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1 Introduction

The principle of 2-metric space (2-MS) was estab-
lished in [1] and [2], using generalizing the metric
space(MS) and showed numerous fixed point theo-
rems (FPTs) in such space. Many papers have in-
vestigated the necessary factors for the existence /
uniqueness of FPT for contraction mappings in 2-MS,
[3], [4], [5], [6], [7], [8]. On another hand, [9], in-
troduced sundry FPTs in cone 2-MS. The authors in
[9], [10], [11], [12], [13], established various FPTs in
newMSs for an ordered Banach space (BS) in the co-
domain. Over Banach algebras, [14] and [15], worked
on cone MS. [16] presented cone 2-MS generaliz-
ing both 2-MS and cone MS and proved some FPTs
for self-mappings satisfying certain contractive con-
ditions, [16], [17], [18]. The analysis of the existence
/ uniqueness of coincide /common points of diverse
operators in the context of MS is also one of the most
alluring research topics in FPTs, [19], [20], [21], [22].
Banach contraction principle to prove the exist a FP
for a given space was introduced by Banach [23]. The
method of FP development is either developing a type
of used space or a type of contractive mapping. The
development of space depends on decrease or chang-
ing the metric conditions. Consider that abusing or
debilitating a portion of the metric conditions rise to
the loss of some topological advantages, thus getting
hard in proving some FPTs. Hardy-Rogers’ theory
(H-R) [24], is one of the most main findings that de-
veloped the Banach contraction principle by contrac-
tive type, many researchers have developed various

FPTs on this important finding, [25], [26], [27], [28].
For this reason, we have seen generalize some FPTs
in a cone 2-MS by using H-R’ mappings, which opens
the entrance to a similar study on cone n-MS.

2 Preliminaries
Definition 2.1. [29] Suppose G be a Banach algebra
(BG), then ∀u1, u2, u3 ∈ G, α ∈ R:

(i) (u1u2)u3 = u1(u2u3);

(ii) u1(u2 + u3) = u1u2 + u1u3 and (u1 + u2)u3 =
u1u3 + u2u3;

(iii) α(u1u2) = (αu1)u2 = u1(αu2);

(iv) ∥u1u2∥ ≤ ∥u1∥∥u2∥.
In this work, a BG has a unit e: eu1 = u1e = u1

∀u1 ∈ G, where u1 if there is an inverse element, then
is said to be invertible. u2 ∈ G, u1u2 = u2u1 = e.
u1 ’s inverse is represented by u−1

1 . see [31] for
further information. The set {u1, u2, · · · , un} ⊂ G is
commute if uiuj = ujui ∀i, j ∈ {1, 2, · · · , n}.

Definition 2.2. [30] Suppose that U be a non-
empty set and the mapping δ : U × U × U → G
satisfies

(i) δ(u1, u2, u3) ̸= 0 for every pair u1 ̸= u2 ∈ U , and
u3 ∈ U ,

(ii) δ(u1, u2, u3) ≥ 0 for all u1, u2, u3 ∈ U and
δ(u1, u2, u3) = 0 if and only if at least two of
u1, u2, u3 are equal,
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(iii) δ(u1, u2, u3) = δ(p(u1, u2, u3)) for all
u1, u2, u3 ∈ U and for all permutations
p(u1, u2, u3) of (u1, u2, u3),

(iv) δ(u1, u2, u3) ≼ δ(u1, u2, u4) + δ(u1, u4, u3) +
δ(u4, u2, u3), for all u1, u2, u3, u4 ∈ U .

Then δ is called a cone 2-M on U and (U , δ) is called
a cone 2-MS.

Definition 2.3. [30] Suppose (U , δ) be a cone 2-
MS. Let u ∈ U and {un} be a sequence in U . Then
(i) {un} is convergence sequence if un → u when-

ever for every c ∈ G with 0 ≪ c, there is a natu-
ral number N such that
δ(un, u, u3) ≪ c, for all u3 ∈ U and n ≥ N .

(ii) {un} is a Cauchy sequence if for every c ∈ G
with 0 ≪ c, there is a natural numberN such that
δ(un, uk, u3) ≪ c, for all u3 ∈ U and n, k ≥ N .

(iii) (U , δ) is a complete cone 2-MS if every Cauchy
sequence is convergent in U .
Proposition 2.4. [31] Let G be a BG with a unite

e and u ∈ G. If the spectral radius r(u) < 1, which
implies that

r(u) = lim
n→∞

∥un∥
1

n = inf
n→∞

∥un∥
1

n < 1.

Then (e − u) is invertible. Actually, (e − u)−1 =∑+∞
i=0 ui.

Remark 2.5.
(i) r(u) ≤ ∥u∥ for any u ∈ G, refer [31].

(ii) In Proposition 2.4, if r(u) < 1 is replaced by
∥u∥ < 1 then the conclusion remains true.
Lemma 2.6. [33] If G is a real BS with a solid

cone P and if ∥un∥ → 0 as n → ∞, then for any
0 ≪ c, there exists n1 ∈ N such that for all n > n1,
we have un ≪ c.

3 Main Results
In this section, we will prove the uniqueness of the
common FP in con 2-MS using H-R contractive self
mappings of BG.

Theorem 3.1. Let (U , δ) be a complete cone 2-
MS on a BG G and P the underlying cone. Assume
that, T, F are self-mappings of U satisfying the con-
dition
δ(T ki

i u1, T
kj
j u2, u3)

≼α1δ(F
ki
i u1, F

kj
j u2, u3) + α2δ(F

ki
i u1, T

ki
i u1, u3)

+ α3δ(F
kj
j u2, T

kj
j u2, u3) + α4δ(F

ki
i u1, T

kj
j u2, u3)

+ α5δ(F
kj
j u2, T

ki
i u1, u3), (1)

where α1, α2, α3, α4, α5 ∈ P , for all u1, u2, u3 ∈ U .
Ifα1, α2, α3, α4, α5 are commute and r(α1)+r(α2)+
r(α3) + r(α4) + r(α5) < 1. Then {T ki

i }∞i=1 and
{F ki

i }∞i=1 have a unique common FP.

Proof. Consider T ki
i = hi and F ki

i = fi, for all i ∈
N . Inequality (1) it will become

δ(hiu1, hju2, u3)

≼ α1δ(fiu1, fju2, u3) + α2δ(fiu1, hiu1, u3)

+ α3δ(fju2, hju2, u3) + α4δ(fiu1, hju2, u3)

+ α5δ(fju2, hiu1, u3). (2)

Let u0 ∈ U be arbitrary and define the sequence un
as un = hn(un−1) = fnun, for all n ∈ N . Now we
prove that {un} is a Cauchy sequence in U . Take

δ(un+1, un, u3)

= δ(hn+1un, hnun−1, u3)

≼α1δ(fnun, fnun−1, u3) + α2δ(fnun, hnun, u3)

+ α3δ(fnun−1, hnun−1, u3) + α4δ(fnun, hnun−1, u3)

+ α5δ(fnun−1, hnun, u3)

≼α1δ(un, un−1, u3) + α2δ(un, un+1, u3) + α3δ(un−1, un, u3)

+ α4δ(un, un, u3) + α5δ(un−1, un+1, u3)

≼α1δ(un, un−1, u3) + α2δ(un, un+1, u3) + α3δ(un−1, un, u3)

+ α5[δ(un−1, un, u3) + δ(un, un+1, u3)]

≼α1δ(un, un−1, u3) + α2δ(un, un+1, u3) + α3δ(un−1, un, u3)

+ α5δ(un−1, un, u3) + α5δ(un, un+1, u3)

≼(e− α2 − α5)
−1(α1 + α3 + α5)δ(un−1, un, u3)

≼η1δ(un−1, un, u3),

where

η1 = (e− α2 − α5)
−1(α1 + α3 + α5) ∈ P .

By symmetrical probability of cone 2-MS, we have

δ(un+1, un, u3)

= δ(un, un+1, u3)

= δ(hnun−1, hn+1un, u3)

≼α1δ(fnun−1, fnun, u3) + α2δ(fnun−1, hnun−1, u3)

+ α3δ(fnun, hnun, u3) + α4δ(fnun−1, hnun, u3)

+ α5δ(fnun, hnun−1, u3)

≼α1δ(un−1, un, u3) + α2δ(un−1, un, u3) + α3δ(un, un+1, u3)

+ α4δ(un−1, un+1, u3) + α5δ(un, un, u3)

≼α1δ(un−1, un, u3) + α2δ(un−1, un, u3) + α3δ(un, un+1, u3)

+ α4[δ(un−1, un, u3) + δ(un, un+1, u3)]

≼α1δ(un−1, un, u3) + α2δ(un−1, un, u3) + α3δ(un, un+1, u3)

+ α4δ(un−1, un, u3) + α4δ(un, un+1, u3)

≼(e− α3 − α4)
−1(α1 + α2 + α4)δ(un−1, un, u3)

≼η2δ(un−1, un, u3),
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where

η2 = (e− α3 − α4)
−1(α1 + α2 + α4) ∈ P .

We pretend that, either r(η1) < 1 or r(η2) < 1. If
r(η1) > 1, we obtain(

r(α1) + r(α3) + r(α5)
)(
1− r(α2)− r(α5)

)−1

≥ r(η1) > 1.

Which leads to,

r(α1) + r(α2) + r(α3) + 2r(α5) > 1. (3)

If r(η2) > 1, we obtain(
r(α1) + r(α2) + r(α4)

)(
1− r(α3)− r(α4)

)−1

≥ r(η2) > 1.

Which implies

r(α1) + r(α2) + r(α3) + 2r(α4) > 1. (4)

By adding (3) and (4), we have r(α1)+r(α2)+r(α3)+
r(α4) + r(α5) > 1. Which is a contradiction. Hence
our pretension is correct.

δ(un+1, un, u3) ≼ αδ(un, un−1, u3), (5)

for all n ≥ 1 and r(α) < 1. Jointly with Proposition
2.4 we have

δ(un+1, un, u3) ≼ αδ(un, un−1, u3)

≼ α2δ(un−1, un−2, u3)

...
≼ αnδ(u1, u0, u3),

where

α =

{
η1, when r(η1) < 1,
η2, when r(η2) < 1,
η1 or η2 when r(η1) < 1 and r(η2) < 1.

Then α ∈ P and r(α) < 1. For all τ < n we have

δ(un, un−1, uτ ) ≼ αδ(un−1, un−2, uτ )

≼ α2δ(un−2, un−3, uτ )

...
≼ αn−τ−1δ(uτ+1, uτ , uτ ).

Therefore, for all τ < n, we obtain δ(un, un−1, uτ ) =

0. Now, for such n > s we have

δ(un, us, u3)

≼δ(un, us, un−1) + δ(un, un−1, u3) + δ(un−1, us, u3)

≼αn−1δ(u1, u0, u3) + δ(un−1, us, un−2)

+ δ(un−1, un−2, u3) + δ(un−2, us, u3)

≼(αn−1 + αn−1)δ(u1, u0, u3) + δ(un−2, us, u3)

≼(αn−1 + αn−1 + · · ·+ αs+1)δ(u1, u0, u3)

+ δ(us+1, us, u3)

≼(αn−1 + αn−1 + · · ·+ αs+1 + αs)δ(u1, u0, u3)

=(e+ α+ · · ·+ αn−s+1)αsδ(u1, u0, u3)

≼
( ∞∑

i=1

αi
)
αsδ(u1, u0, u3)

=αs(e− α)−1δ(u1, u0, u3).

From Lemma 2.6 and the actuality

∥αs(e− α)−1δ(u1, u0, u3)∥ = 0, as n → ∞.

We get for any β ∈ Gwith 0 ≪ β, there exist n ∈ N .
Such that for all n, s > N , we get

δ(un, us, u3) ≼ αs(e− α)−1δ(u1, u0, u3) ≪ β.

Which proves that, {un} is a Cauchy sequence in U .
There exists u ∈ U such that un → u as n → ∞ since
U is complete. We pretend that u is common FP of
{T ki

i }∞i=1 and {F ki
i }∞i=1 for all i ∈ N . Inequality (2)

become,

δ(hnun, hmum, u)

≼ α1δ(fnun, fmum, u) + α2δ(fnun, hnun, u)

+ α3δ(fmum, hmum, u)

+ α4δ(fnun, hmum, u) + α5δ(fmum, hnun, u)

≼ α1δ(un, um, u) + α2δ(un, un+1, u) + α3δ(um, um+1, u)

+ α4δ(un, um+1, u) + α5δ(um, un+1, u).

Hence, δ(hnun, hmum, u) ≼ 0. By (ii) in Defini-
tion 2.1 we have: hnun = hnu = u when n → ∞
or hmun = hmu = u when m → ∞. Which mean u
is common FP of hn = {T ki

i }∞i=1. Also, we can see
that, fnun = fu = u. From this we conclude that u is
a common FP of {T ki

i }∞i=1 and {F ki
i }∞i=1 on U . As-

sume That, w is any another common FP of hn and fn
on U , such that w ̸= u for all n ∈ N . Then by (2) we
obtain,

δ(w, u, u3)

= δ(hnun, hmum, u3)

≼ α1δ(fnun, fmum, u3) + α2δ(fnun, hnun, u3)

+ α3δ(fmum, hmum, u3)

+ α4δ(fnun, hmum, u3) + α5δ(fmum, hnun, u3)

≼ 0.
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This implies that w = u which proven the uniqueness
of a common FP u of {T ki

i }∞i=1 and {F ki
i }∞i=1 on U .

The next conclusions can be gained from our
main result.

Corollary 1. Let (U , δ) be a complete cone 2-MS
in a BG G and P the underlying cone. Assume that
T, F are self-mappings of U satisfying the condition

δ(T ki
i u1, T

kj
j u2, u3)

≼ α1δ(F
ki
i u1, F

kj
j u2, u3) + α2δ(F

ki
i u1, T

ki
i u1, u3)

+ α3δ(F
kj
j u2, T

kj
j u2, u3), (6)

where α1, α2, α3 ∈ P , for all u1, u2, u3 ∈ U . If
α1, α2, α3 are commute and r(α1)+ r(α2)+ r(α3) <
1, then {T ki

i }∞i=1 and {F ki
i }∞i=1 have a unique com-

mon FP.
The above FPT is development and generalization
for Wang’s result in [30].

Corollary 2. Let (U , δ) be a complete cone 2-MS
in a BG G and P the underlying cone. Assume that,
T, F are self-mappings of U satisfying the condition

δ(T ki
i u1, T

kj
j u2, u3) (7)

≼ α
[
δ(F ki

i u1, T
ki
i u1, u3) + δ(F kj

j u2, T
kj
j u2, u3)

]
,

where α ∈ P , for all u1, u2, u3 ∈ U . If r(α) < 1/2,
then {T ki

i }∞i=1 and {F ki
i }∞i=1 have a unique common

FP.

Corollary 3. Let (U , δ) be a complete cone 2-MS
in a BG G and P the underlying cone. Assume that
T, F are self-mappings of U satisfying the condition

δ(T ki
i u1, T

kj
j u2, u3) ≼

α
[
δ(F ki

i u1, T
kj
j u2, u3) + δ(F kj

j u2, T
ki
i u1, u3)

]
,

where α ∈ P , for all u1, u2, u3 ∈ U . If r(α) < 1/2,
then {T ki

i }∞i=1 and {F ki
i }∞i=1 have a unique common

FP.
The result of Mlaiki of FP [32] can be developed and
generalized as follows.

Corollary 4. Let (U , δ) be a complete cone 2-MS
in a BGa G and P the underlying cone. Assume that
T, F are self-mappings of U satisfying the condition

δ(T ki
i u1, T

kj
j u2, u3) ≼

αmax
[
δ(F ki

i u1, T
kj
j u1, u3), δ(F

kj
j u2, T

ki
i u2, u3)

]
,

where, α ∈ P , for all u1, u2, u3 ∈ U . If r(α) ∈ (0, 1),
then {T ki

i }∞i=1 and {F ki
i }∞i=1 have a unique common

FP.

Example 1. Suppose thatG = R2 and (u1, u2) ∈
G such that ∥u1, u2∥ = |u1|+ |u2|. Consider the mul-
tiplication as

uw = (u1.u2)(w1, w2) = κ1w1 + κ2w2

Then G is a BG with unite e = (1, 0). Assume that
P = {(u1, u2) ∈ R2|u1, u2,≥ 0}. Then P is a cone
onG. Let, U = {(α, 0) ∈ R2|0 ≤ α < 1}∪{(0, α) ∈
R2|0 ≤ α < 1}.

Define the metric as

δ(u1, u2, u3) = δ(µ1, µ2),

where, u1, u2, u3 ∈ U and µ1, µ2 ∈ (u1, u2, u3). Such
that

∥µ1 − µ2∥ = min{∥u1 − u2∥, ∥u2 − u3∥, ∥u3 − u1∥},

and,

δ1
(
(α, 0), (u, 0)

)
=

(
|α− u|, 5

4
|α− u|

)
,

δ1
(
(0, α), (0, u)

)
=

(3
4
|α− u|, |α− u|

)
,

δ1
(
(α, 0), (0, u)

)
= δ1

(
(0, u), (α, 0)

)
=

(
α+

3

4
u,

5

4
α+ u

)
.

Thus, (U , δ) is a complete cone 2-MS on the BG G.
Define Ti, Fi : U → U where i ∈ N as

Ti

(
(Fiα, 0)

)
=

(
0, 3

(
i
2
−1

i− 1
2

)
2

(
1
2
− i

2
i− 1

2

)
α
)
,

and

Ti

(
(0, Fiα)

)
=

(
3

(
i
2
−1

i− 1
2

)
2

(
1
2
− i

2
i− 1

2

)
α, 0

)
.

Therefore, T 2i−1
i (F 2i−1

i α, 0) = (0, 1
12α) and

T 2i−1
i (0, F 2i−1

i α) = ( 1
18α, 0). Thus, it con-

cludes that Ti, Fi achieves the contractive condition
(1), where Ki = 2i − 1, α1 = (14 , 0), α2 =

α3 = α4 = α5 = (16 , 0). Furthermore,
r(α1) = 1

4 , r(α2) = r(α3) = r(α4) = r(α5) = 1
6 .

Hence, by Theorem 3.1, we get (0, 0) is a unique FP
for Ti, Fi on U for all i ≥ 1.

We will show that the normality condition of cone
2- metric is necessary to ensure the existence of a
common FP in our result.
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Example 2. Suppose that G = C1
R[0, 1],

and (u1, u2) ∈ G with ∥(u, v)∥ = ∥(u1, u2)∥∞ +
∥(u1, u2)′∥∞, then G is a BG with unite e = (1, 0).
Let, P = {u1, u2 ∈ G : u(t) ≥ 0, u2(t) ≥
0, t ∈ [0, 1]} be a non-normal solid cone. Consider,
Tu1n(t) = tn

n and Fu1n(t) = 1
n , then Fu1n ≥

Tu1n ≥ 0 and lim
n→∞

Fu1n = 0, but ∥u1n∥ =

maxt∈[0,1] | t
n

n | + maxt∈[0,1] ||tn − 1| = 1
n + 1 > 1.

Thus, un does not converges to 0. Hence, T and F
does not have common FP.

4 Conclusion
Thus, in this work, we have obtained a unique
common fixed point result in cone 2-metric space on
Banach algebras. Also, we have generalized some
fixed point theorems in the literature. Using the idea
of n-inner product spaces on n-normed metric spaces
we will make an analog study concerning the unique
common fixed point of Hardy-Rogers contraction
type in cone n-metric spaces over a Banach Algebra.
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