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Abstract: - The R package DELTD is for estimating densities by asymmetrical kernels and calculating MSE. This 
package is to estimate densities that are free of boundary bias. The major concern of the package is to enhance its 
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Birnbaum-Saunders, Erlang, Gamma, and Lognormal are considered here due to their usefulness in life data 
analysis, where their estimated values for density estimation can also be observed. Tuna data is also presented in 
this package. By using these kernels, densities will be free of boundary problems. This package is a collection of 
asymmetrical kernels which belong to the lifetime distribution. 
 
Key-Words: - Asymmetrical kernel, Beta kernel, Birnbaum-Saunders kernel, Erlang kernel, Gamma kernel, 

Lognormal kernel, Tuna data 
 
Received: May 28, 2023. Revised: August 29, 2023. Accepted: October 1, 2023. Published: October 20, 2023. 
 
 

1  Introduction 
Density estimation is a process of constructing the 
probability density function using underlying data. 
Applications of density estimation can be found in 
many fields of daily life, which may be: 
 In Statistics: [1], stated that density estimates can 

be applied in the construction of smooth 
distribution function estimates via integration, 
which then can be used to generate bootstrap 
samples from a smooth estimate of the 
cumulative distribution function rather than from 
the empirical distribution. Other statistical 
applications include identifying the 
nonparametric part in semiparametric models, 
finding optimal scores for nonparametric tests, 
and empirical Bayes methods. 

 In Engineering: The detection of abnormal or 
unexpected conditions from measured response 
data is an important issue, especially where a 
clear and early warning of an abnormal condition 
is required. For this purpose, [2], proposed a 
method that is based upon the probability density 

function (PDF) estimated using a kernel method. 
Other examples can be found in, [3], [4], and 
references therein. 

 In Hydrology: The estimated density function of 
rainfall, river discharge data, modeling of 
precipitation, and other hydroclimatic variables 
analyzed with a probability distribution, are used 
to gain insight into their behavior and frequency 
of occurrence, [5], [6]. 

 In Medicine: [7], sought the study to investigate 
whether individuals who live near destinations 
(service facilities, etc.) are more intensely 
distributed rather than dispersed. They used the 
kernel density estimation technique to examine 
how much they are active and engage in more 
frequent walking for transport and recreation. For 
other applications in medicine see, [8], [9], [10]. 

 In Physics: [11], kernel density estimate in the 
Lamb wave-based damage detection. They 
showed that the distribution of data is based on 
the intensity of the noise. In the case of weak 
noise, the pdf of measured data could be 
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considered as the normal distribution. However, 
in the case of strong noise, the pdf was complex 
and did not belong to any type of common 
distribution function. 

 In Bioinformatics and Genetics: in the last few 
decades, the importance of the development of 
computational systems for automated analysis of 
large amounts of data (high-throughput) has 
risen. The study, [12], discussed such problems 
and their solution based on LOWESS and 
running median. Additionally, they measured a 
rodent's distance from the arena's wall. They 
examined the density of distances from the 
boundary when the algorithm to estimate the 
boundary is being used and when it is not. 
Further application can be observed in, [13], 
[14], [15]. 

 In Finance and Economics: [16], suggested using 
the sequential method for the estimation of the 
size distribution of U.S. family income. 
Similarly, [17], [18], provide a healthy literature 
to enhance the importance of density estimation 
in this field. 
One could think of other several applications in 
archaeology, [19], climatology, [20], physiology, 
[21], astronomy, [22], [23], geoscience, [24], 
[25], and continues to be relevant in new areas of 
mathematics and information science, [26], [27], 
[28]. 

 
There are a variety of approaches to estimating 

the density; Kernel density estimation, histogram, 
data clustering, semi-parametric methods, etc. Kernel 
density estimation is one of the very famous 
techniques. The kernel estimator proposed by, [29], 
[30], is given as; 
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1
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𝑖=1

𝐾ℎ(𝑥 − 𝑥𝑖) =
1

𝑛ℎ
∑  

𝑛

𝑖=1

𝐾ℎ (
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     (1) 
where 𝑘 is the kernel function and ℎ represents the 
bandwidth or smoothing parameter. Due to this, a 
serious problem of boundary bias or boundary effect 
arises. If reflected in the results variance and bias 
showed a sharp increase when estimating them at 
points near the boundary region. In other words, it 
affects the performance of the estimator at the 
boundary points due to boundary effects, then from 
the interior points. Such a problem occurs when 
variables represent some sort of physical measure 

such as time or length. These variables thus, have a 
naturally lower boundary, e.g. time of birth or zero 
point on a scale. So, when smoothing is carried out 
near the boundary and fixed the symmetric kernel is 
used, those kernels allocate weights outside the 
density support, [31]. To remove those boundary 
effects in kernel density estimation, a variety of 
methods have been developed in the literature. Some 
well-known methods are summarized below: 
 
1.1 Reflection Method 
The reflection method was first introduced by, [32], 
and then studied by, [33]. The main idea is to reflect 
the data points. This not only yields a twice as large 
sample size but most importantly yields a sample 
drawn from a density with unbounded support. Then 
kernel estimator is applied to data of size 2𝑛 and then 
the new estimate is symmetrical around the origin. 
 
1.2 Transformation Method 
To control boundary bias, [34], suggested 
transforming the data at both sides to a density that 
has its first derivative equal to 0. They suggested 
different transformations from a parametric family, in 
general, and compared with Rice's adjusted kernel 
method. They claimed that their proposed method 
produced non-negative estimates and outperformed 
Rice's adjustment. 
 
1.3 Pseudo-data Method 
The study, [35], presented this method, which is 
based on pseudo data, which is beyond the limits of 
density support. They claimed that their method is 
more adaptive because the pseudo method is more 
appropriate for kernels of order 2 and more. The 
estimators produced by this method may gain optimal 
orders of bias, variance, and lower mean squared 
error at 𝑥 = 0. They suggested using the plug-in and 
least square cross-validation method for bandwidth 
selection. 
 
1.4 Local Linear Method 
The study, [36], introduced estimators that utilize 
density derivative estimators obtained from local 
polynomial fitting. He compared his proposed 
estimator and its asymptotically optimal bandwidth 
with Sheather and Jones's bandwidth. However, he 
showed that former bandwidth overcomes the 
boundary problems and later does not. A similar 
technique was further used by, [37], in which they 
the local polynomial smoothing technique as a 
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possible alternative method for the problem. It was 
observed that such an estimator possesses desirable 
properties such as automatic adaptability for 
boundary effects near endpoints. They also obtained 
an optimal kernel to estimate the density at endpoints 
as a solution to a variation problem. 
 
1.5 Rice's Boundary Modification 
The study, [38], adapted Rice's method to the context 
of density estimation. The study, [39], proposed a 
method based on boundary modification of kernel 
regression estimators. In this method, a linear 
combination of two kernel regression estimators is 
used with two different bandwidths in the boundary 
area, as the same is used in the interior. The idea is 
similar to the bias reduction technique discussed in, 
[40]. 

To handle this problem, [41], suggested the 
solution of this problem by replacing the symmetric 
kernels with the asymmetric Beta kernel which never 
assigns weight outside the support. Many others used 
Chen's idea and proposed other kernels, i.e. 
lognormal, Weibull, Inverse Gaussian, etc. All of the 
methods perform well with different bandwidths. 
However, no package directly estimates the densities 
according to these asymmetrical kernels and also 
calculates its mean squared error. Due to the reasons 
stated above, we have developed a package DELTD, 
in R language, [42]. In which, we have used some 
asymmetrical kernels for which parent distribution 
belongs to the family of lifetime distributions to 
estimate the density and to calculate their mean 
squared error. To the best of our knowledge, no 
package is available that plots the density using a 
variety of asymmetrical kernels and calculates their 
MSE. There are lots of packages that are frequently 
used for density estimation, but almost all of them 
use symmetrical kernels. The problem of boundary 
bias occurs using the symmetrical kernel as 
mentioned above. The package is available from the 
Comprehensive R Archive Network (CRAN), [43]. 
This paper aims to describe this package, and also, to 
summarize and conveniently present the functions. 
This may help interested readers to apply this kind of 
technique to real situations. The structure of this 
paper is as follows. Section 2 introduces the lifetime 
distributions and their relevant kernel. Section 3 
introduces the utility of Mean Squared Error (MSE). 
Section 4 presents the implementation of functions in 
package DELTD, with examples and argument 

details and lastly, Section 5 is devoted to conclusions 
with some suggestions for future work. 
 
2  Life Time Distributions 
Distributions that tend to better represent life data are 
known as lifetime distributions, [44]. Like lognormal 
distribution is found in environmental studies, milk 
production of cows, amount of rainfall, the volume of 
gas in a petroleum reserve, etc., [45], [46], 
Birnbaum-Saunders distribution describes the fatigue 
life studies, [47], and Beta distribution is used for 
percentages, proportion, rates, and fractions, [48]. 
Similarly, applications of gamma distribution are 
found in neuroscience, in bacterial gene expression, 
[49], [50]. The gamma distribution is widely used as 
a conjugate prior in Bayesian statistics, etc. Erlang 
distribution is a specified case of Gamma 
distribution, [51], and is used in queuing theory, in 
the mathematical study of waiting in lines. It is also 
used in stochastic processes mathematical biology, 
etc. In this paper, we are interested in only those 
distributions that belong to the lifetime distribution 
family and their asymmetrical kernels are available in 
the literature, e.g. Beta, Birnbaum-Saunders, Erlang, 
Gamma, and Lognormal. 

Let 𝑋1, … , 𝑋𝑛 be a random sample from a 
distribution with an unknown probability density 
function 𝑓 which has bounded support on [0,∞), 
with 𝑦 > 0 and ℎ representing the bandwidth. In the 
following subsections kernels are presented for the 
above-stated distributions that we are going to use in 
the package and were developed to handle the 
problem of boundary bias. 
 
2.1 Beta Kernel 
The study, [41], proposed a Beta kernel for 
estimating curves with compact support by using the 
Beta distribution of the first kind. The beta kernel 
smoother is free of boundary bias, achieving the 
optimal convergence rate of 𝑛−

4

5 for mean integrated 
squared error and always allocate non-negative 
weights. Further, they compared the beta smoothers 
and the local linear smoothers. Beta Kernel is 

𝐾
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     (2) 
 

2.2 Birnbaum-Saunders Kernel 
The study, [52], extended the class of non-negative, 
asymmetric kernel density estimators and proposed 
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Birnbaum-Saunders (BS) kernel density function. 
The density function has bounded support on [0,∞). 
They applied a BS kernel density estimator to high-
frequency intraday time duration data. The 
comparisons are made on several nonparametric 
kernel density estimators. BS kernel performs better 
near the boundary in terms of bias reduction. 

𝐾
𝐵𝑆(ℎ

1
2,𝑥)

(𝑦) =
1

2√2𝜋ℎ
(√

1
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) 

exp(−
1
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𝑦
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− 2 +

𝑥

𝑦
))  (3) 

 

2.3 Erlang Kernel 
Erlang kernel is proposed by, [53]. They suggested 
using it for non-parametrically estimation of the 
probability density function (pdf). Moreover, they 
investigated the asymptotic normality of the 
proposed estimator. 
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2.4 Gamma Kernel 
The study, [54], developed the Gamma kernel. As it 
is stated above, the reason behind this development is 
to handle boundary bias, which arises in symmetrical 
kernels. He showed that kernels are nonnegative, has 
naturally varying shape, and achieve the optimal rate 
of convergence for the mean integrated squared error. 
The Gamma kernel which we considered in our 
package is as follows: 

𝐾
Gam1(

𝑥

ℎ
+1,ℎ)
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𝑦

ℎ
)
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𝑥
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    (5) 

2.5 Lognormal Kernel 
This kernel is also proposed by, [52]. They showed 
that this kernel also performs equally well with the 
Birnbaum-Saunders (BS) kernel. 

𝐾𝐿𝑁(ln(𝑥),4ln(1+ℎ)) =
1

√(8𝜋ln(1 + ℎ)) 

exp[−
(ln(𝑦)−ln(𝑥))2

8ln(1+ℎ)
]   (6) 

3  Mean Squared Error 
The mean squared error described the squared 
difference between the actual and estimated values. It 
measures the average of the squares of the errors. 
Mathematically, we can express this as 

𝑀𝑆𝐸 =
1

𝑛−𝑘
∑  𝑛
𝑖=1 (𝑦𝑖 − �̂�𝑖)

2   
 = 𝐸[(𝑦𝑖 − �̂�𝑖)

2] (7) 
 

𝑛 is the number of data points, 𝑦𝑖 represents actual 
values and �̂�𝑖 represents estimated value. MSE is a 
risk function, corresponding to the expected value of 
the squared error loss. It is always non-negative, and 
values closer to zero are better, [55]. 
 
 
4  The Package Overview 
The package DELTD contains functions for density 
estimation by using asymmetrical kernels named 
Beta, Birnbaum-Saunders, Erlang, Gamma, and 
Lognormal. For these kernels, densities are 
calculated and represented graphically. The mean 
squared error (MSE) for each kernel can also be 
calculated. The following section demonstrates the 
use of the DELTD package with simulated examples. 
The functions within DELTD are briefly described in 
Table 1. 

For density estimation, five functions (Table 3) 
are presented that are used to estimate the density by 
using Beta (plot.Beta), Birnbaum-Saunders (plot.BS), 
Erlang (plot.Erlang), Gamma (plot.Gamma) and 
lognormal (plot. LogN) kernels. For all kernels, 
estimated values for density estimation can also be 
analyzed by using Beta, BS, Erlang, Gamma, and 
LogN, for details, see Table 2. In our examples for 
observing estimated values of density, we generated 
a sample by using different distributions with 
different sample sizes. Function(s) related to density 
estimation depends on the grid size and ℎ. 
Practically, estimation may be quite slow with small 
grid points, but it is important to note that for large 
grid points, density is smoother. In nonparametric 
estimation, bandwidth (ℎ) plays a very important 
role. So, ℎ also affects the smoothness of density 
along with grid points. 
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Table 1. Summary of contents of the package 
Functions Description 

Beta Estimate Density Values by the Beta 
kernel 

BS Estimate Density Values by Birnbaum-
Saunders kernel 

Erlang Estimate Density Values by Erlang kernel 

Gamma Estimate Density Values by Gamma 
kernel 

LogN Estimate Density Values by Lognormal 
Kernel 

mse Calculate Mean Squared Error (MSE) by 
using different Kernels 

plot.Beta Density Plot by the Beta kernel 

plot.BS Density Plot by Birnbaum-Saunders 
kernel 

plot.Erlang Density Plot by Erlang kernel 

plot.Gamma Density Plot by Gamma kernel 

plot.LogN Density Plot by Lognormal kernel 

TUNA Data on Tuna fish 

 
Functions for observing estimated values provide 

grid points and estimated values of density. All such 
functions have some default arguments, if the user 
does not provide such parameters then the function 
proceeds by using those arguments. But the user must 
provide at least 𝑥 or 𝑘. If 𝑥 is missing in the function 
then the package generates 𝑘 grid points between 
minimum and maximum values of vector (y). Only in 
case Beta is used, with missing 𝑥, then grid points 
will be generated by using a uniform distribution 
(𝑈(0,1)) as restricted by the author. Similarly, if 𝑘 is 
missing then the function proceeds by setting 𝑘 = 𝑛, 
where 𝑛 is the length of the vector (y). In case, if the 
user does not provide the ℎ then the function uses 

ℎ = 0.79𝐼𝑄𝑅𝑛(−1/5)    
    (8) 

 
which is described by, [56], for non-normal data. 
 
 
 

5 Estimated Values of Density: 

Illustrative Examples 
Here we are using BS for illustration, with all 
missing situations. In the following example, all 
arguments of a function are user-defined. Here we 
are using a quite small 𝑘 to present results. It's better 
to use the same length of grid points (𝑘) for one 
kernel. Although, it proceeds unequal 𝑘 halt the plot 
() or generate NA. 
 
Table 2. Summary of arguments of Beta, BS, Erlang, 

Gamma and LogN 

Arguments Description 

𝑥 a scheme for generating grid points 

𝑦 a vector of positive values 

𝑘 number of grid points 

ℎ the bandwidth 

 
> alpha = 10 
> theta = 15 / 60 
> k <- 10 
> y <- rgamma(n = 100, shape = alpha, 
> scale = theta) 
> xx <- seq(min(y) , max(y), length =k) 
> h <- 1.1 
> den <- BS(x = xx, y = y, k = k, h = h) 
 
It provides; 
 
> den 
$x 
[1] 0.8556524 1.3077240 1.7597956 2.2118671 
[5] 2.6639387 3.1160103 3.5680819 4.0201535 
[9] 4.4722250 4.9242966 
$y 
[1] 0.1167586 0.1461795 0.1572175 0.1595425 
[5] 0.1573851 0.1528002 0.1468850 0.1402692 
[9] 0.1333330 0.1263139 
 

If the scheme for generating grid points is 
unknown; then the function proceeds with the above-
mentioned scheme. But for Beta, it is restricted by 
the author that grid points and vector (y) (either real 
or simulated) lie between 0 and 1. Any other scheme 
will produce NaN for beta-estimated values. 
 
> y <- rgamma(n = 1000, shape = alpha, 
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> scale = theta) 
> h <- 3 
> BS(y = y, k = 90, h = h) 
 

Similarly, the following example describes the 
situation, if the user does not mention the number of 
grid points. Further, it is not necessary that ℎ must be 
fixed; it can be calculated by any other source. 
 
> y <- rgamma(n = 10, shape = alpha, 
> scale = theta) 
> xx <- seq(0.001, 1000, length = 10) 
> #any bandwidth can be used 
> require(KernSmooth) 
# Direct Plug-In Bandwidth 
> h <- dpik(y)  
> BS(x = xx, y = y, h = h) 
 
It results, where the length of 𝑘 is adopted by default. 
 
$x 
[1] 0.001111.112222.223333.334444.445 
[6] 555.556666.667777.778888.8891000 
$𝑦 
[1] 0.000000e + 004.959898e − 
249.302037e − 48 
[4] 1.685906e − 713.000456e − 
955.238665e − 119 
[7] 8.996952e − 1431.525185e − 
1662.559622e − 190 
[10] 4.261985e − 214 
attr(, "class") 
[1] "list" "BS" 
 

If both the generating scheme and the number of 
grid points are missing then the function is halted and 
will not process. 
 
> y <- rgamma(n = 1000, 
> shape = alpha, scale = theta) 
> band = 3 
> 𝐵𝑆(𝑦 = 𝑦, ℎ = band ) 
If bandwidth is missing then density points can be 
calculated as; 
 
> y <- rgamma(n = 1000, 
> shape = alpha, scale = theta) 
> xx <- seq(0.001, 100, length = 1000) 
> BS(x = xx, y = y, k = 900) 
 

Similarly, Beta, Erlang, Gamma, and LogN can be 
used for their respective kernels. For details and 
examples see, [43]. 
 
 
6  Density Plot: Illustrative Example 
To plot density, any kernel plot() can be used, for 
details see Table 3 For continuity, the BS kernel is 
used in Figure 1. 
 

Table 3. Summary of arguments of plot.Beta, 
plot.BS, plot.Erlang, plot.Gamma and plot.LogN 

Arguments Description 

𝑥 An object of class "Beta", "BS", 
"Erlang", "Gamma" or "LogN" 

… Not presently used in this 
implementation 

 
## other details can also be added 
> plot (den, type = "1", 𝑦𝑙𝑎𝑏 = "Density 
> Function", lty = 1, 𝑥 lab = "Time") 
## To add true density along with estimated > 𝑑1 <
−𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝑦, 𝑏𝑤 = ℎ) 
> 𝑙𝑖𝑛𝑒𝑠(𝑑1, type = "p", col = "red") 
> legend("topright", c("Real Density", > "Density by 
Birnbaum-Saunders Kernel"), col=c("red", "black"), 
lty = 𝑐(1,2)) 
 

 
Fig. 1: Density Estimation by Using BS Kernel. 
 

Further, the Tuna fish dataset, [57], is used to 
enhance the usefulness of these kernels. The data is 
about Tuna, which is saltwater fish. Its seasonal 
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migration is between waters off the coast of Australia 
and the Indian Ocean. The data represents a line 
transect aerial survey of Southern Bluefin Tuna in the 
Great Australian Bight in summer when the tuna 
tends to stay on the surface. The abundance 𝐷 is 
measured by 𝐷 =

𝑁

𝐴
, where 𝑁 is the total number of 

surface schools in the Bight and 𝐴 is the survey area. 
To estimate 𝐷, an aircraft with two spotters on board 
is used to fly randomly allocated transect lines to 
detect tuna schools. Each school sighted from the 
transect is counted, and its perpendicular distance to 
the transect is measured. 

 
 

7 Mean Squared Error (MSE): 

Illustrative Example 
This function helps to examine the accuracy of 
different considered estimation methods, in terms of 
mean squared error (MSE). Table 4 presents 
argument details related to this function. These 
functions can be utilized only when data follows 
exponential, Gamma, or Weibull distribution. 
Similarly, Figure 2 presents the density estimation by 
using BS Kernel for Tuna data. 
 

Table 4. Summary of argument of mse 

Arguments Description 

kernel type of kernel which is to be used 

type 

mention the distribution of vectors. If 
exponential distribution then use "Exp". If 
use gamma distribution then use 
"Gamma". If Weibull distribution then use 
"Weibull". 

 

 
Fig. 2: Density Estimation by Using BS Kernel for 
Tuna data 

 
> 𝑚𝑠𝑒( kernel = den, type = "Exp") 
[1] 0.002491046 
 
If a distribution other than above mentioned type is 
used then NaN will be produced. 
 
> mse (kernel = den, type ="Beta") 
[1] NaN 
 
 
8  Summary 
In this paper, we have illustrated the functions of the 
R package DELTD. The package is about the density 
estimation through asymmetrical kernels when parent 
distribution belongs to lifetime distributions, e.g. 
Beta, BS, Exponential, Erlang, Gamma, Logistic, and 
Lognormal distribution. Additionally, their mean 
squared error (MSE) and plot are constructed through 
simulation data. Till that time, the package was the 
first publicly available software for the estimation of 
density by using asymmetrical kernel(s). 

Density estimation is a powerful tool to collect 
information about its unknown distribution from 
given data. Due to this, kernel density estimation is 
very popular. But typically, symmetrical kernels are 
considered for estimation, which are sensitive to 
boundary bias. To overcome this problem, [41], 
proposed to use asymmetrical kernel which is non-
negative and free of boundary bias. In this paper and 
the package DELTD, we combined major 
asymmetrical kernels that are based on lifetime 
distribution, i.e. Beta, BS, Erlang, Gamma, and 
Lognormal. The MSE criteria may be used to 
examine the accuracy of estimated kernels with real 
data. 

Extensions towards the software package with 
more lifetime distribution kernels can be added in the 
package and other distributions can be introduced 
which can help to calculate MSE. This package can 
also be combined with Artificial Intelligence. In 
which, the function automatically identifies the 
suitable kernel; which has minimum MSE with 
estimated density. This package can be of interest to 
all those practitioners of different scientific fields 
who use any lifetime distribution(s) and those who 
estimate the densities for different purposes. 
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