
(x∗)2r1b1

(K1 + b1y∗)2

0 −r2y
∗

K2

 .

(2.12)
E4(x

∗, y∗) is locally asymptotically stable because
tr
(
J(x∗, y∗)

)
< 0, det

(
J(x∗, y∗)

)
> 0.

The proof of Theorem 2.1 is finished.

3 Global asymptotical stability
This section tries to obtain some sufficient conditions
that could ensure the global asymptotic stability of the
equilibria.
Lemma 3.1.[31], System

dy

dt
= y(a− by) (3.1)

has a unique globally attractive positive equilibrium
y∗ = a

b .

Theorem 3.1
(1) Assume that

m > max
{ r1
Eq1

,
r2
Eq2

}
(3.2)

hold, then E1(0, 0) is globally asymptotically stable;
(2) Assume that

r2
Eq2

< m <
r1
Eq1

(3.3)

hold, then E2(x0, 0) is globally asymptotically sta-
ble;
(3) Assume that

r1
Eq1

< m <
r2
Eq2

(3.4)

hold, then E3(0, y0) is globally asymptotically sta-
ble;
(4) Assume that

m < min
{ r2
Eq2

,
r1
Eq1

}
(3.5)

hold, then E4(x
∗, y∗) is globally asymptotically sta-

ble.
Proof.
(1) From the second equation of (1.4) and (3.2),
we have
dy

dt
= y

(
r2−Eq2m− r2y

K2

)
< (r2−Eq2m)y. (3.6)

Hence

y(t) < y(0) exp{(r2 − Eq2m)t} → 0 as t → +∞.
(3.7)

For above ε > 0, there exists a T1 > 0, such that

y(t) < ε as t > T1. (3.8)

From the first equation of system (1.4), we have, for
t > T1,

dx

dt
= r1x

(
1− x

K1 + b1y

)
− q1Emx

< r1x
(
1− x

K1 + b1ε

)
− q1Emx

< x
(
r1 − q1Em

)
.

Hence

x(t) < x(T1) exp{(r1−q1Em)(t−T1)} → 0 as t → +∞.
(3.9)

(3.7) and (3.9) show that

lim
t→+∞

x(t) = 0, lim
t→+∞

y(t) = 0. (3.10)

In other words, E1(0, 0) is globally asymptotically
stable;
(2) Similarly to the analysis of (3.6)-(3.8), we can
show that

y(t) → 0 as t → +∞. (3.11)
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For arbitrary enough small ε > 0, there exists a T2 >
0, such that

y(t) < ε as t > T2. (3.12)

From the first equation of system (1.4), we have, for
t > T2,

dx

dt
< r1x

(
1− x

K1 + b1ε

)
− q1Emx

= x
(
r1 − q1Em− r1x

K1 + b1ε

)
.

(3.13)

Consider the equation

du

dt
= u

(
r1 − q1Em− r1u

K1 + b1ε

)
.

It follows from Lemma 3.1 that

lim
t→+∞

u(t) =
(r1 − q1Em)(K1 + b1ε)

r1
.

By using the comparison theorem of the differential
equation, it follows from (3.13) that

lim sup
t→+∞

x(t) ≤ (r1 − q1Em)(K1 + b1ε)

r1
. (3.14)

On the other hand, from the first equation of the sys-
tem (1.4), we also have

dx

dt
> r1x

(
1− x

K1

)
− q1Emx

= x
(
r1 − q1Em− r1x

K1

)
.

(3.15)

Consider the equation

dv

dt
= v

(
r1 − q1Em− r1v

K1

)
.

It follows from Lemma 3.1 that

lim
t→+∞

v(t) =
(r1 − q1Em)K1

r1
.

By using the comparison theorem of the differential
equation, it follows from (3.15) that

lim inf
t→+∞

x(t) ≥ (r1 − q1Em)K1

r1
. (3.16)

It follows from (3.14) and (3.16) that

(r1 − q1Em)K1

r1
≤ lim inf

t→+∞
x(t) ≤ lim sup

t→+∞
x(t)

≤ (r1 − q1Em)(K1 + b1ε)

r1
.

(3.17)

Since ε is any arbitrary small positive constant, set-
ting ε → 0 in (3.17) results in

lim
t→+∞

x(t) =
(r1 − q1Em)K1

r1
. (3.18)

(3.11) and (3.18) show that E2(x0, 0) is globally
asymptotically stable;
(3) From the second equation of (1.4), we have

dy

dt
= y

(
r2 − Eq2m− r2y

K2

)
. (3.19)

It follows from Lemma 3.1 that

lim
t→+∞

y(t) =
K2(r2 − Eq2m)

r2
. (3.20)

For above ε > 0, there exists an enough large T3 > 0
such that

y(t) <
K2(r2 − Eq2m)

r2
+ ε for all t ≥ T3.

(3.21)
From the first equation of system (1.4), we have, for
t > T3,
dx

dt
= r1x

(
1− x

K1 + b1y

)
− q1Emx

< r1x

1− x

K1 + b1
(K2(r2 − Eq2m)

r2
+ ε

)


−q1Emx

< (r1 − q1Em)x.
(3.22)

Hence

x(t) < x(T3) exp{(r1 − q1Em)(t− T3)} → 0
(3.23)

as t → +∞. (3.20) and (3.23) demonstrate that
E3(0, y0) is globally asymptotically stable;
(4) If condition (3.5) is true, it follows from Theo-
rem 2.1 that E1(0, 0), E2(x0, 0) and E3(0, y0) are all
unstable, while E4(x

∗, y∗) is locally asymptotically
stable.

If we could demonstrate that the solution of system
(1.4) is bounded and there is no limit cycle exists, then
E4(x

∗, y∗) is globally asymptotically stable.
To begin, we demonstrate that every solution of

system (1.4) that starts in R2
+ is uniformly bounded.

Similarly to the analysis of (3.19)-(3.20), we have

lim
t→+∞

y(t) =
K2(r2 − Eq2m)

r2

def
= y∗.

As a result, for arbitrary small positive constant ε > 0,
there exists a T4 > 0 such that

y(t) < y∗ + ε for all t ≥ T4. (3.24)
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Similarly to the analysis of (3.18), from the first equa-
tion of system (1.4), we have for t > T4,
dx

dt
< r1x

(
1− x

K1 + b1(y∗ + ε)

)
− q1Emx

= x
(
r1 − q1Em− r1x

K1 + b1(y∗ + ε)

)
(3.25)

Now consider the equation
du

dt
= u

(
r1 − q1Em− r1u

K1 + b1(y∗ + ε)

)
.

(3.26)
It follows from Lemma 3.1 that

lim
t→+∞

u(t) =
(r1 − q1Em)

(
K1 + b1(y

∗ + ε)
)

r1
.

(3.27)
From (3.25) and (3.27), using the differential inequal-
ity theory, we have

lim sup
t→+∞

x(t) ≤
(r1 − q1Em)

(
K1 + b1(y

∗ + ε)
)

r1
.

(3.28)
As a result, there exists a T5 > T4 such that

x(t) <
(r1 − q1Em)

(
K1 + b1(y

∗ + ε)
)

r1
+ε

def
= Γ1(ε)

(3.29)
for all t ≥ T5. Let
D = {(x, y) ∈ R2

+ : x < Γ1(ε), y < y∗ + ε}.

Then every solution of system (1.2) starts in R2
+ is

uniformly bounded on D. Let us now demonstrate
that the system admits no limit cycle in the area D.
Consider the Dulac function u(x, y) = x−1y−1,

∂(uF1)

∂x
+

∂(uF2)

∂y

=

r1

(
1− x

b1y +K1

)
− r1x

b1y +K1
− q1Em

yx

−
r1x

(
1− x

b1y +K1

)
− q1Emx

y x2

+
r2

(
1− y

K2

)
− r2y

K2
− q2Em

xy

−
r2y

(
1− y

K2

)
− q2Emy

x y2

= −b1r2 y
2 +K1r2y +K2r1x

yx (b1y +K1)K2
< 0,

where

F1(x, y) = r1x
(
1− x

K1 + b1y

)
− q1Emx,

F2(x, y) = r2y
(
1− y

K2

)
− q2Emy.

According to [32], there is no closed orbit in area D.
As a result, E4(x

∗, y∗) is globally asymptotically sta-
ble. This completes the proof of Theorem 3.1.

Remark 3.1. Theorems 2.1 and 3.1 show that if the
system (1.2) admits the unique positive equilibrium,
then the positive equilibrium is globally asymptoti-
cally stable.
Remark 3.2. It follows from Theorems 2.1 and 3.1
that the local stability of the equilibrium also implies
the global one.
Remark 3.3. Since

dx∗

dm
=

Γ1

r1r2
< 0,

dy∗

dm
= −EK2q2

r2
< 0,

where

Γ1 = E
(
K2b1q1(q2Em− r2)

+K2b1q2(q1Em− r1)−K1q1r1
)
.

Both x∗ and y∗ are the strictly decreasing functions
of m. This means that as more of the stock becomes
available for harvesting, both species’ final densities
decrease. To ensure the coexistence of both species,
harvesting should be limited to a small area

m < min
{ r2
Eq2

,
r1
Eq1

}
.

Otherwise, at least one of the species will be driven
to extinction.

4 Numerical simulations
Example 4.1. Let’s take r1 = 1, E = 4, q1 =

1
2 , q2 =

2, b1 = 1, r2 = 2,K1 = 1,K2 = 1. In this case, by
simple computation, one could easily see that

r1
Eq1

=
1

2
,
r2
Eq2

=
1

4
,

Corresponding to Theorem 3.1, we have
(1) For m > 1

2 , E1(0, 0) is the globally asymptoti-
cally stable equilibrium, Fig.1 is the case ofm = 0.7;
(2) For 1

4 < m < 1
2 , the boundary equilibrium

E2(x0, 0) is globally asymptotically stable, Fig. 2 is
the case ofm = 0.3;
(3) For m < 1

4 , the positive equilibrium E4(x
∗, y∗)
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is globally asymptotically stable, Fig.3 is the case of
m = 0.1.
Lastly, the dynamic behaviors of the second compo-
nent x2 in system (equation. 3.1) with the initial con-
dition (x(0), y(0)) = (0.5, 0.5), (1, 1), (1.5, 1.5) and
(2, 2) are presented in Fig.4.

Figure 1: Numeric simulations of system
(4.1) with m = 0.7, the initial conditions
(x(0), y(0)) = (1, 0.8), (0.4, 0.8), (0.5, 0.8), and
(0.8, 0.8), respectively.

Figure 2: Numeric simulations of system
(4.1) with m = 0.3, the initial conditions
(x(0), y(0)) = (0.1, 0.4), (1.8, 0.1), (0.2, 0.4),
and (1.8, 0.4), respectively.

5 Discussion
Based on the traditional Lotka-Volterra commensal-
ism model (1.1), [19], proposed a Lotka-Volterra
commensalism model with non-selective harvesting
in a partial closure, their study showed that partial clo-
sure plays an important role in the persistence and sta-
bility property of the system.

Inspired by the works of [19], [26], in this pa-
per, based on a commensalism model proposed by
Vargas-De-León, Gómez-Alcaraz (we called it May
type commensalism model), we also propose a May
type commensalism model incorporating nonselec-
tive harvesting in the partial closure.

Figure 3: Numeric simulations of system
(4.1) with m = 0.1, the initial conditions
(x(0), y(0)) = (0.1, 0.1), (1.8, 0.1), (0.2, 0.4),
and (1.8, 0.4), respectively.

The dynamic behaviors of our model (1.4) is sim-
ilar to that of the model (1.2). However, it seems that
our conditions are very simple. We believe this is be-
cause in the model (1.2), the commensalism species
y influence the intrinsic rate of the first species x,
indeed, the intrinsic growth rate of the first species
changed from r1 to r1 + r1α

y
K1

, while in our model,
the commensalism species y only increased the car-
rying capacity of the first species (carrying capacity
changed fromK1 toK1 + b1y), and has no influence
on the intrinsic growth rate of the first species.

Already, [26], previously demonstrated that May
type commensalism model admits a unique positive
equilibrium, which is globally asymptotically stable,
implying that the species could coexist in the long run.
Whenwe incorporate harvesting to the system, the dy-
namic behaviors of the system are changed dramati-
cally. Theorem 3.1 shows that all four possible equi-
libria may be globally attractive, depending on the
harvesting effort and the area that could be harvested.
That is, the dynamic behaviors of the systemwith har-
vesting are more complicated than the system without
harvesting. Harvesting is one of the most important
factors that leads to the extinction of the species.

It seems that different assumptionsmay lead to dif-
ferent phenomena, maybe it is interesting to study the
influence of nonlinear harvesting on the system (1.3),
we leave this for future study.

Many scholars, [22], [23], [24], [25], [26], [39],
have recently studied the influence of the Allee ef-
fect’s impact on commensalism system. For Merdan
type Allee effect, [22], [23], [24], [25], [26] show that
the dynamic behaviors of the system with the Allee
effect are similar to those of the system without the
Allee effect, however, for the system with Additive
Allee effect, [39], recently showed that the dynamic
behaviors could be very complicated. It brings to our
attention that, to this day, no scholar has proposed and
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studied the influence of the Allee effect on the May-
type commensalism model. We will try to do some
work in this direction.

Figure 4: Dynamic behaviors of the second com-
ponent x2 in system (equation. 3.1) with the ini-
tial condition (x(0), y(0)) = (0.5, 0.5), (1, 1),
(1.5, 1.5) and (2, 2), respectively.
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