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Abstract: - The many problems of natural sciences are reduced to solving integro-differential equations with 
variable boundaries. It is known that Vito Volterra, for the study of the memory of Earth, has constructed the 
integro-differential equations. As is known, there is a class of analytical and numerical methods for solving the 
Volterra integro-differential equation. Among them, the numerical methods are the most popular. For solving 
this equation Volterra himself used the quadrature methods. How known in solving the initial-value problem 
for the Volterra integro-differential equations, increases the volume of calculations, when moving from one 
point to another, which is the main disadvantage of the quadrature methods. Here the method is exempt from 
the specified shortcomings and has found the maximum value for the order of accuracy and also the necessary 
conditions imposed on the coefficients of the constructed methods. The results received here are the 
development of Dahlquist's results. Using Dahlquist’s theory in solving initial-value problem for the Volterra 
integro-differential equation engaged the known scientists as P.Linz, J.R.Sobka, A.Feldstein, A.A.Makroglou, 
V.R.Ibrahimov, M.N.Imanova, O.S.Budnikova, M.V.Bulatova, I.G.Buova and ets. The scientists taking into 
account the direct connection between the initial value problem for both ODEs and the Volterra integro-
differential equations, the scientists tried to modify methods, that are used in solving ODEs and applied them to 
solve Integro-differential equations. Here, proved that some modifications of the methods, which are usually 
applied to solve initial-value problems for ODEs, can be adapted for solving the Volterra integro-differential 
equations. 

Here, for this aim, it is suggested to use a multistep method with the new properties. In this case, a question 
arises, how one can determine the validity of calculated values. For this purpose, it is proposed here to use 
bilateral methods. As is known for the calculation of the validity values of the solution of investigated 
problems, usually have used the predictor-corrector method or to use some bounders for the step-size. And to 
define the value of the boundaries, one can use the stability region using numerical methods. As was noted 
above, for this aim proposed to use bilateral methods. For the illustration advantage of bilateral methods is the 
use of very simple methods, which are called Euler's explicit and implicit methods. In the construction of the 
bilateral methods it often becomes necessary to define the sign for some coefficients. By taking this into 
account, here have defined the sign for some coefficients. 
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1  Introduction 
As was noted above, the investigation of the many 
problems from the different areas of the natural 
sciences is reduced to solving the initial value 
problem for the Volterra integrodifferential 
equations. Note that this problem can be formulated 
in different forms. One of the popular presentations 
of this problem can be presented as follows [1], [2], 
[3], [4], [5], [6], [7], [8]: 
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If the continuous to the totality of arguments 
function ),( yxf  and ))(,,( sysxK  are given, then 
the problem (1) can be taken as the given. Spouse 
that these functions are defined in some closed area 
and have the partial derivatives up to p. And also 
suppose that the problem (1) has a unique solution, 
which is defined on the segment ].,[ 0 Xx  

It is known that there are some classes of 
numerical methods for solving problems (1). It is 
also known that the estimation obtained for the 
errors of these methods holds for the sufficiently 
small step size h. Therefore one of the main results 
in these areas is the construction of numerical 
methods, results finding by which can be accepted 
as the reliable information for the selected results. 
To solve such problems, Chapligin proposed his 
own two-sided or bilateral method, which now is 
called the bilateral analytical approximate method. 
The bilateral method was not developed because its 
advantage has not been proven. By using that, here 
to suggest a way for the construction of the 
numerical bilateral methods. And also to give some 
comparisons between bilateral methods and bilateral 
formulas, [9], [10], [11], [12], [13], [14], [15]. For 
the illustration of these let us consider the 
construction of bilateral methods.  

§1.The bilateral methods and their application 

to solve some specific task.  

As is known, the multistep method with constant 
coefficients is one of the popular methods for 
solving problem (1), which can presented as 
follows: 
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here the mesh-point mx  is defined as: 

)1,...,1,0(1  Nihxx ii  and h0  is the 
step-size. 

If method (2) is applied to solving the problem 
(1), then receive:  
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).,...,2,1,0(),( kNmyxff mmm   

),...,1,0( kiin   can be found as the values of 
the solution of the following problem: 

.0)()),(,,()( 0  xxyxxKx          (4)                                                   
In this way, the solving of the problem (1), has 
reduced to solving the initial-value problem for 
ODEs of the first order. Vito Volterra himself 
suggested the quadrature methods for solving 
problems (1). If here, has used the method for 
solving the problem (4), then by using that in the 
method (3), receive the following, [16], [17], [18], 
[19], [20], [21], [22]: 
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Noted that for the application of method (2), 
often arises the necessity to define the order of 
accuracy for using multistep methods which can be 
defined as the following form: 

Definition1. Integer variable p - is called the 
degree for the method (2) if the following holds: 
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(6) 
From the asymptotic equality (6), receive that the 
degree for the method (2) equal to p . Dahlquist 
proves that if the method (2) is stable, ,0k then 

]2/[2 kp   for each value of k , there exist stable 
methods with the degree .2]2/[2max  kp   
Definition 2. Method (2) is called stable if the roots 
of the polynomial 
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circle on the boundary of which there are no 
multiple roots. For the construction stable methods 
with the degree 2]2/[2  kp  , Prof. V.Ibrahimov 
has investigated advanced methods, which can be 
received from the (2) in the case  

,0k  and .0,0... 11   skskkk   
He has constructed the concept method with the 
degree 2 kp for the 3k and 1s . In the, [23], 
has constructed a stable method with the degree

5p . Thus receive that advanced methods are more 
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promising. As is known one of the popular methods 
of type (2) is the Simpson method, which can be 
received from method (2) in the case 2k . 
Dahlquist result shows that in this case, the stable 
method with the degree 4p is the Simpson 
method. In this case 2k constructed method with 
degree 4p is unique. 

And now let us consider the case 1k . The 
popular methods in this case are the explicit and 
implicit Euler methods and trapezoidal rules. 
Explicit Euler method for solving problem (1) can 
be presented as: 

2/)),,(),,(( 11 nnnnnnnnn yxxKyxxKhhfyy   . (7) 
But the implicit Euler method for solving 

problem (1) can be presented as follows: 
),,( 11111   nnnnnn yxxhKhfyy .   (8)                                                     

It is known that  methods (7) and (8) correspond 
to the following Euler’s methods:  

nnn
e yhyy 1 ; 11   nnn

i yhyy .     (9) 
As is known the local traction error for these 

methods can be written as following, respectively: 
)(2/),(2/ 3232 hOyhhOyh nn  . 

Hence it follows that methods (7) and (8) the 
bilateral, so as  
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,0)(  xy  then e
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i

n yxyy 111 )(   . 

)( 1nxy  is the exact value of the solution of 

problem  (1) at the point 1nx . 
It is not difficult to prove that the value  

2/)( 11
i

in

e

nn yyy    will be exact than the 
e

ny 1  and i

ny 1 . 1ny  will be same with the value 
finding by the trapezoidal rule. 

In our case, the simple, step-by-step algorithm 
for the application of Euler’s methods to solving any 
problems can be presented as follows: 

Step 1 Input (initial values); 
Step 2 For 1j  step 1 1n  do steps 3-5; 
Step 3 Calculation e

jy 1 by the method (7); 

Step 4 Calculation i

jy 1  by the method (8); 

Step 5 Calculation 2/)( 111
e

j

i

jj yyy   ; Print 

);;( 111  j

e
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j yyy  end. 
Step 6 STOP. 
It is not difficult to believe that the method 

constructed in the above-mentioned way is bilateral. 
Let us consider  the following couple of methods: 
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Here the nR  denote the local truncation error of 
these methods. It is obvious that the value 

2/)( )2(
2

)1(
22   nnn yyy  will be more accurate than 

the values )1(
2ny  and )2(

2ny . The receiving method is 
the same as the Simpson method. Note that the 
methods can be used to determine the limit for the 
value 2ny . 

And now let us consider the application of the 
methods (10) and (11) to solving equation (1). In 
this case, receive: 
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It is easy to verify that, half sum for the values 
)1(
2ny and )2(

2ny can be presented as follows: 
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This is one of the modifications of Simpson’s 
method for solving Volterra integro-differential 
equations. From here one can see that the 
presentation of multistep methods for solving initial-
value problems for Volterra integro-differential 
equations is not unique. In the application of this 
method some difficulties in the calculation of the 
values 2ny , which participates in the explicit 
method designed for the calculation of this value. 
For this aim one can use the values calculated by the 
midpoint method of (10), [19], [20], [21], [22], [23], 
[24], [25], [26], [27], [28]. 

However, by using the Simpson method, 
determining the boundary of the error is impossible. 
Hence, the use of bilateral methods, which is 
possible to find an error on any point. In the theory 
of numerical methods for solving integro-
differential equations, often symmetrical multistep 
methods, therefore the following section is devoted 
to the study of this question. 

§2. Application of symmetrical methods to 

solving problem (1).  
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The concept of symmetry is discovered in nature, 
for that is not a mathematical term. And then this 
term was more commonly used in astronomy. As is 
known, a planet in our galaxy is symmetrical to the 
plane of Earth. In the theory of multistep methods, 
the notion of symmetry was used by Dahlquist. 
However, in the theory of quadrature formulas, the 
concept of symmetry was used in the study of Gauss 
and Chebyshev methods. As is known the Gauss 
nodes and the coefficients are symmetrical. We 
believe that one of such well-known methods is the 
midpoint method and another is the trapezoidal 
rules. Note that these methods do not satisfy the 
Dahlquist requirement, but experts have always 
accepted these methods as symmetrical, which can 
be presented as:

.2/)(; 112/11 
 nnnnnnn yyhyyyhyy  

Some authors give advantages of using 
symmetrical methods, which can be defined in the 
following form: 

Definition 3. (Dahlquist), [12]. Stable method (2) 
is called symmetrical if the following holds: 

2 kp and ),...,1,0(; kiikiiki    . 
Taking into account these conditions, we get that 

k -is the even number. Hence, the amount of the 
mesh-points in the multistep method will be odd. In 
this case, by using the necessary condition of 
convergence, receive that    

0... 011    kk . Hence 02/ k . In 
this case, 2k  the symmetrical method can be 
written as: 

3/)4( 122 nnnnn yyyhyy   ,     (12)                                         
which is unique and has the degree 4p  or 

kp 2 . Note that the method receiving as the 
results of half sum of equalities (7) and (8) can be 
taken as symmetrical. Noted for the application of 
these methods to solve the problem (1), it is 
necessary to find the values of the coefficients 

),...,1,0,(,, )( kijj

iii  . A similar 
investigation was carried out by some authors, [29], 
[30], [31], [32], [33], [34], [35], [36], [37], [38], 
[39], [40], [41], [42], [43], [44]. Here, suppose that 
the method (2) is given. In this case, the application 
of method (5) to solving problem (1), must be 
known as the values of the coefficients 

),...,1,0,()( kijj

i  . For this aim, one can use 
the following linear system of algebraic equations: 

),...,1,0( ki
k

ij

i

j

i 


 .             (13)                                                    

Noted that amount of the solutions in this system 
more than one. Therefore users have the often to 
choose different methods.  

Note that in the generalization of the midpoint 
method, one can receive the hybrid methods. Hybrid 
methods in a general form can be presented as the 
following: 
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The methods used in the previous section cannot 
be received from the method (13) as the partial case. 
As was noted above, the midpoint is stable has the 
degree 2p , and is explicit. Let us note that all the 
hybrid methods of type (14) will be explicit. It does 
not follow from here that, the hybrid methods can be 
applied in direct form to solve any problems. Let us 
show that it’s not right. For this consider the 
following method: 

,6/32/1

,6/32/1,2/)(

1

01 10



 



 nnnn yyhyy     (15) 

In the construction of this method have used two 
hybrid points, the method is stable and has the 
degree 4p . Let us consider the application of the 
method (15) to solving an initial-value problem for 
ODEs, this can be presented as follows: 

,2/)),(),((
11001    nnnnnn yxfyxfhyy

, here ))(,()( xyxfxy   . 
It is obvious that in the application of this 

method are arises to calculation of the values 

6/)33( n
y  and 6/)33( n

y , which are not easy. As is 
known the following method: 

)16(,6/)4( 2/111 nnnnn fffhyy    
also has the degree 4p  and is called the 

Simpson method. 
 
Remark 1. 

Let us note that method (16) has been received 
from Simpson’s method, which resembles the 
Runge-Kutta method and is the one step. It is known 
that one-step methods have some advantages. For 
example, easily be applied to solving various 
problems. All the methods have their advantages 
and disadvantages. Taking into account the above 
mentioned, here I wanted to reduce multistep 
methods to the one-step methods. Runge-Kutta and 
(16) are not the same. Methods Runge-Kutta are 
explicit, but method (16) is implicit. Note that if 
method (16) and method Runge (constructed by 
Runge, which has the degree 4p  then these 
methods will be the same. Therefore, the properties 
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of the methods greatly depend on the problem, 
which must be solved. 

receive any difficulty related to calculation of 
values 0 receive any difficult related to 
calculation of values ),..,2,1,0( kiy

iin   . As 
was noted above, if method (14) is applied to the 
calculation of definite integral, then it does not 
cause any difficulty. But, when applied to solve the 
problem (1) for the case 0),( yxf , arises some 
difficulty, which can be solved in different ways. 
For example, in the application of the method (15) 
difficulties related to the calculation of the values

0ny  1ny , which can be calculated by using 
the described algorithm. 

It is not difficult to show that methods 
constructed at the intersection of methods (2) and 
(14) are more exact. For this let us consider the 
following linear method: 
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,1(,
0 0 0

ki

yhyhy i
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which was constructed on the intersection of the 
multistep and the hybrid methods. Note that the 
method of (16) is more exact than the others. For 
Example, if method (16) is stable, then there are 
stable methods of type (16) with the degree 

33  kp and if method (14) is stable then there are 
in the class of methods (14), stable methods with the 
degree 22  kp .  

  §3. On some advantages of the advanced 

methods and their application. 
In, [36], has proved that some of the advantages 

of the advanced multistep methods is that if they are 
stable, then in this class methods exist the stable 
advanced methods, which are more accurate than 
others. At first have been constructed a lot of 
multistep methods and then constructed advanced as 
new methods for comparison with the known and 
multistep methods. Note that advanced methods can 
be presented as multistep methods. For the 
illustration of this let us consider to  
following method: 

 


 

 
mk

i

k

i

iniini mkNnmyhy
0 0

).,..,1,0,0( (18) 

If comprise methods (2) and (18), then receive 
that methods (2) and (18) can be taken as the same 
only for the case 0m . But, from the above-given 
condition we get that, 0m . As follows from here, 
the class of methods (18) is the independent field of 
research. Formally one can say that by using the 
selection coefficient 

k   0k , one can receive 
method (18) from method (2). Let's show that it's 

not. For this it is enough to recall Dahlquist's 
condition, which can presented as the following 
suppose that the method (2) is convergence, then its 
coefficients must satisfy the following conditions, 
[16], [17], [18], [19], [20], [21], [22], [23], [45]: 

A. Coefficients ),..,1,0(, kiii  are real 
numbers 0k . 

B. The characteristic polynomials: 
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
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0
)(   and 




k

i

i

i

0
)(   

have no common factor different from constant.  
C. The condition 0)1(   holds and 1p (

p -is the degree).  
As was noted above V.Ibrahimov constructed and 
investigated the method (16) and, therefore received 
similar conditions for the coefficients, which can be 
presented as: 

A. The coefficients ),...,1,0(, kiii  are real 
numbers and .0mk  

B. The characteristic polynomials: 


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
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0
)(   and 




k

i

i

i

0
)(   

have no common factor different from constant. 
C. The conditions 1,0)1(  p are hold ( p -

is the degree of the method (14)). 
By using the condition A, receive that 0k . It is 
not difficult to understand that one of the important 
questions in the investigation of the define the 
maximum value of the degree for the investigated 
methods. One can prove that p≤2k (degree for the 
method (2) and method with the degree p=2k is 
unique, but mkp  2  (degree for the method (13) 
and method with the degree mkp  2 -is unique, if 
method (2) is stable then 2]2/[2  kp and there 
are stable methods of type (2) with the degree 

2]2/[2max  kp for each k . But if method (13) is 
stable and has the degree of p , then 

)3(1 mkmkp  . By using these estimations 
one can compare methods (2) and (13) in full form. 
As is known all the methods have their advantages 
and disadvantages. The stable advanced method is 
more exact than the corresponding methods of type 
(2). But in using that there arises some difficulty 
with the calculation of the values of the solution 
investigated problems at the next points. To 
demonstrate this let us consider the following 
method: 

.12/)85( 211 
 nnnnn yyyhyy                 (19) 
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One of the base properties of this method is the use 
of the values of the desired function on the 

subsequent points. 
Let us apply this method to solving the problem 
(15). In this case receive:

.12/)),,(),,(4
),,(4),,(),,(2
),,(2(12/)85(

222112

11121

211













nnnnnn

nnnnnnnnn

nnnnnnnn

yxxfyxxK

yxxKyxxKyxxK

yxxKhfffhyy
(20) 

Thus receive the nonlinear equation for finding the 
value ,1ny to fined which is not easy. Therefore 
here recommended to use the following step-by-step 
algorithm (Algorithm 2): 
Step 1. Input (initial values); 
Step 2. For  1j step 1 to n-1 do step 3-10; 
Step 3. Calculation e

jy 1  by the method (9); 

Step 4. Calculation i

jy 1 by the method (9); 

Step 5. Calculation 2/)( 111
e

j

i

jj yyy   ; 

Step 6. Calculation 1
2jy  by the method (9); 

Step 7. Calculation 2
2jy  by the method (9); 

Step 8. Calculation 1
2jy  by the method (10); 

Step 9. Calculation 2
2jy  by the method (11); 

Step 10. Calculation 2/)( 2
2

1
22   jjj yyy ; 

Print );; 111  j

e

jj
i yyy end. 

Step 11. Stop. 
Note that method (18) is stable, has the degree 
3p  , and rises to the class of one-step and 

multistep methods. It is easy to understand using the 
method (18). It is enough to know the one value of 
the desired solutions at the previous point. For the 
sake of objectivity, note that for the application of 
the method (18), it is needed to have some 
information about the values of the solution at the 
current and next points. To find these values by the 
required exactness, one can use the above-described 
way. Note that if the trapezoid method to used in the 
application of the method (18), then some difficult 
liberation from which is even more difficult. Thus in 
the application of the method (18) to solve some 
problems, it is needed to use any method for 
calculating the values  mkny   and

)1,..,1,0(  mjjy mkn  the results of which 
receive the block method. The step-by-step 
algorithm, which is presented above is also a block 
method. If It is necessary one can increase the 
accuracy above calculated values. In our case, it is 
desirable to use the Simpson method, which is 
presented by the method (12). This method when 

applied to solving problem (1) can be presented as 
follows:  
 

.6/)),,(2
),,(4),,(4),,(

),,((3/)4(

222

1121112

1212













nnn

nnnnnnnnn

nnnnnnnn

yxxK

yxxKyxxKyxxK

yxxkhfffhyy (21) 

 
By using method (21) with the above-presented 

method (20), one can solve the problem (1) with 
high precision. Note that in the application of the 
method (21), some difficulties are related to solving 
the nonlinear algebraic equations. However, this 
problem can be solved with the predictor-corrector 
method. Each of these methods has its advantages 
and disadvantages. If you compare the methods 
described above, then get that the methods described 
above using step-by-step algorithms can be taken as 
better.  
Remark 2. As is known in recent times scientists 
tried to construct simple methods for solving some 
problems. The above-constructed algorithms belong 
to the class of simple methods. Let us show that 
there are simple methods with a high order of 
accuracy that differ from the above-mentioned 
methods. Let us remember the midpoint roll, which 
in the application to solving the problem (1) can be 
presented as: 

.2/)),,(,,((
))2/(,2/(

2/12/12/12/12/11

1









nnnnnn

nnnn

yxxKyxxKh

hxyhxhfyy (22) 

 
This method is stable, has a degree 2p  , and is 

explicit. By simple comparison, that method (21) is 
better than the above investigated. Note that the 
method (22) also has some disadvantages, for 
example calculating the value 2/1ny . Some similar 
investigations were carried out by some authors in 
solving different problems, [42], [43], [44], [45], 
[46], [47], [48].  Note the method (22) reminds us 
hybrid methods that more accurate than the known.  
There is a lot of work dedicated to the study of hbrid 
methods, [49], [50], [51], [52], [53], [54], [55]. 
 
 
2   Numerical Results  
For the demonstration receiving here result, let us 
consider the application of the above-presented 
algorithms to solve the following simple examples: 

.10,0)0(

,))(exp(2)exp(1
0

22



 

xy

dttyxtxxyy

x

(23)

 

The exact solution of this example: xxy )( . 
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There are many methods for solving this 
problem, [54], [55], [56], [57], [58], [59], [60], [61], 
[62], [63], [64]. 

However, here we profer to useabove proposed 
methods. 

First applied Algorithm 1 and 2 to solve problem 
(23), results for which are tabulated in Table 1.  

 
Table 1. Maximum error for the above-presented 

algorithm 1 and algorithm 2. 

Step 
size 

Value 
of x  

Maximal error 
for the 

Algorithm 1 

Maximal error 
for the 

Algorithm 2 

h=0,05 1 0.28 E -03 0.1 E -05 
 
The receiving results are corresponded to the 

theoretical. Now let us consider solving the 
following problem:  

.20,1)0(

,)()exp(1(
0

1



 


xy

dssyaxayy

x


   

(24) 
The exact solution for which can presented as: 

).exp()( xxy   
For this aim to use algorithm1 and methods (15), 

(18). 
Note that depending on the methods applied to 

the calculation of the value 2ny , method (18) can 

change its properties. For example, 1ny  if ny  to 

use the formula: 2/)3( 112 nnnn ffhyy    in 
the method of (18), then in the resulting of which 
the method will be A- stable, [48]. 

All results are tabulated in Table 2. 
 

Table 2. Results for step-size h=0.01. 
x Method(18)

+Tr 
Method(18)+

1E  
Method (18)+

2E  
0.1 4.5E-09 4.5E-09 1.8E-06 
0.3 1.2E-09 1.2E-09 5.1E-07 
0.5 2.1E-09 2.1E-09 8.6E-07 
0.8 3.5E-09 3.5E-09 1.4E-06 
1.0 1.1E-07 1.1E-07 4.4E-05 
 
Here have used denotation Method (18)+ 2E , 

Method(18)+ 1E , Method(18)+Tr.   

Method (18)+ 2E -is the predictor-corrector 
method. Here the predictor method has used the 
explicit method, but as corrector method, used 

method (18). Here 1E -is the implicit Euler method, 

2E -is the explicit Euler method, but the Tr-
Trapezodial rule.  

And now let us the initial value in problem (23) 
to use method (15) and the Trapezoidal rule, but as 
the predictor method has used the explicit Euler 
method. Results tabulated in Table 3. 

 
Table 3. Results for h=0.01 

x 1  1  
Method 
(15) 

Trapezoidal 
rule 

Method 
(15) 

Trapezoidal 
rule 

1.1 1.5E-7 4.6E-4 2.0E-8 5.9E-5 
1.4 8.9E-7 6.2E-4 5.8E-8 4.4 E-5 
1.7 2.1E-6 8.4E-4 7.5E-8 3.2 E-5 
2.0 4.1E-6 1.1E-3 7.9E-8 2.4 E-5 
 
Results received for the implicit method taken as the 
predictor method have been tabulated in Table 4.  

 
Table 4. Results for h=0.01. 

x 1  1  
Method 
(15) 

Algorithm1 Method 
(15) 

Algorithm1 

1.1 1.0E-8 6.0E-5 1.2E-9 7.2E-6 
1.4 5.7E-8 8.1E-5 3.5E-9 5.3 E-6 
1.7 1.3E-7 1.0E-4 4.6E-9 3.5 E-6 
2.0 2.6E-7 1.4E-4 4.9E-9 2.9 E-6 
 
But now, let us as the predictor method with the 
following midpoint rule. 

).2/(1 hxyhyy iii   
 
Table 5. Results received for the values h=0.05. 

x 5  5  
Method 
(15) 

Trapezoidal 
rule 

Method 
(15) 

Trapezoidal 
rule 

1.1 2.3E-3 5.3E-1 5.1E-8 1.2E-5 
1.4 4.4E-2 2.4E-0 4.3E-8 2.9 E-6 
1.7 3.4E-1 1.1E-1 1.6E-8 6.5E-7 
2.0 2.2E-1 4.9E-1 5.2E-9 1.4E-7 

  
By the results tabulated here, one can take the 

midpoint rule as the better, which is related to the 
using value, iy  calculated by the method (15). Here 
tabulated the results received by the method (15) 
with the degree 4p , by the trapezoidal rule 

2p , and the algorithms 1 and 2. By the 
comparison of the results tabulated here, we see that 
these results correspond to the theoretical. 
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3   Conclusion 
Here,  have shown that numerical methods 
constructed for solving initial-value problems for 
ODEs can be applied to solving initial-value 
problems for the Volterra integro-differential 
equations. We apply this approach to constructing 
bilateral numerical methods to solving initial-value 
problems for the Volterra integro-differential 
equations. For this aim have used simple numerical 
methods and have proven that the results received 
by the bilateral methods are better. This idea has 
been applied to the construction of two numerical 
bilateral methods and has shown how one can 
construct a similar method. As is known, bilateral 
(or two-sided) methods for solving initial-value 
problems for the Volterra integro-differential 
equations, can be said to be almost uninvestigated. 
Therefore, in this area, the new results obtained here 
are of interest to many specialists from different 
areas of modern sciences. In the work, [45], a two-
sided method is constructed for solving the ODEs, 
but the work, [53], has constructed the bilateral 
methods to solve the Volterra integral equations by 
using the Runge-Kutta methods. The receiving 
theoretical result has been demonstrated in simple 
examples. We hope that this method will find its 
followers. Therefore, they can be considered 
promising. It is known that one of the promising 
methods is the advanced method. By taking into 
account the results tabulated in Table 3, Table 4, 
and Table 5, the methods with the fractional step 
size give good results. These methods are reminded 
of the hybrid methods. Therefore, these methods are 
promising. 
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