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Abstract: - A new distribution was developed that mixed the negative binomial (NB) and Samade distributions, 
called the negative binomial-Samade (NB-SA) distribution. The properties of this distribution were studied, and 
the newly created distribution was applied using the framework of generalized linear models to build a time 
series data count model. The characteristics of overdispersion and heavy-tailed distribution of the count 
response variables were applied in the actual dataset modeling. Distribution parameters and the regression 
coefficient were estimated using a Bayesian approach. Results showed that the NB-SA model had significantly 
the highest efficiency compared with the classical NB and Poisson models for analyzing factors influencing the 
daily number of COVID-19 deaths in Thailand. 
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1 Introduction 
Time series data counts occur as daily occurrences 
whenever several events are observed over time. 
Increased understanding of such data and extraction 
of information requires statistical analysis or 
modeling. Different data counts may possess 
characteristics that cannot be used with particular 
models. During the past decades, researchers have 
developed models to derive better conclusions from 
the data. An important framework to handle time 
series data counts involves generalized linear 
models (GLM). When serial dependence is 
incorporated through the so-called link function, this 
leads to a more flexible class of models where 
covariates are easily included, enabling the models 
to better explain the dynamics of available 
information and provide trustworthy predictions. A 
famous special case of the GLM is integer-valued 
generalized autoregressive conditional 
heteroscedastic (INGARCH) models, also known as 
a linear order model, [1], [2], [3]. Later, researchers 
developed log-linear order models ( , )p q , [4]. In 
most traditions, the distribution assumption tY  given 

1−t  assumes a Poisson distribution where the mean 
is equal to the variance, called equidispersion. 
However, this distribution usually leads to the 
problem that the variance of random variables is 

greater than the mean, called overdispersion or 
underdispersion if the variance of the random 
variable is less than the mean. The researchers 
solved the problem using the negative binomial 
(NB) distribution for overdispersion and 
underdispersion, respectively, [5], [6]. For cases of 
overdispersion, the NB distribution may solve the 
problem but some cases have a high probability of 
no event of interest, resulting in a higher frequency 
of zero data values. As a result, excessive 
overdispersion is aggravated, making the NB 
distribution unsuitable for this data type. Various 
methods have been employed to develop a new class 
of discrete distributions, such as mixed Poisson, [7], 
generalized Poisson, [8], zero-inflated generalized 
Poisson, [9], mixed Poisson-inverse-Gaussian, [10], 
and mixed NB distributions. Many mixed NB 
distributions have also been proposed, such as the 
NB-Lindley (NB-L), [11], NB-generalized 
exponential, [12], NB-gamma, [13], NB-Sushila, 
[14], NB-generalized Lindley, [15], NB-Quasi 
Lindley, [16], and NB-modified Quasi Lindley, [17] 
distributions. Mixed NB distributions are applied to 
statistical model events for data counts in real life, 
such as actuarial and insurance models, [11], [13], 
[18], medical or industrial models, [16], [17], [18], 
and ecology and biodiversity, [19].  
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This paper developed a new mixed negative 
binomial distribution that was then applied as the 
GLM for time series data counts. When developing 
the GLM for a proposed distribution, one important 
aspect is the methods used for parameter estimation. 
One method for modeling the GLM is the maximum 
likelihood (ML) method which estimates an 
assumed probability distribution given observed 
data. The ML estimation is achieved by maximizing 
a likelihood function so that the observed data is 
most probable under the assumed statistical model. 
The GLM has been developed for mixed NB 
distribution using the ML method to estimate 
parameters, such as the NB-beta Weibull, [20], and 
NB-inverse Gaussian, [21], regression models. 
However, the ML method provides only a point 
estimate which may need to be more robust or may 
even fail to converge when the sample size is small 
or when the dispersion parameter is much larger 
than the mean.  

The GLM does not consider prior information, 
which may be helpful in the case of missing 
observations. As an alternative, Bayesian inference 
can account for prior expert knowledge on variables 
of interest, especially in a small sample set, by 
providing a sample of estimators that may be helpful 
for uncertainty analysis, [22]. Practical advantages 
of the Bayesian approach are its flexibility and 
generality to better cope with complex problems, 
[23], [25]. Recently, some researchers have favored 
the Bayesian approach over the ML method, [22], 
[25], while the GLM for mixed NB distribution 
using the Bayesian method has been developed such 
as the NB, [24], NB-Quasi Lindley, [16], NB-
modified Quasi Lindley, [17], and NB-Sushila, [25], 
regression models. In the past, the most commonly 
used GLM model in regression analysis was the 
Poisson and NB regression model. However, the 
Poisson regression model has a limitation: if the 
data is overdispersion, it will result in such a model 
being inappropriate. Although the NB regression 
model was developed to solve the problem of 
overdispersion, in some events, there may be a very 
high probability that the event of interest will not 
occur at all, and this makes the data value zero has a 
higher frequency. As a result, the problem of 
overdistribution is more serious. These situations 
make the Pois and NB distributions unsuitable for 
data of this nature. At the same time, if the 
numerical data is collected continuously over time 
in the form of a time series, there are better 
approaches than GLM modeling based on regression 
analysis. Because the limitations of regression 
analysis are that the observations of each dependent 
variable must be independent, this study extended 

the GLM model to the GLM for time series count 
data with a new mixed negative binomial. This 
study proposed a new mixed NB distribution for 
time series data counts as a flexible alternative for 
analyzing heavy-tailed data with overdispersion. 
The Bayesian approach was used to estimate model 
parameters with the GLM framework applied to 
build the time series data counts using both internal 
and external covariates. This proposed model was 
constructed for time series data counts of COVID-
19 deaths in Thailand from 1 January 2021 to 30 
September 2022, [26]. 
 
 
2 Materials and Methods 
 
2.1 Preliminary about Some Distribution   
The Poisson distribution: Let Y  be a random 
variable with a Poisson  distribution with a 
parameter ,µ  denoted by Y ∼ Pois( ).µ  Its 
probability mass function (pmf) as follows:  

exp( )( ; )
!

−
=

y

f y
y
µ µµ or 0,1,2,...=y and 0.>µ   (1) 

 Its mean and variance are, respectively 

E( ) =Y µ  and Var( ) .=Y µ             (2) 
  
The NB distribution: Let Y  be a random variable 
as distributed the NB distribution with parameters r  
and ,m  denoted by Y ∼NB( , ).r m  Its pmf is given 
by: 

1
( ; , ) (1 )

+ − 
= − 
 

r yy r
f y r m m m

y
 for 0,1,2,...=y ,  (3) 

 
where 0r >  and 0 1.m< <  Its mean and variance 
are respectively: 

1E( ) mY r
m
− =  

 
 and 2

1Var( ) .mY r
m
− =  

 
  (4) 

 
The Samade distribution: In 2021, the Samade 
(SA) distribution was proposed by [27], for 
analyzing lifetime data. The SA distribution is 
derived from a mixture of the gamma (Gam) and 
exponential (Exp) distributions, i.e., Gam( , )a b and 
Exp( ).b  The SA probability density function (pdf) 
is obtained as: 

4

Exp Gam4 4

6( ; , ) ( ) ( )
6 6

b ag a b g g
b a b a

λ λ λ
   = +   + +  

  (5) 
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where 0,λ > Exp ( )g λ  and Gam ( )g λ  are the pdf of 
the Exp and Gam distributions. Its pdf can be 
written as:  

( )
4

3
4( ; , )

6
bbg a b b a e

b a
−= +

+
λλ λ                   (6) 

 
where 0,>λ  a  and b  are the shape and scale 
parameters, respectively. When 1a =  and 0,=a  the 
SA distribution reduces to the one-parameter Pranav 
and Exp distributions, respectively, [27]. 
 
2.2 Notations and Model Specifications for 
Time Series Data Counts   
Time series data counts occur whenever several 
events are observed over time. The GLM works out 
the appropriate linear predictor link functions (mean 
function) and inverse link functions, [28], to 
describe the covariate effects attached to the 
dependence observations. If tY  is a time series data 
count, the GLM of the time series data will be 
composed of random components, system 
components, and link functions. A random 
component is the conditional distribution of the 
response given the past belongs to the exponential 
family of distributions having canonical form as 
follows:  

1
( )( | ; , ) exp ( ; ),

( )−

 −
= + 

 
t t t

t t t t
t

y wf y c yθ θ
θ φ φ

α φ
  (7) 

where ( )tw θ  denotes the function of ,tθ  ( ) =tα φ  
( ) ,twφ θ  φ  is a dispersion parameter and ( ; )tc y φ  

is a prior weight. The systematic component is a 
monotone function that can be represented as: 

( )
1

( ) −
=

=∑ k

p

t j t i
k

g Yµ β  for 0,1,2,..., ,=j p   (8) 

where ki  represents a positive integer, 

1 20 < < <i i ,< < ∞pi  and ( )tg µ  is a link 
function, which represents the linear predictor of the 
model. The GLM equation can be written as 
follows:  

1( | ; , ) 1.
∞

−
−∞

=∫ t t t tf y dyθ φ    (9) 

 
The mean and variance of 1| −t tY   are as follows:  

[ ]1E | ( )− ′= =t t t tY wµ θ                
(10) [ ]1Var | ( ) ( ) ( )Var( ),− ′′= =t t t t t tY wα φ θ α φ µ   
where ( )′ tw θ  and ( )′′ tw θ  are the first and second 
derivative of ( )tw θ  respectively. Because  

1Var( | ) 0,− >t tY   it follows that ( )′ tw θ  is 

monotone. Therefore, ( )1−=t twθ µ   and ( )tw θ  is 
the monotone function of .tµ  Thus, the link 
function can be defined as Eq. (8).  
 The general form for time series data counts 
follows a generalized linear model as:  

0
1 1

( ) ( ) ( )− −
= =

= + + +∑ ∑ X

p q
T

t k t ik l t jl t
k l

g g Y gµ β β α µ η      (11)    

 
where the response variable tY   represents a time 
series data count, tµ  represents the mean process, 

1−t  represents history up to time ,t  and tθ θ=   
represents the regression coefficients:  

( ) 1
0 1 1, ,..., , ,..., ,

TT p q s
p qθ β β β α α η + + += ∈Θ⊆




   
(12)    

 
where ( )⋅g  represents the link function,                     
g : ℝ+→ℝ, g  represents the transformation 
function, and η  represents the parameter vector, 

( )1, ,=  sη η η  corresponding to the effects of 
covariates. A popular special case from Eq. (11) is 
known as INGARCH models of order p  and ,q  
abbreviated as the INGARCH ( , ).p q  In this model, 
the distribution assumption on tY  given 1−t  is 
distributed as Poisson, NB, etc., Eq. (11) with the 
logarithmic link function 1( )− =tg y 1log( ),−ty  and 

( ) log( 1),− −= + t k t kg y y  can be written as [29], i.e., 
( ) logt tg µ µ= : 

0
1 1

( ) log( 1) .
p q

t k t k l t l
k l

g Yµ β β α µ− −
= =

= + + +∑ ∑          (13)  

  
From the above equation, the internal and external 
regressor effects of covariates η  can be determined 
by adding internal regressors ( ) ,X I

t  such as 
intervention, cos(.)  and sin(.)  functions to represent 
seasonal cycles. The conditional mean of Eq. (13) 
can then be expressed as: 

( )
0

1 1
( ) log( 1) .− −

= =

= + + + +∑ ∑ X

p q
T I

t k t k l t l t
k l

g Yµ β β α µ η   (14) 

  
To further include the external regressor ( ) ,E

tX  the 
mean of Eq. (14) can be expressed as: 

0
1 1

( ) log( 1)− −
= =

= + + +∑ ∑

p q

t k t k l t l
k l

g Yµ β β αν  

       ( ) ( ) .+ +



T I T E
t tξ ηX X                                       

(15) 
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2.3 The GLM for Time Series Data Counts 
Suppose there are discrete time series count data tY  
with t  t∈ . The conditional mean [ ]1E | −t tY  from 
time series counts data, for example, tµ . Then the 
general GLM for time series count data is as 
follows:  

    0
1 1

( ) ( ) ( ) .
p q

T
t k t ik l t jl t

k l
g g Y gµ β β α µ η− −

= =

= + + +∑ ∑  X  

With: g: ℝ→ ℝ+  is the link function, g : ℕ0 →ℝ  is a 
transformation function, and a vector parameter is 

( )1, ,=  sη η η .  In GLM ( )tg µ  called the linear 
predictor, The regression can be used for the past 
time response variable, defined as 1 2{ , ,..., }pP i i i=  
and i  is an integer where 1 20 ,..., pi i i< < < < ∞ . In 
the GLM for time series count data, it is possible to 
regressor observed lag 

1 2− − − pt i t i t iY ,Y ,...,Y . The same 
analogy with lag in observation defined Q  where 

1 2{ , ,..., }qQ j j j=  and j  is an integer where 

1 20 ,..., pi i i< < < < ∞ . For the regressor variable on 
the lag for the conditional mean 

1 2− − − qt l t l t l, ,...,µ µ µ  

 Assume the time series data count tY  to be a 
random variable with the Poisson distribution 
denoted by 1| −t tY  ~ Pois( ).tµ  The Poisson model 
for the time series data count can then be written as:  

1
exp( )( | ; ) ,

!−

−
=

ty
t t

t t t
t

f y
y
µ µ

µ for 0,1,2,...=ty     

(16) 
 
where 1( ).−= t tgµ µ  The mean and variance of 
{ }1| ;−t t tY µ  are, respectively  
 

1E[ | ; ]− =t t t tY µ µ  and 1Var[ | ; ] .− =t t t tY µ µ    (17)
  

Hence in the case of a conditional Poisson 
response model, the conditional mean is identical to 
the conditional variance of the observed process. 
However, if the response variable occurs the 
overdispersion problem arises and the Poisson 
response is unsuitable for modeling.  
 The NB distribution is an alternative when 
dependent variable problems arise, such as 
overdispersion. Let Y  be a random variable with the 
NB distribution and pmf as shown in Eq. (3). We 
can parameterize m  in the term of r  as 

( )= +m r rµ  for µ  as the mean response variable 
Y  and r  as the reciprocal (or inverse of a 

dispersion parameter : 1= rφ φ ). Therefore, the pmf 
of the NB distribution can be rewritten as: 

( )( ; , )
( ) ( 1)

   Γ +
=    Γ Γ + + +   

r y
r y rf y r

r y r r
µµ

µ µ
         

(18) 
 
where ( )Γ ⋅  as a complete gamma function, denoted 
by Y ~ NB( , ).rµ  
 Let tY  be a response random variable in the NB 
distribution, denoted as 1| −t tY  ~ NB( , ).t rµ  The NB 
model for time series data counts then 
become

1
( )( | ; , )

( ) ( 1)−

   Γ +
=    Γ Γ + + +   

tr y

t t
t t t

t t t

r y rf y r
r y r r

µ
µ

µ µ
   

(19) 
 
where 0,1,2,...,=ty  and 1( ).−= t tgµ µ  The mean 
and variance of { }1| ; ,−t t tY rµ  are: 

1E[ | ; , ]− =t t t tY rµ µ                 (20)  

and 
2

1Var[ | ; , ] .− = + t
t t t tY t

r
µ

µ µ                            

 However, even if the NB distribution can solve 
the problem of overdispersion, in some cases there 
are problems of heavy-tailed distribution and the 
NB response is not suitable for modeling. 
 
2.4 Criteria for Model Evaluation 
Three criteria were used to compare the 
performance of model suitability as the deviance, 

,Dp  and the deviance information criterion (DIC). 
The DIC is a hierarchical modeling generalization 
of the Akaike information criterion, which is often 
and widely used as a goodness-of-fit measure using 
the Bayesian approach. The DIC is beneficial to 
Bayesian model comparison problems when 
posterior distributions have been obtained by the 
Markov chain Monte Carlo (MCMC) simulation. 
The model has the smallest value of DIC, and ,Dp  
is the best model, [30], [31], [32]. Let 
D( ) 2log L( | )y= −Ω Ω  be the deviance, where 
L( | )Ωy  are the likelihood function and the 
conditional joint pdf of observations are given by 
unknown parameters. We have DIC ( ) ,= + DD pΩ  

[ ]( ) E 2log L( | )= −Ω ΩD y  and =Dp [ ]Var D( ) 2.Ω  
 The probability integral transform (PIT) is a tool 
for assessing the probability calibration of the 
predictive distribution. This follows a uniform 
distribution if the predictive distribution is correct. 
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The shape of the PIT histograms suggests the 
calibration accuracy of the predictive distribution. A 
convex shape indicates an underdispersed predictive 
distribution, whereas concave histograms refer to 
overdispersed predictive distributions, [14]. 
 
 
3 Results and Discussion 
 
3.1  A New Mixed NB Distribution 
Definition 1: Let Y  be a random variable 
distributed as the NB distribution with parameters 

0r >  and exp( )= −m λ  where λ  is distributed as 
the SA distribution with parameters 0a >  and 

0,b >  i.e., Y ∼NB( , exp( ))= −r m λ  and 
λ∼SA( , ).a b  Then a random variable |Y λ  follows 
a negative binomial-Samade (NB-SA) distribution 
with parameters ,r a  and ,b  denoted by 
Y ∼NB-SA( , , ).r a b  
Theorem 1: Let Y ∼NB-SA( , , ),r a b  then its pmf is 

0

1
( ; , , ) ( 1)

=

+ −   
= −  
   

∑
y

j

j

y r y
f y r a b

y j
 

                 
5 3 4

4 4

( ) ,
( )( )

+ + +
×

+ + +
b b r j ab
b ab b r j

                   

(21) 
 
where 0,1,2,...,y =  0, 0r a> >  and 0.b >  
Proof: Let Y ∼NB( , )r m e λ−=   and  λ∼SA( , ),a b   
then the marginal pmf of Y can be obtained using 
the expression: 

0

( ; , , ) ( | , ) ( ; , ) ,
∞

= ∫f y r a b f y r g a b dλ λ λ  

where ( ; , )g a bλ  is the pdf of the SA distribution as 
Eq. (5), and ( | , )f y r λ  is the NB’s pmf as Eq. (3),  

( )1
( | , ) 1 ,

yry r
f y r e e

y
λ λλ − −+ − 

= − 
 

 

where ( )
0

1 ( 1) ,
yy j j

j

y
e e

j
λ λ− −

=

 
− = − 

 
∑  and  

[ ]

( )

0 0

0

( ; , , )
1

( 1) ( ; , )

1
( 1) M ( ) ,

∞
−λ +

=

λ
=

+ −   
= − λ λ  
   

+ −   
= − − +  
   

∑ ∫

∑

y
j r j

j

y
j

j

f y r a b
y r y

e g a b d
y j

y r y
r j

y j

 

where [ ]M ( )− +r jλ  is the moment generating 
function (mgf) of the SA distribution, which is 
shown in Lemma 1. 
Lemma 1: Let λ∼SA( , ),a b  then its mgf is:  

5 3 4

4 4

( )M ( ; , )
( 6 )( )

− +
=

+ −
b b s abs a b
b a b sλ  for 0,1,2,...,=s  (22) 

0>a  and 0.b >                                                      
Proof: If λ∼SA( , )a b , then its mgf is 

[ ]
4

( ) 3
4

0

4
( ) 3 ( )

4
0 0

4 34

4 4 4 4

M ( ) ( )
6

6

( )
.

6 ( ) ( 6 )( )

∞
− −

∞ ∞
− − − −

− + = +
+

 
= + +  

 − +   = + = + − − + − 

∫

∫ ∫

b s

b s b s

br j e b a d
b a

b b e d a e d
b a

b b b s ab b a
b a b s b s b a b s

λ
λ

λ λ

λ λ

λ λ λ  

  
Thus, the pmf of the NB-SA distribution can be 

written as Eq. (21). The NB-SA distribution sub-
models follow the NB-Pranav (for 1)=a  and the 
NB-Exp (for 0)=a  distributions. The pmf’s shapes 
for the NB-SA distributions are provided in Figure 
1. Some basic properties of the proposed 
distribution are obtained from the factorial moment 
as follows. 
Theorem 2: Let Y ∼NB-SA( , , ),r a b  then its thk  
factorial moment is  

5 3 4

[ ] 4 4
0

( ) ( )( 1) , (23)
( ) ( )( )

k
j

k
j

kr k b b k j ab
jr b ab b k j

µ
=

 Γ + − + +′ = − Γ + − + 
∑

  
where 1,2,3,...=k  and , , 0.>r a b  
Proof: Let Y ∼NB( , ),r m  then its factorial moment 
is 

[ ][ ]
(1 ) ( )E ( 1) ( 1) ,

( )
− Γ +′ = − − + =

Γ


k

k k

m r kY Y Y k
m r

µ  

where 1,2,3,...=k . For |Y λ∼NB( , )r m e−= λ  and 
λ∼SA( , )a b , we have 

[ ]
( ) (1 ) ( )E E ( 1) ,

( ) ( )

k
k

k k

r k e r k e
r e r

λ
λ

λ λλµ
−

−

 Γ + − Γ +′  = = −   Γ Γ 
 

 Using a binomial expansion for the term 
( 1) ,− − ke λ  the [ ]k′µ  can be written as: 

( )
[ ]

0

( ) ( 1) E
( )

k
j k j

k
j

kr k e
jr

−

=

 Γ +′  = −   Γ  
∑ λ

λµ  

     ( )

0 0

( ) ( 1) ( ; , )
( )

k
j k j

j

kr k e g a b d
jr

∞
−

=

 Γ +
= − Γ  

∑ ∫ λ λ λ  

     [ ]
0

( ) ( 1) M
( )

k
j

j

kr k k j
jr =

 Γ +
= − − Γ  

∑ λ . 

From [ ]M k j−λ  is the mgf of the SA distribution in 
(22) for s k j= − , we have the thk  factorial moment 
as follows 
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5 3 4

[ ] 4 4
0

( ) ( )( 1)
( ) ( )( )

k
j

k
j

kr k b b k j ab
jr b ab b k j=

 Γ + − + +′ = − Γ + − + 
∑µ . 

 Based on the thk factorial moment in Theorem 2, 
the first two factorial moments can be written as:  

( )[1] 1 0E( ) ,′ = = −Y rµ δ δ

( )2
[2] [1] 2 1 0E( ) ( 1) 2 ,′ ′= − = + − +Y r rµ µ δ δ δ  

where 
5 3 4

4 4

( )
( )( )

− +
=

+ −j
b b j ab
b ab b j

δ  for 0,1,2.=j   

 Its mean and variance are: ( )1 0E( )Y r δ δ= −  and 

[ ]2
2 1 1 1 0 0 2 1Var( ) (2 ) (1 2 ) ( ).= − + + + − + −Y r rδ δ δ δ δ δ δ δ

 
 The proposed distribution can fit overdispersed 
and underdispersed data or both and the index of 
dispersion (ID) needs to be found. The ID is  

 [ ] ( )2 1 1 1 0 0 2 1

1 0

(2 ) (1 2 )
ID .

− + + + − + −
=

−
r δ δ δ δ δ δ δ δ

δ δ
 

 
3.2  A New Mixed NB Distribution 
Let tY ∼NB-SA( , , )r a b  then the GLM for the time 
series data count is developed with { }1| ;−t tY Ω  

where ( , , , )= r a b θΩ  as: 
( )1P | ;− Ωt tY   

0

4 3

4
0

( )( ; , ) ( ; , )
( 1) ( )

( ) ,
6

∞

∞
−

Γ +
= =

Γ + Γ

     +
×      + + +    

∫

∫
t

t
t t

t

yr
bt

t t

y rf y r g a b d
y r

r b b a e d
r r b

λ

λµ λ λ

µ λ λ
λµ λµ

where 0,>r 1( ) 0−= >t tgµ µ  and θ  defines as Eq. 
(12). Its mean and variance are  
 
( )1E | ;− =Ωt tY  E( ),tµ λ                                       (24) 

 
and ( ) ( )2 2

1Var | ; E( ) (1 ) E( )t t t tY r rµ λ µ λ− = + +Ω

[ ]2E( ) ,tµ λ−  where E( )λ  and 2E( )λ  are the first 
and second moments of the original SA random 
variable, [27],  
 

4

5

24E( )
6

+
=

+
a b

ab b
λ  and 

4
2

3 6

120 2E( ) .
6

+
=

+
a b

ab b
λ         (25) 

  
A flow diagram of the steps creating the time 

series model for the NB-SA distribution is shown in 
Figure 2 (Appendix). The vector of unknown 
parameters Ω  is customarily estimated using the 

Bayesian approach, which allows consideration of 
previous information for parameter estimation.  

 
3.3  Bayesian Inference of the NB-SA Model 
for Time Series Data Counts 
The Bayesian framework for the NB-SA model was 
proposed for time series data counts, and created 
based on the likelihood function, prior distribution, 
and posterior distribution, denoted respectively by 

1L( | ; ),− Ωt tY  ( ) ,π Ω  and ( )| .p yΩ  The Bayesian 

NB-SA model is  |t ty µ ~ NB-SA( , , , ),r a b θ where 
1( )−= t tgµ µ  and ( )tg µ  denoted in Figure 2 

(Appendix). 
 The likelihood function of { }1| ;− Ωt tY   is: 

( )1
1 0

( )L | ;
( 1) ( )

∞

−
=

 Γ +
=  Γ + Γ + 
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t t
t t t
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( )4 3
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t
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e d

r b a
λ

λµ
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γµ
−

 + 
 × + +    

   (26) 

  
This function can be executed using the 

representation of the hierarchical model implicit in 
the integral and the definition of the SA distribution. 
The SA distribution is a mixture between the 
Exp( )b  and Gam( , )a b distributions with the pdf as 
Eq. (5), while the NB-SA distribution is conditional 
on the unobserved site-specific frailty term ,λ  
which describes the additional heterogeneity, [33]. 
 Consequently, the hierarchical framework can 
be represented as: 

( )1 NBP | ; , | ( | , )− =t t t t tY r f y rµ λ λµ ,  

λ ~
4

Exp Gam4 4

6( ) ( ).
6 6

b ag g
b a b a

λ λ
   +   + +  

 

  
In Bayesian inference, the prior distribution 

plays a defining role in estimating the unknown 
parameters in any distribution. This model contains 
all unknown parameters. Accordingly, under the 
squared error loss function, the Bayesian estimator 
of Ω  will be ( )E | .tyΩ  In the GLM context, the 
most frequently used informative prior distribution 
is the normal distribution, [34]. We define the prior 
distribution of parameters ,r a  and b  as the gamma 
distribution, 
r ∼Gam( , ),r rτ γ a∼Gam( , ),a aτ γ and  
b∼Gam( , ).b bτ γ   
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Fig. 1: The pmf plots of the NB-SA distribution with specified parameter values 

 
Let prior distribution for θ  be the normal (N) 

distribution, denoted by θ ∼ 2N( , )
 θ θµ σ  for the 

positive real values of ,rτ ,rγ ,aτ ,aγ ,bτ ,bγ ,
θµ  and 

2
θσ  are known or fixed. Suppose that 

θµ  is a ( 1)×k  
hyper-parameter vector and 2

θσ  is a ( )×k k  known 
non-negative specific matrix, while k  is the number 
of the regression coefficient. Each parameter is 
supposed to be independently distributed, and the 
joint prior distribution of all unknown parameters 
can be written as: 
  

( ) ( ) ( ) ( ) ( ).= r a bπ π π π π θΩ                                 (27)      
 

The posterior distribution will integrate the 
sample information from the likelihood function as 
Eq. (26), with accessible parameter information 
from the prior distribution as Eq. (27). The posterior 
distribution can then be derived as follows: 
 

( )1( | ) | ; ( ) ( ) ( ) ( ).−∝ 

t tp L Y r a bπ π π π θΩ y Ω        (28)                        
  

Since the posterior distribution does not have an 
explicit form, a computational method called the 
Gibbs sampler is used in this study. The best known 
MCMC sampling algorithm was applied to find 

( )E | .Ω y  By setting some initial value, the Gibbs 
sampler algorithm will randomly walk through 
parameter space. The basic scheme Gibbs sampler is 
given as follows, [35], [36].  
     • Step 0. Choose an arbitrary starting point (0) .Ω  
     • Step 1. Generate ( j 1)+Ω  as follows:  
Generate ( 1)+jr ∼ ( ) ( ) ( ) ( ) ( )

1 2( | , , , , , , );

j j j j j
kp r a b θ θ θ y  

Generate ( 1)+ja ∼ ( ) ( ) ( ) ( ) ( )
1 2( | , , , , , , );

j j j j j
kp a r b θ θ θ y  

Generate ( 1)+jb ∼ ( ) ( ) ( ) ( ) ( )
1 2( | , , , , , , );

j j j j j
kp b r a θ θ θ y  

Generate ( 1)
1

+jθ ∼ 
( ) ( ) ( ) ( ) ( )

1 2( | , , , , , , );

j j j j j
kp r a bθ θ θ y   

Generate ( 1)+j
kθ ∼ ( ) ( ) ( ) ( ) ( )

1 1( | , , , , , , );− y

j j j j j
k kp r a bθ θ θ  

 • Step 2. Set 1= +j j  and go to step 1.  
  
In this study, the model parameters of Ω  can be 
estimated from the Bayesian method using the 
JAGS (Just Another Gibbs Sampler) as an 
implementation of an MCMC algorithm called 
Gibbs sampling to sample the posterior distribution 
of a Bayesian model. In this paper, the expected 
posterior of parameters is calculated using the JAGS 
function in the R2jags package of the R language, 
[32], [37]. Factors influencing the number of 
COVID-19 cases resulting in death included the 
daily number of COVID-19 cases in Thailand from 
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1 January 2021 to 30 September 2022, comprising 
607 days, [26]. Figure 3 shows the number of daily 
COVID-19 deaths in Thailand.  
In Figure 3(a) the time series motion is in the form 
of sine and cosine waves. When the time series 
reaches its peak, the value of each cycle decreases in 
the form of a transient shift. Therefore, this study 
considered internal covariates as sine and cosine 
functions and transient shift interventions. The 
external covariate was the number of new COVID-
19 infection cases. Random variables used in this 
study were as follows:  

• tY  is time series data of the number of daily 
COVID-19 deaths (unit: people) where 1,...,607.t =  

• tX  is the number of new COVID-19 infection 
cases (unit: people), with the mean and standard 
deviation as 7638.90 and 7548.74, respectively 
(minimum, median, and maximum as 26, 4563, and 
28379). From the actual data, the mean and variance 
of the number of COVID-19 deaths (unit: people) 
were 52.88 and 3,646.61, respectively (minimum, 
median, maximum, and standard deviation as 0, 31, 
312, and 60.39, respectively). Since the variance of 
COVID-19 deaths was greater than the mean, this 
dataset had an overdispersion problem. The 
histogram (Figure 3 (b)) and normal Q-Q plot 
(Figure 3(c)) also showed that the data had a heavy-
tailed distribution. Therefore, the new NB-SA 
distribution was developed to solve these problems 
and a GLM was created for the NB-SA distribution. 
The procedure for creating the model is shown in 
Figure 2.  

 

 

 

 
Fig. 3: Empirical data: (a) Plot of the daily number 
of COVID-19 deaths in Thailand, (b) Bar chart of 
the daily number of COVID-19 deaths in Thailand, 
and (c) The normal Q-Q plot of the number of 
COVID-19 deaths in Thailand. 
  
3.4  Data Analysis Results 
From the time series data of the number of daily 
COVID-19 deaths, P  and Q  initial values were 
defined by forming an ACF and PACF plot 
specifying the optimal combination based on the 
smallest AIC value. The results showed that NB-
SA, NB, and Poisson gave the minimum AIC when 
P=1 and Q=1. Figure 4(c) shows the optimal 
combination of P and Q of the NA-SA. The result 
shows that when P=1, Q=1 yields an AIC of 322.30. 
These P  and Q  values were used for modeling, 
using the NB-SA, Poisson, and NB distributions by 
adding internal and external covariate effects and 
estimating model parameters with the Bayesian 
approach by defining the model as:  

( ){ 0 1 1 1 1 1
ˆ ˆ ˆˆ ˆexp log 1− −= + + + +t t t tY Y Xβ β α υ ξ  

          }1 1 2 2 3 1 4 2ˆ ˆ ˆ ˆ+ + + +I I F Fη η η η                         (29) 
where 

• 1I  is the intervention with transient shift 
for  

the time 230≥t  for   230
1 2300.8 ,−= tI I  for 230 1=I  if 

(t 230)≥ , otherwise 230 0.=I  
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• 2I  is the intervention with transient shift 
for  

the time 483≥t  where   483
2 4830.8 ,tI I−=  for 483 1=I  

if (t 483)≥ , otherwise 483 0.=I  
• 1F   is the internal covariate 

( )sin 2 365 .tπ  
• 2F   is the internal covariate 

( )cos 2 365 .tπ  
 After developing a new distribution, the NB-SA 
distribution was studied. Its GLM framework was 
applied with time series data counts of the daily 
number of COVID-19 deaths to build the GLM 
derived from the NB-SA distribution. The time 
series data count of tY  was provided in the NB-SA 
model. The Bayesian approach estimated the model 
parameters as the posterior means (estimates), 
standard error (s.e.), 95% credible intervals (Cr.I.) 
of each parameter, and statistics for comparing 
model performance, such as the deviance, DIC, and 

Dp  of the Poisson, NB, and NB-SA models, as 
shown in Table 1. The study variable tX  was 
standardized to a standard score, 
i.e., 7638.90 7548.74,( )ttZ X= − represents the 
external covariate influenced by the daily number of 
COVID-19 deaths. Transient intervention shifts for 
time 230t ≥ and 483.t ≥  The 1F  and  2F  are 
internal covariate effects due to the data because 
there was a surge in the number of daily COVID-19 
deaths in Thailand ( tY ).  
 Based on these prior distributions, three parallel 
independent MCMC chains were generated with 
300,000 iterations for each parameter, discarding the 
first 150,000 iterations as a burn-in for computation. 
Results indicated that the deviance, DIC and 

Dp values of the NB-SA model were smallest 
compared with the Poisson and NB models. The 
density plots and trace plots of the three MCMC 
chains with the MCMC plots package in R, [37], 
from the NB-SA model are shown in Figure 5 and 
Figure 6, respectively. Results showed that the 
density plots of all parameters in three parallel 
chains overlapped well after the burn-in period, 
while the trace plots showed that graphs of the 
values of simulated parameters against the drawn 
lines were almost vertical and dense. The motion of 
the trace plots revealed characteristics of a 
converged manner, and the sequence was stable. 
Therefore, the NB-SA model could be fitted for this 
dataset. Results of the GLM for time series data 
count models are shown in Table 1, with the 

estimated parameters ,r a   and b  for the NB-SA 
model ˆ (s.e. 0.149),31.846r = =  
ˆ 1.678a = 0.2626)(s.e. = and 

.ˆ (s.e ).11.183 0.802b = =  From Eq. (25), we have  
E( ) 0.0896.=λ  The daily number of COVID-19 
deaths in Thailand with NB-SA distribution can be 
represented as:  

{,NB-SA 1
ˆ exp 1.619 0.940log( 1)0.0896 −= + +t tY Y  

 1 210.001 0.0 0.076 0 0 08.01t t I IZυ −+ − ++                
              1 20.059 0.074 }.F F− −    

 

 

 
Fig. 4:  (a) Partial Autocorrelation (b) 
Autocorrelation (c)The optimal combination based 
on the smallest AIC value for the NB-SA model. 
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Table 1. Parameter estimates and important statistics of the Poisson, NB and NB-SA models   
Models  Estimate (s.e.) 95% Cr.I. 
Poisson 0β  0.450 (0.0022) (0.344, 0.556) 

 1β  0.852 (0.0006) (0.823, 0.882) 

 1α  0.001 (0.0001) (0.000, 0.002) 

 1ξ  0.120 (0.0005) (0.097, 0.142) 
 1η  0.047 (0.0017) (-0.032, 0.130) 
 2η  0.123 (0.0026) (-0.003, 0.241) 
 3η  -0.096 (0.0005) (-0.120, -0.072) 
 4η  -0.100 (0.0006) (-0.129, -0.071) 

Deviance = 4,566.2, DIC = 9,054.7, =Dp 4,488.6 

NB 0β  0.219 (0.0038) (-0.047, 0.322) 
 1β  0.940 (0.0010) (0.887, 0.987) 

 1α  0.001 (0.00004) (0.000, 0.002) 

 1ξ  0.075 (0.0009) (0.035, 0.116) 
 1η  -0.013 (0.0049) (-0.247, 0.230) 
 2η  0.011 (0.0054) (-0.244, 0.282) 
 3η  -0.059 (0.0009) (-0.105, -0.016) 
 4η  -0.074 (0.0009) (-0.118, -0.032) 

Deviance = 4,127.7, DIC = 4,137.4, =Dp 9.7 

NB-SA 0β  1.619 (0.0562) (-0.868, 4.403) 
 1β  0.940 (0.0010) (0.893, 0.988) 

 1α  0.001 (0.00004) (0.000, 0.002) 

 1ξ  0.076 (0.0008) (0.036, 0.115) 
 1η  -0.010 (0.0049) (-0.243, 0.231) 
 2η  0.008 (0.0054) (-0.257, 0.264) 
 3η  -0.059 (0.0009) (-0.104, -0.014 
 4η  -0.074 (0.0009) (-0.116, -0.029) 

Deviance = 4,127.6, DIC = 4,136.4, =Dp 8.7 
                     
 The deviance, DIC, and Dp  of the NB-SA 
model were 4127.6, 4136.4, and 8.7, respectively 
(Table 1). Results indicated that the average of tY  
was influenced by the number of tY  on the previous 
day. The average daily number of COVID-19 deaths 
in Thailand was also influenced by the number of 

1−tυ  on the previous day. To consider the traditional 
NB distribution, we have )ˆ (s. .31.909 0e .152r = =  
and 1E( | ) .− =i t tY µ  Consequently, the GLM for the 
time series data count approach with the NB 
distribution can be represented as:  

,NB 1 1
ˆ exp{0.129 0.940log(1 ) 0.001t t tY Y υ− −= + + +           

             2

1 2

1 0.011
0.059 0.074 }.
0.075 0.013t I

F F
Z I+ − +

− −  
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Fig. 5: Density plots of three MCMC chains for values of , , ,r a b  deviance, 0 =β beta[1], 1 =β  beta[2], 

1 =α beta[3], 1 =ξ beta[4], 1 =η beta[5], 2 =η beta[6], 3 =η beta[7], and 4 =η beta[8] from the NB-SA model. 
 

 
Fig. 6: Trace plots of three MCMC chains for values of  , , ,r a b  deviance, 0 =β beta[1], 1 =β  beta[2], 

1 =α beta[3], 1 =ξ beta[4], 1 =η beta[5], 2 =η beta[6], 3 =η beta[7], and 4 =η beta[8] from the NB-SA model. 
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Fig. 7: PIT histograms for the NB-SA, NB, and 
Poisson models 
 

 
Fig. 8: Comparison of actual data and the NB-SA 
model  

 The deviance, DIC, and Dp  of the generalized 
linear models of the NB model were 4127.7, 4137.4, 
and 9.7, respectively (Table 1).  In the same way, 
the GLM for the time series data count approach 
with the Poisson distribution can be represented as:  

,Pois 1

2 1 2

1

1

ˆ

.
exp{0.450 0.852log(1 ) 0.001

0.120 10 2. 00 1. 3 0.096 0.47 10 }
− −

−

= +

−

+ +

+ + +
t t t

t

Y Y
Z I I F F

υ

 
The deviance, DIC, and Dp  of the generalized 

linear models of the Poisson model were 4566.2, 
9054.7, and 4488.6, respectively (Table 1). 

 
3.5  Comparison of Model Performance 
When comparing model performance based on 
deviance, DIC, and Dp  the NB-SA model had the 
highest efficiency compared with the NB and 

Poisson models. PIT histograms for the NB-SA, 
Poisson, and NB distributions are shown in Figure 
7. The Poisson model did not have a uniform 
distribution, while the NB-SA and NB models 
approached uniformly, and the NB-SA model was 
significantly more uniform than the NB model. 
Therefore, the NB-SA model performed better 
compared to the Poisson and NB models. Figure 8 
compares the data plot and the NB-SA model. 
Results showed that the proposed model had 
reasonably good values that followed the actual data 
pattern. The NB-SA model had a value closer to the 
actual data plot, with the smallest BIC, DIC, and 

Dp  values, while the PIT histogram approached 
uniform distribution. 
 
 
4 Conclusion 
A new mixed NB distribution was proposed called 
the negative binomial-Samade (NB-SA) 
distribution. Its properties were studied using a 
GLM framework to build the regression model. 
Data used in modeling comprised actual datasets of 
daily numbers of COVID-19 deaths in Thailand 
from 1 January 2021 to 30 September 2022 covering 
607 days with data overdispersion and heavy-tailed. 
Comparing the accuracy of the proposed distribution 
with the Poisson and an NB model showed that the 
NB-SA model had the highest efficiency. One 
reason why the NB-SA model was more effective 
than NB was that the NB-SA distribution was 
developed from the NB distribution. The NB-SA 
model described the data better than the NB model 
for time series data counts with overdispersed or 
heavy-tailed distribution since the NB-SA model 
was more flexible with two shape parameters. By 
contrast, the NB model had one shape parameter. 
The deviance, DIC, and Dp  of the new model were 
lower than the Poisson model at 10.6240, 118.9029, 
and 51,493.1035%, respectively. When comparing 
the new model and the NB model, the deviance, 
DIC, and Dp  values of the NB-SA model were 
lower than the NB model at 0.0010, 0.0242, and 
11.49%, respectively. When considering model 
performance using the PIT histogram, results 
showed that the NB-SA model approached uniform 
distribution. Based on deviance, DIC, Dp  and the 
PIT histogram the proposed model was also suitable 
for forecasting the number of daily COVID-19 
deaths in Thailand. Results indicated that the NB-
SA model for time series data count was an efficient 
alternative to overcome overdispersion and heavy-
tailed problems. Therefore, the NB-SA model was a 
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suitable alternative to create or develop a model 
related to overdispersion and heavy-tailed 
distribution of time series data counts. An advantage 
of constructing the GLM for time series count data 
with a new mixed NB is that the developed 
distribution can fit with the actual data. It is robust 
to overdispersion problems and data with heavy-
tailed distributions. As a result, the GLM for time 
series count data with a new mixed NB model is 
efficient and accurate in forecasting. But the 
challenge that may become a limitation of the 
development of new mixed NB distributions is the 
complexity of forming the moment-generating 
function of the distribution combined with the NB 
distribution into close form. When considering an 
application, the developed model can be applied to 
the actual count data in many fields such as medical, 
insurance and financial, industrial ecology and 
biodiversity, etc. Especially when the data have 
overdispersion and are heavy-tailed, the GLM for 
time series count data with a new mixed NB model 
is more efficient and accurate in forecasting. Further 
future work worth considering refers to a new mixed 
NB distribution for the multivariate time series 
analysis with more than one time-dependent 
variable. Each variable depends not only on its past 
values but also has some dependency on other 
variables. A study on Vector Auto Regression (VAR) 
describes the relationships between variables based 
on their past values. 
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Appendix 

 
Fig. 2: Flow diagram creating the time series model for { }1| ;−t tY Ω
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