
1 Introduction

In classical differential geometry, the problem of
obtaining Gaussian and mean curvatures of a sur-
face in Euclidean space and other spaces is one
of the most important problems, so we are inter-
ested here to study such a problem for a surface
known as affine factorable surface in the three-
dimensional pseudo-Galilean space G1

3.
The geometry of Galilean Relativity acts like

a “bridge” from Euclidean geometry to special
Relativity. The Galilean space which can be de-
fined in three-dimensional projective space P3(R)
is the space of Galilean Relativity, [1]. The ge-
ometries of Galilean and pseudo-Galilean spaces
have similarities, but, of course, are different. In
the Galilean and pseudo Galilean spaces, some
special surfaces such as surfaces of revolution,
ruled surfaces, translation surfaces and tubular
surfaces have been studied in [2], [3], [4], [5], [6],
[7], [8], [9], [10]. For further study of surfaces
in the pseudo-Galilean space, we refer the reader
to [9]. Recall that the graph surfaces are also
known as Monge surfaces, [11]. In this work, we
are interested here in studying a special type of
Monge surface, namely the factorable surface of
the second kind that is a graph of the function
y(x, z) = f(x)g(z). Such surfaces with non-zero
constant Gaussian and mean curvatures in vari-

ous ambient spaces have been classified (see, [12],
[13], [14], [15], [16]). Our purpose is to analyze the
factorable surfaces in the pseudo-Galilean space
G1

3 that is one of real Cayley-Klein spaces (for
more details see, [17], [18], [19]). There exist three
different kinds of factorable surfaces, explicitly, a
Monge surface in G1

3 is said to be factorable (so-
called a homothetic) if it is given in one of the fol-
lowing forms: Φ1 : z(x, y) = f(x)g(y) is the first
kind, Φ2 : y(x, z) = f(x)g(z) the second kind, and
Φ3 : x(y, z) = f(y)g(z) the third kind where f , g
are smooth functions, [14]. These surfaces have
different geometric structures in different spaces
such as metric, curvatures, etc. We hope that this
work will be useful for the specialists in this field.

2 Basic concepts

The pseudo-Galilean space G1
3 is one of the

Cayley-Klein spaces with absolute figure that con-
sists of the ordered triple {ω, f, I}, where ω is
the absolute plane given by xo = 0, in the three-
dimensional real projective space P3(R), f the ab-
solute line in ω given by xo = x1 = 0 and I the
fixed hyperbolic involution of points of f and rep-
resented by (0 : 0 : x2 : x3) → (0 : 0 : x3 : x2),
which is equivalent to the requirement that the
conic x22−x23 = 0 is the absolute conic. The metric
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connections in G1
3 are introduced with respect to

the absolute figure. In terms of the affine coordi-
nates given by (xo : x1 : x2 : x3) = (1 : x : y : z),
the distance between the points p = (p1, p2, p3)
and q = (q1, q2, q3) is defined by (see for instance,
[9], [18])

d(p, q) =

{
|q1 − p1| , if p1 6= q1,√
|(q2 − p2)2 − (q3 − p3)2|, if p1 = q1.

The pseudo-Galilean scalar product of the
vectors X = (x1, x2, x3) and Y = (y1, y2, y3) is
given by

〈X,Y 〉G1
3

=

{
x1y1, if x1 6= 0 or y1 6= 0,

x2y2 − x3y3, if x1 = 0 and y1 = 0.

In this sense, the pseudo-Galilean norm of a
vector X is ‖X‖ =

√
|X.X|. A vector X =

(x1, x2, x3) is called isotropic (non-isotropic) if
x1 = 0 (x1 6= 0). All unit non-isotropic vectors
are of the form (1, x2, x3). The isotropic vector
X = (0, x2, x3) is called spacelike, timelike and
lightlike if x22−x23 > 0, x22−x23 < 0 and x2 = ±x3,
respectively. The pseudo-Galilean cross product
of X and Y on G1

3 is given as follows

X ∧G1
3
Y =

∣∣∣∣∣∣∣∣
0 −e2 e3

x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣∣∣ ,
where e2 and e3 are canonical basis.
Let M be a connected, oriented 2-dimensional

manifold and φ : M → G1
3 be a surface in G1

3 with
parameters (u, v). The surface parametrization φ
is expressed as

φ(u, v) = (x(u, v), y(u, v), z(u, v)).

On the other hand, we denote by E, F , G
and L, M , N the coefficients of the first and sec-
ond fundamental forms of φ, respectively. The
Gaussian curvature K and mean curvature H are
expressed as

K =
LN −M2

EG− F 2
, H =

EN +GL− 2FM

2 |EG− F 2|
,

(1)
where

E = φ′u.φ
′
u, F = φ′u.φ

′
v, G = φ′v.φ

′
v,

L = φ′′uu.n, M = φ′′uv.n, N = φ′′vv.n,

where the normal surface is given by

n =
φ′u ∧ φ′v
|φ′u ∧ φ′v|

.

3 Factorable surfaces in pseudo-

Galilean space G1
3

In what follows, we consider the factorable surface
of second kind in G1

3 which can be locally written
as

φ(x, z) = (x, f(x)g(z), z). (2)

Definition 1 An affine factorable surface in
pseudo-Galilean space G1

3 is defined as a parame-
ter surface φ(u, v) and can be written as

φ(u, v) = (x(u, v), y(u, v), z(u, v))

= (u, f(u)g(v + au), v)

= (x, f(x)g(z + ax), z), (3)

for non zero constant a, and functions f(x) and
g(z + ax), [19].

Now, from Eq. (3) by a straightforward cal-
culation, the first fundamental form with its co-
efficients of φ is given by

I = Edx2 + 2Fdxdy +Gdy2,

E = 1, F = 0, G = (fg′)2 − 1,

g′ =
dg(z + ax)

d(z + ax)
.

Also, the second fundamental form of φ is

II = Ldx2 + 2Mdxdy +Ndy2,

L =

(
f ′′g + 2af ′g′ + a2fg′′

)
D

,

M =
(f ′g′ + afg′′)

D
, N =

fg′′

D
,

where
D(x, z) =

√
1− (fg′)2.

In addition, the Gaussian and mean curvature of
φ can be obtained

K =
f ′2g′2 − f ′′fg′′g

(1− (fg′)2)2
, (4)

H =
Ω(x, z)

2 (1− (fg′)2)
3
2

, (5)

such that

Ω(x, z) = (1− a2)fg′′ − f ′′g − 2af ′g′

+f2f ′′g′2g + 2af ′f2g′3 + a2f3g′2g′′.

A surface in G1
3 is said to be an isotropic minimal

(resp. flat) if H (resp. K) vanishes identically.
Further, it is said to have constant an isotropic
mean (resp. Gaussian) curvature if H (resp. K)
is a constant function on a whole surface.
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4 Affine factorable surfaces with

zero curvatures

In this section, if the Gaussian and mean curva-
tures of Eq. (3) are vanished, then we get the
following result.

Theorem 2 Let φ : I ⊂ R → G1
3 be an affine

factorable surface of second kind given in the form

φ(x, z) = (x, f(x)g(z + ax), z),

if its Gaussian curvature is zero, then the surface
is one of the following forms:

(1) y(x, z) = fog(z + ax),

(2) y(x, z) = gof(x),

(3) y(x, z) = cec5x+c4z,

(4) y(x, z) = [(1− k)(c6x+ c7)]
1

1−k

Theorem 3 .
[(

k−1
k

)
(c8(z + ax) + c9)

] k
k−1 .

Proof. If the Gaussian curvature of φ is zero,
then from Eq. (4), we have

f ′2g′2 − f ′′fg′′g = 0. (6)

To solve this equation we have the following cases:
Case 1. if f ′ = 0, then f ′′ = 0, f = fo = const.,
then y(x, z) = fog(z + ax).
Case 2. if g′ = 0, then g′′ = 0, g = go = const.,
then y(x, z) = gof(x).
Case 3. if f ′ 6= 0 and g′ 6= 0, and let{

u = x,

v = z + ax,

where ∂(u, v)/∂(x, z) 6= 0. Then Eq. (7) can be
written as

f2ug
2
v − ffuuggvv = 0,

or (
df

du

)2(dg
dv

)2

= f
dfu
df

df

du
g
dgv
dg

dg

du
. (7)

From Eq. (8), we find

df

du

dg

dv
= f

dfu
df
g
dgv
dg

.

Since, df
du

dg
dv 6= 0 and g dgv

dg 6= 0, then(
f dfu

df

fu

)
=

(
gv

g dgv
dg

)
, (8)

let’s rewrite the last equation as follows:(
f dfu

df

fu

)
=

(
gv

g dgv
dg

)
= k; k = const. (9)

(a) If k = 1, then from Eq. (10), we have

dfu
fu

=
df

f
,

dgv
gv

=
dg

g
, (10)

it leads to

f = c1e
c2u, g = c3e

c4v,

where c1, c2, c3, c4 are constants. And then

y(x, z) = f(x)g(z + ax) = c1e
c2xc3e

c4(z+ax)

= c5e
c6x+c4z,

where c5 = c1c3 and c6 = c2 + ac4 are constants.
(b) When k 6= 1, then from Eq. (10), we get

f
dfu
df

= kfu, kg
dgv
dg

= gv,

which has the solution

f(x) = [(1− k)(c7x+ c8)]
1

1−k ,

g(z + ax) =

[(
k − 1

k

)
(c9(z + ax) + c10)

] k
k−1

.

Therefore, we have

y(x, z) = [(1− k)(c7x+ c8)]
1

1−k

.

[(
k − 1

k

)
(c9(z + ax) + c10)

] k
k−1

,

where c7, c8, c9 and c10 are constants.

Theorem 4 For given affine factorable surface
of second kind in a three-dimensional pseudo-
Galilean space in the form

φ(x, z) = (x, f(x)g(z + ax), z).

Let its mean curvature be zero, then this surface
will be one of the following forms:

(1) y(x, z) = fo(b1(z + ax) + b2), or y(x, z) =

fo

(√
a2−1
a2f2

o
(z + ax) + b3

)
,

(2) y(x, z) = go(b4x+ b5),

(3) y(x, z) = b8(b6x + b7), or y(x, z) = (b6x +
b7)(b9(z + ax) + b10),

(4) y(x, z) = (b12x + b13)(b11(z + ax) + b12), or
y(x, z) = 1

b11
(b11(z + ax) + b12).
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Proof. If H = 0, then from Eq. (6), we find

(1− a2)fg′′ − f ′′g − 2af ′g′

+ f2f ′′g′2g + 2af ′f2g′3 + a2f3g′2g′′ = 0. (11)

This equation can be solved with the aid of the
following:
(1) If f ′ = f ′′ = 0, then f = fo = const., and
(4.6) becomes

(1− a2)fg′′ + a2f3g′2g′′ = 0,

it can be written in a simple form as

g′′ = 0 or g′ =

√
a2 − 1

a2f2o
,

which has the solution

g = b1(z+ax)+b2 or g =

√
a2 − 1

a2f2o
(z+ax)+b3,

it leads to

y(x, z) = fo(b1(z + ax) + b2),

and then, we get

y(x, z) = fo

(√
a2 − 1

a2f2o
(z + ax) + b3

)
,

where b1, b2, and b3 are constants.
(2) When g′ = g′′ = 0, then g = go = const., and
Eq. (12) becomes

f ′′g = 0,

it has the solution

f = b4x+ b5.

Using what we got from solutions, we can write

y(x, z) = go(b4x+ b5),

where b4, b5 are constants.
(3) When f ′′ = 0, this leads to f ′ = b6

which gives f = b6x+ b7. From Eq. (12), we have

(1− a2)fg′′ − 2af ′g′ + 2af ′f2g′3 + a2f3g′2g′′ = 0,

which can be written as

(1−a2)fgvv−2afugv +2afuf
2g3v +a2f3g2vgvv = 0,

therefore, by differentiating this equation three
times with respect to u, we obtain

g2vgvv = 0,

which gives

gv = 0 → g = b8,

and so

gvv = 0 → g = b9(z + ax) + b10,

in light of this, we get

y(x, z) = b8(b6x+ b7),

and then, we have

y(x, z) = (b6x+ b7)(b9(z + ax) + b10),

where b6, b7, b8, b9 and b10 are constants.
(4) If g′′ = 0, it means that g′ = b11 → g =
b11(z + ax) + b12 and then from Eq. (12), we
obtain

f ′′g + 2af ′g′ − f2f ′′g′2g − 2af ′f2g′3 = 0,

which can be written as

fuug + 2afugv − f2fuug2vg − 2afuf
2g3v = 0.

Differentiate this equation with respect to v, we
find

b11fuu − b311f2fuu = 0,

fuu = 0 → f = b12x+ b13,

it leads to

f =
1

b11
,

Therefore, we get

y(x, z) = (b12x+ b13)(b11(z + ax) + b12),

it follows that

y(x, z) =
1

b11
(b11(z + ax) + b12).

Taking into consideration that b11, b12 and b13 are
constants. Thus, this completes the proof.
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5 Affine factorable surfaces with

non-zero curvatures

In this section, we describe the affine factorable
surfaces of the second kind in G1

3 with non-zero
constant Gaussian and mean curvatures.

Theorem 5 Let φ : I ⊂ R → G1
3 be an affine

factorable surface of the second kind in G1
3, and it

has a non-zero constant Gaussian curvature, then
this surface takes the form:

y(x, z) = (go(z + ax) + λ2)

.

(
± 1

go
tanh

[√
Kox∓ goλ1

])
, λ1, λ2 ∈ R.

Proof. Let Ko be a non-zero constant Gaussian
curvature. Hence, we get

Ko =
f ′2g′2 − f ′′fg′′g

(1− (fg′)2)2
, (12)

Since, Ko vanishes identically when f or g is a
constant function. Then f and g must be non-
constant functions. So, we can distinguish two
cases for Eq. (13), as follows:
Case 1. f ′ = fo, fo ∈ R − {0}, then from Eq.
(13), we get a polynomial equation in (g′):

Ko − (2Kof
2 + f2o )g′2 +Kof

4g′4 = 0,

which it yields a contradiction.
Case 2. If g′ = go; go ∈ R− {0}. Then, Eq. (13)
leads to

f ′ =
±
√
Ko − 2Kog2of

2 +Kog4of
4

go
,

therefore, it has the solution:

f(x) = ± 1

go
tanh

[
go
√
Kox∓ goλ1

]
, λ1 ∈ R.

Case 3. If f ′′ 6= 0; g′′ 6= 0. Then, Eq. (13) leads
to

Ko =
f ′2g′2 − f ′′fg′′g

(1− (fg′)2)2
,

So, using u = x, v = z+ ax and ∂(u, v)/∂(x, y) 6=
0, we can obtain

Ko =
f2ug

2
v − fuufgvvg

(1− (fgv)2)2
, (13)

it leads to

f ′

f2f ′′
+

3f ′f2

f ′′
g′4 = 0, (14)

which means that all coefficients must vanish,
therefore the contradiction f ′ = 0 is obtained.
Thus the proof is completed.

Theorem 6 For given affine factorable surface
of the second kind in G1

3 which has a non-zero
constant mean curvature Ho. Then

y(x, z) = fo

(√
9H2

o − a4f2oλ23
3foHo

(z + ax) + λ4

)
,

=

(
−2Ho

go
x2 + cx+ c

)
go.

Proof. From Eq. (6), we have

Ho =

(
(1− a2)fg′′ − f ′′g − 2af ′g′

+f2f ′′g′2g + 2af ′f2g′3 + a2f3g′2g′′

)
2 (1− (fg′)2)3/2

,

Solving this equation leads to the following two
cases:

Case 1. If f = fo, g
′′ = λ3 = const., we

obtain

2Ho

(
1− (fg′)2

)3/2
= (1− a2)fg′′ + a2f3g′2g′′,

and using u = x, v = z + ax and
∂(u, v)/∂(x, y) 6= 0, we have

2Ho

(
1− (fgv)2

)3/2
= (1− a2)fgvv + a2f3g2vgvv,

(15)
it leads to

gv =

√
9H2

o − a4f2oλ23
3foHo

,

it has the solution:

g = ±
√

9H2
o − a4f2oλ23
3foHo

(z + ax) + λ4; λ4 ∈ R,

and then we get

y(x, z) = fo

(√
9H2

o − a4f2oλ23
3foHo

(z + ax) + λ4

)
.

Case 2. If g = go, we have

2Ho = −f ′′g,

it leads to

f = −Ho

go
x2 + λ5x+ λ6,

where λ5, λ6 ∈ R. Hence, the result is clear.

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2023.22.73 Mohamed Saad, Hossam Abdel-Aziz, Haytham Ali

E-ISSN: 2224-2880 670 Volume 22, 2023



Proposition 7 Let φ : I ⊂ R → G1
3 be an affine

factorable surface in G1
3. Then, the relation be-

tween its Gaussian and mean curvatures is given
by

H = A(x, z)K, (16)

where A(x, z) = D3(a2fg′′+2af ′g′+f ′′g)−fg′′D
f ′′fg′′g−f ′2g′2 ;

D =
√

1− (fg′)2. Further, if D = 0, then φ
is an isotropic minimal affine factorable surface
of the second kind.

6 Examples

In this section, we present some examples of the
affine factorable surfaces of the second kind. So,
let us consider the affine factorable surfaces of the
second kind in G1

3 given as follows:

(1) φ : y(x, z) = 8e6x+z; (x, z) ∈ [−1, 1] × [0, 2π]
(an isotropic flat; K = 0, see Fig. 1),

(2) φ : y(x, z) =
√

3
4(2x+z)+9; (x, z) ∈ [0, 15]×

[−1, 30] (an isotropic minimal; H = 0, see
Fig. 2),

(3) φ : y(x, z) = (10x+z) tanh[x]; (x, z) ∈ [−1, 1]
(K = constant, see Fig. 3),

(4) φ : y(x, z) = −x2 + 2x + 1; (x, z) ∈ [−1, 1]
(H = constant, see Fig. 4).
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Figure 1: The isotropic flat surface of the second

kind.
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Figure 2: The isotropic minimal surface of the

second kind.
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Figure 3: The affine factorable surface of the sec-

ond kind with K = constant.

-1.0

-0.5

0.0

0.5

1.0
-1.0

-0.5

0.0

0.5

1.0

-2

-1

0

1

2

Figure 4: The affine factorable surface of the sec-

ond kind with H = constant.
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7 Concluding Remarks

In the surface theory, especially factorable
surfaces, there are three kinds of these surfaces
known as first, second and third kinds. In this
paper, the factorable surface of the second kind
which has an affine form in the three-dimensional
pseudo-Galilean space G1

3 has been studied. The
classification of these surfaces with zero and
non-zero Gaussian and mean curvatures has
been investigated. Also, an essential relation
between the curvatures of these surface has been
obtained. Finally, some computational examples
to support our findings are given and plotted.
In future works, we plan to study the factorable
surfaces in Lorentz-Minkowski space for different
queries and further improve the results in this
paper, combined with the techniques and results
in [20], [21], [22].
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