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Abstract: - In this work, we focus on a special class of mixed models, named models with commutative 
orthogonal block structure (COBS), whose covariance matrix is a linear combination of known pairwise 
orthogonal projection matrices that add to the identity matrix, and for which the orthogonal projection matrix 
on the space spanned by the mean vector commutes with the covariance matrix. The COBS have least squares 
estimators giving the best linear unbiased estimators for estimable vectors. Our approach to COBS relies on 
their algebraic structure, based on commutative Jordan algebras of symmetric matrices, which proves to be 
advantageous as it leads to important results in the estimation. Specifically, we are interested in iso-structured 
COBS, applying to them the operation of models joining. We show that joining iso-structured COBS gives 
COBS and that the estimators for the joint model may be obtained from those for the individual models.  
 
Key-Words: - Best linear unbiased estimators, COBS, Jordan algebra, Mixed model, Models joining, Variance 

components. 
 
Received: December 23, 2022. Revised: June 8, 2023. Accepted: June 27, 2023. Published: July 27, 2023.    
 
 
1 Introduction 
Different areas of knowledge, such as Agriculture, 
Medical and Biological Sciences, Social Sciences, 
and others, base their experimental designs on linear 
models. 

Using the matrix notation, a linear model can be 
represented as 

𝒀 = 𝑿𝜷+ 𝜺 (1) 

where 𝒀 is the observations vector, 𝑿 is the design 
matrix, 𝜷 is a vector of unknown parameters and 𝜺 
is the errors vector. 

Classifying linear models according to the 
nature of the constituent parameters of the vector 𝛃, 
we consider fixed effects models to have constants 
for all the parameters of the vector 𝛃, random 
effects models if all the parameters of vector 𝛃 are 
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random, except for the intercept, and mixed effects 
models when some effects are fixed and other are 
random. 

Linear mixed effects models, or adopting an 
abbreviated designation, mixed models, arise from 
the need to appreciate the amount of variation 
caused by given sources in fixed effects designs, [1], 
proving to be appropriate for analyzing datasets 
involving correlated data, or resulting from repeated 
measures, [2], as is common to find in experimental 
data in agricultural and medical sciences, for 
example. 

In this work we address classes of mixed 
models, focusing on models with commutative 
orthogonal block structure (COBS), which 
constitute a special class within the subclass of 
mixed models introduced by, [3], [4], called models 
with orthogonal block structure. 

To lighten the writing, we name the linear 
models with commutative orthogonal block 
structure, simply, as COBS. 

Our approach to COBS relies on their algebraic 
structure, based on commutative Jordan algebras of 
symmetric matrices (CJAS). This approach proves 
to be advantageous as it leads to important results in 
the estimation of variance components and the 
construction of models, [5]. 

We are interested in the possibility of 
performing joint analysis of models obtained 
separately. In, [6], [7], [8], the theory that provides 
this joint analysis relies on operations between 
models, which are based on binary operations 
defined on commutative Jordan algebras. 

In, [6], taking, [7], as a starting point, two 
operations between COBS were introduced, called 
models crossing and models nesting, resorting to the 
Kronecker matrix product and the restricted 
Kronecker matrix product. In, [8], was introduced 
another operation to build up complex models from 
simpler ones, named models joining, based on 
another binary operation defined on commutative 
Jordan algebras, the Cartesian product.  

Since COBS has least squares estimators (LSE) 
giving best linear unbiased estimators (BLUE) for 
estimable vectors, [9], the possibility of joint 
analysis of COBS that were obtained independently 
is relevant, since, as proved by, [8], model joining 
operation involving COBS results in a model that is 
also COBS. 

In previous works on operations with COBS, 
[7], [8], no condition was assumed to aggregate the 
models involved in the operations into a family of 
models with the same fundamental structure. The 
present work presents a development of the 
operation of joining models, considering initial 

models that belong to a family of iso-structured 
models, that is, models that are independent and 
have identical space spanned by their mean vectors, 
as well as covariance matrices given by linear 
combinations of the same pairwise orthogonal 
orthogonal projection matrices (POOPM). 

 
The paper is structured as follows.  
In carrying out the estimation for COBS we use 

commutative Jordan algebras of symmetric matrices 
in expressing the algebraic structure of those 
models, therefore, we will start by presenting key 
results about Jordan algebras in section 2. In section 
3 we will present the formulation of COBS and the 
definition of iso-structured COBS, as well as results 
that will be useful when we join iso-structured 
COBS. In section 4 we discuss the estimation in 
COBS. Section 5 is devoted to the operation of 
model joining, involving iso-structured COBS. 
Some concluding remarks are presented in section 6. 
 

 

2 Jordan Algebras 
To formalize the notion of an algebra of 
observables, [10], introduced the structures that 
were originally designated as “r-number systems”, 
and which later came to be known as Jordan 
Algebras. For our purposes, we will follow the 
approach of, [3], [4], in which Jordan algebras were 
used in the study of models with orthogonal block 
structures. Specifically, we are interested in 
commutative Jordan Algebras of symmetric 
matrices (CJAS), which are vector spaces of 
symmetric matrices that commute and are closed 
under squaring, [11]. 

A rediscovery of Jordan Algebras to carry out 
linear statistical inference, [12], showed that every 
CJAS has one and only one basis, called the 
principal basis, constituted by POOPM. 

Let 𝑄 = {𝑸1, …,𝑸𝑚} = 𝑝𝑏(𝐴)  be the principal 
basis of the CJAS 𝐴. A matrix, 𝑴,  belonging to the 
CJAS 𝐴 is a linear combination of the matrices of 
the 𝑝𝑏(𝐴), [13],  

𝑴 =∑𝑏𝑗𝑸𝑗

𝑚

𝑗=1

. (2) 

 

It is evident that the family of matrices 
{𝑴1, …,𝑴𝑚}, where 𝑴𝑖, 𝑖 = 1,… ,𝑚, belongs to 
the CJAS 𝐴 is commutative, since, as shown below, 
given any two matrices of the principal basis of this 
CJAS, 𝑴1 and 𝑴2, these matrices commute: 
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𝑴1𝑴2 = (∑𝑏1,𝑗𝑸𝑗

𝑚

𝑗=1

)(∑𝑏2,𝑗𝑸𝑗

𝑚

𝑗=1

) 

=∑(𝑏1,𝑗 𝑏2,𝑗)𝑸𝑗

𝑚

𝑗=1

=∑( 𝑏2,𝑗 𝑏1,𝑗)𝑸𝑗

𝑚

𝑗=1

 

 = (∑𝑏2,𝑗𝑸𝑗

𝑚

𝑗=1

)(∑𝑏1,𝑗𝑸𝑗

𝑚

𝑗=1

) 

= 𝑴2𝑴1 

(3) 

considering that the matrices 𝑴𝑖, 𝑖 = 1,… ,𝑚,  are 
diagonalized by the same orthogonal matrix, [14].  

The orthogonal projection matrix on the image 
space of 𝑴 will be 
 

𝑷(𝑴) = ∑ 𝑸𝑗   ,

𝑗∈𝐶(𝑴)

 (4) 

with 𝐶(𝑴) = {𝑗: 𝑎𝑗 ≠ 0}, so, considering 𝑴 ∈ 𝐴, 
we have 𝑷(𝑴) ∈ 𝐴. 
Since the Moore-Penrose inverse of 𝑴, expressed 
by 

𝑴+ =∑𝑏j
+𝑸𝑗 ,

𝑚

𝑗=1

 (5) 

with 𝑏j
+ = 𝑏j

−1  [𝑎j
+ = 0] if 𝑏𝑗 ≠ 0 [𝑏𝑗 = 0], 

belongs to 𝐴, then the Moore-Penrose inverses of 
the matrices of 𝐴 also belong to 𝐴. 

When 𝑴 is invertible we have 𝑴+ = 𝑴−1, so 
the inverses of invertible matrices of 𝐴 also belong 
to 𝐴. 

Among the operations on CJAS, we are 
interested in considering the cartesian product, 
introduced by, [15]. 

Given the CJAS 𝐴ℎ, ℎ = 1,… , 𝑢, with principal 
bases 𝑄ℎ = {𝑸ℎ,1,…,𝑸ℎ,𝑚ℎ

}, ℎ = 1,… , 𝑢, their 
cartesian product, 

Xℎ=1
𝑢 𝐴ℎ  , (6) 

will be the CJAS whose principal basis is 
constituted by the block-wise diagonal matrices 

D(𝑴1, … ,𝑴𝑢),   (7) 

with principal blocks 𝑴ℎ ∈ 𝑝𝑏(𝐴ℎ), ℎ = 1,… , 𝑢, 
with null sub-matrices except one belonging to the 

principal basis with that index, always existing a 
non-null sub-matrix. 

 
 

3 Models with Commutative 

Orthogonal Block Structure 
Let us consider a linear mixed model, 
 

𝒀 =∑𝑿𝑖𝜷𝑖

𝑤

𝑖=0

 (8) 

 
where 𝜷𝑖 is fixed for 𝑖 = 0, and independent 
random vectors for 𝑖 = 1,… ,𝑤, having null mean 
vectors, covariance matrices 𝜎12𝑰𝑐1 …  𝜎𝑤

2𝑰𝑐𝑤   , 
where 𝑐𝑖 = 𝑟𝑎𝑛𝑘(𝑿𝒊), 𝑖 = 1,… , 𝑤. The matrices 
𝑿1,⋯ , 𝑿𝑤 are known and such that 
𝑅([𝑿1  ⋯  𝑿𝑤]) = 𝐼𝑅

𝑛. When the covariance 
matrix is given by 

𝑽(𝜸) =∑𝛾𝑗
0𝑸𝑗

0

𝑚0

𝑗=1

 , (9) 

 
where the 𝑸10, … , 𝑸𝑚0

0   are POOPM whose sum is 
the identity matrix 

∑𝑸𝑗
0

𝑚0

𝑗=1

= 𝐼𝑛  , (10) 

the model (8) has an orthogonal block structure 
(OBS), [3], [4]. Moreover, model (8) is a model 
with commutative orthogonal block structure 
(COBS), when 𝐓, the orthogonal projection matrix 
on the space, Ω, spanned by the mean vector, 
commute with the covariance matrix 𝑽(𝜸), 
whatever 𝜸 with nonnegative components, [5]. This 
commutativity between 𝐓 and 𝑽(𝜸), characteristic 
condition of the COBS, is a necessary and sufficient 
condition for the LSE, for estimable functions, to be 
uniformly best linear unbiased estimators (UBLUE), 
as proven in, [9]. 

As stressed by, [16], although in OBS the 
estimators for estimable vectors and variance 
components have good behavior, the inference is 
somewhat complex due to the combination of 
estimators obtained from different orthogonal 
projections in the range spaces of the matrices 𝑸𝑗0, 
𝑗 = 1,… ,𝑚0. COBS, the class of OBS resulting 
from the imposition of commutativity between the 
matrices  𝑻 and 𝑽(𝜸), allows overcoming this 
difficulty. 
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The study of COBS using an approach based on 
their algebraic structure leads to interesting results 
in the estimation of variance components and the 
construction of models. This approach has been 
adopted in several works. In, [11], an alternative 
condition for the definition of COBS was 
established, resorting to U-matrices. The focus in, 
[17], was on structured families of COBS. In the 
works, [18], [19], the relationships between COBS 
and other models were considered. Works on 
inference, in COBS, were developed by, [13], [16], 
[20], [21], [22], [23]. In, [7], [8], operations with 
models were introduced. 

In this work we are interested in COBS 
associated with experiments carried out with the 
same design, that is, models with the same algebraic 
structure and independent observations vector. 

Let us now designate by 𝐴0 the CJAS 
constituted by the linear combinations of the 
POOPM in (8), [10]. The CJAS 𝐴0, whose principal 
basis is 𝑸0 = {𝑸10, … , 𝑸𝑚0

0 } = pb(𝐴0), contains the 
products of its matrices and, also, their Moore-
Penrose inverses, since the Moore-Penrose inverse 
of an orthogonal projection matrix is, itself, an 
orthogonal projection.  

(∑𝑏𝑗

𝑚0

𝑗=1

𝑸𝑗
0)

+

=∑𝑏𝑗
+

𝑚0

𝑗=1

𝑸𝑗
0 (11) 

with 𝑏𝑗
+ = 𝑏𝑗

−1 [𝑏𝑗
+ = 0] when 𝑏𝑗 ≠ 0 [𝑏𝑗 = 0], 

𝑗 = 1,… ,𝑚0. 

Now, the matrices of a family of symmetric 
matrices commute if and only if they are 
diagonalized by the same orthogonal matrix 𝑷,  
[14]. Then that family will be contained in 𝐴(𝑷), the 
family of matrices diagonalized by 𝑷, which is itself 
a CJAS.  

Since intercepting CJAS gives a CJAS, 
intercepting all the CJAS that contain a family 𝑆 of 
symmetric matrices that commute gives the least 
CJAS that contains that family, [6]. This will be the 
CJAS 𝐴(𝑆), generated by the family S. If  𝑆̅ =
{𝑻,𝑸1

0, … , 𝑸𝑚0
0 , 𝑰𝑛, 𝑻

𝐶}, with 𝑻𝐶 = 𝑰𝑛 − 𝑻, is a 
family of commuting symmetric matrices, there will 
be a generated CJAS, 𝐴(𝑆̅).  

We point out that 

𝑽(𝜸)+ =∑𝛾𝑗
0+𝑸𝑗

0

𝑚0

𝑗=1

 

so, if 𝐴 is the CJAS to which the model is 
associated, both 𝑽(𝜸) and 𝑽(𝜸)+will belong to 𝐴. 
We are assuming that 𝐴0 is the CJAS generated by 
𝑴𝑖 = 𝑿𝑖𝑿𝑖

𝑇,  𝑖 = 1,… ,𝑤, and 𝑻, the orthogonal 
projection matrix on Ω. 

To obtain 𝑝𝑏(𝐴), with 𝐴 the CJAS generated by 
𝑻 and 𝐴0, we reorder the 𝑸10, … , 𝑸𝑚0

0  giving the first 
𝑧1 ≥ 0 ranks to the 𝑸𝑗0 with range space R(𝑸𝑗0) ⊆
𝛺, the next 𝑧2 ≥ 0 ranks to the 𝑸𝑗0 such that we 
have neither R(𝑸𝑗0) ⊆ Ω nor R(𝑸𝑗0) ⊆ Ω⊥, with Ω⊥ 
the orthogonal complement of Ω, and the last z3 ≥ 0 
ranks to the 𝑸𝑗0 with range space R(𝑸𝑗0) ⊆ Ω⊥, we 
will have 𝑧1 + 𝑧2 + 𝑧3 = 𝑚0.  

Now the product of orthogonal projection 
matrices that commute is an orthogonal projection 
matrix. Then A(𝑆̅) will contain the 𝑸10, … , 𝑸𝑚0 , with 
𝑚 = 𝑚0 + 𝑧2, and  

{
 
 

 
 
𝑸𝑗 =   𝑸𝑗

0   =  𝑸𝑗
0𝑻,                                  𝑗 = 1,… , 𝑧1 

𝑸𝑗 = 𝑸𝑗
0𝑻,                                 

                               
𝑗 = 𝑧1 + 1,… , 𝑧1 + 𝑧2

𝑸𝑗 = 𝑸𝑗−𝑧2
0 𝑻𝑪,              𝑗 = 𝑧1 + 𝑧2 + 1,… , 𝑧1 + 2𝑧2 

𝑸𝑗 = 𝑸𝑗−𝑧2
0 =  𝑸𝑗−𝑧2

0 𝑻𝑪,     𝑗 = 𝑧1 + 2𝑧2 + 1,… ,𝑚

 

 

(12) 

That is, the matrices of the second set originate 
pairs (𝑸𝑗 , 𝑸𝑗′) of matrices 𝑿. In this construction, 
the matrices   𝑸𝑗0 with R(𝑸𝑗0) ⊂ R(𝐓) are grouped 
first, followed by matrices  𝑸𝑗0 with R(𝑸𝑗) 
intersecting R(𝑻) and R(𝑻𝑪) and finally matrices  
𝑸𝑗
0 with R(𝑸𝑗0) ⊂ R(𝑻𝑪). 

We point out that 𝑸1… 𝑸𝑚 are POOPM that 
add up to 𝑰𝑛. We now establish the following result. 

Proposition 3.1 

The principal basis of 𝐴 corresponds to 𝑝𝑏(𝐴) =
{𝑸1… 𝑸𝑚}, with 𝐴 the CJAS generated by 𝐴0 ∪
{𝑻}. 

Proof: Any CJAS containing the matrices 
𝑸1
0, … , 𝑸𝑚0

0  and 𝑻 contains the matrices 𝑸1… 𝑸𝑚, 
which are POOPM thus constituting 𝑝𝑏(𝐴). 
 

The definition of iso-structured models with 
commutative orthogonal block structure (iso-
structured COBS) was introduced in, [24]. 
According to this definition, iso-structured COBS 
have: 

- covariance matrices that are linear combinations of 
the same POOPM, 𝑸10, … , 𝑸𝑚0

0  ; 

- mean vectors that span the same space, Ω.  
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The use of families of iso-structured models 
relies on coping with inference for sets of models 
with the same algebraic structure and independent 
observation vectors. Our discussion is centered on 
what follows for joint analysis of independent 
models when they have the same algebraic structure 
given by CJAS. 

 

 
4 Estimation 
We start by pointing out that the LSE 

�̃� =  𝐺�̃� 

of 

𝜳 =  𝐺𝜷 

where �̃� = (𝑿0𝑇𝑿0)
+
𝑿0

𝑇𝒀  is UBLUE. 
 
To consider the estimation of variance components 
we assume to have the model given by 

       𝒀 = 𝑿0𝜷+ ∑ 𝑿𝑖𝜷𝑖
𝑤
𝑖=1  , (13) 

with 𝜷1, … , 𝜷𝑤 having null mean vectors, null 
cross-covariance matrices, and covariance matrices 
𝜎1
2𝑰𝑐1 …  𝜎𝑤

2𝑰𝑐𝑤  , where 𝑐𝑖 = 𝑟𝑎𝑛𝑘(𝑿𝑖), 𝑖 = 1,… ,𝑤. 
The 𝜎1

2, … , 𝜎𝑤
2   will be the usual variance 

components, so 𝒀 has the covariance matrix, 

𝑽 =∑𝜎𝑖
2𝑴𝑖

𝑤

𝒊=1

 , 
(14) 

with 𝑴𝑖 = 𝑿𝑖𝑿𝑖
𝑇 , 𝑖 = 1,… ,𝑤.  

If 𝑴1, … ,𝑴𝑤 commute, these matrices generate 
the CJAS 𝐴0, with 𝑝𝑏(𝐴0) = {𝑸10, … , 𝑸𝑚0

0 }. Then 
we will have 

𝑴𝑖 =∑𝑏𝑖,𝑗
0

𝑚0

𝑗=1

𝑸𝑗
0 = ∑𝑏𝑖,ℎ

𝑚

ℎ=1

𝑸ℎ  , (15) 

with 

{
  𝑏𝑖,𝑗

0 = 𝑏𝑖,𝑗      

𝑏𝑖,𝑗−𝑧2
0 = 𝑏𝑖,𝑗

, 𝑗 = 1,… , 𝑧1 + 𝑧2                                                        
, 𝑗 = 𝑧1 + 𝑧2 + 1,… , 𝑧1 + 2𝑧2 + 𝑧3 ,                      

 

𝑖 = 1,… ,𝑤  

where 𝑧1 + 2𝑧2 + 𝑧3 = 𝑚, since 

{

𝐐j
0 = 𝐐j                ,   j = 1, … , z1                                      

𝐐j
0 = 𝐐j + 𝐐j+z2  ,   j = z1 + 1,… , z1 + z2                   

𝐐j
0 = 𝐐j+z2          ,   j = z1 + z2 + 1,… , z1 + z2 + z3

 

where 𝑧1 + 𝑧2 + 𝑧3 = 𝑚0. 

We thus get, 

𝑽 =∑𝜎𝑖
2∑𝑏𝑖,𝑗

0

𝑚0

𝑗=1

𝑸𝑗
0

𝑤

𝒊=1

=∑𝛾𝑗
0

𝑚0

𝑗=1

𝑸𝑗
0 (16) 

with 𝛾ℎ0 = ∑ 𝑏𝑖,𝑗
0𝑤

𝑖=1 𝜎𝑖
2 , 𝑗 = 1, … ,𝑚0 , as well 

as 

𝑽 = ∑𝛾ℎ

𝑚

ℎ=1

𝑸ℎ  , (17)   

where 𝛾ℎ = ∑ 𝑏𝑖,ℎ
𝑤
𝑖=1 𝜎𝑖

2 , ℎ = 1,… ,𝑚, are the 
canonical variance components. 

Given the relations between the 

𝑏𝑖,𝑗
0   , 𝑖 = 1,… ,𝑤, 𝑗 = 1,… ,𝑚0 

and the 

𝑏𝑖,ℎ   , 𝑖 = 1,… ,𝑤, ℎ = 1,… ,𝑚, 

we also get 

{

𝛾𝑗
0 = 𝛾𝑗  ,               

𝛾𝑗
0 = 𝛾𝑗 = 𝛾𝑗+𝑧2 ,

𝛾𝑗
0 = 𝛾𝑗+𝑧2  ,        

   
 𝑗 = 1, … , 𝑧1                                                    
𝑗 = 𝑧1 + 1,… , 𝑧1 + 𝑧2                                

𝑗 = 𝑧1 + 𝑧2 + 1,… , 𝑧1 + 𝑧2 + 𝑧3 = 𝑚0
 (18) 

 

Besides this we have 

𝑽(𝜸) =∑𝛾𝑗
0

𝑚0

𝑗=1

𝑸𝑗
0 =∑𝜎𝑗′

2 𝑄𝑗′

𝑚

𝑗=1

 (18) 

with

{

𝜎𝑗′
2 = 𝛾𝑗

0                , 𝑗′ = 1,… , 𝑧1                                     

𝜎𝑗′
2 = 𝜎𝑗′+𝑧1

2 = 𝛾𝑗
0 , 𝑗′ = 𝑧1 + 1,… , 𝑧1 + 𝑧2                  

𝜎𝑗′
2 = 𝜎𝑗′+𝑧2

2           , 𝑗′ = 𝑧1 + 𝑧2 + 1,… , 𝑧1 + 𝑧2 + 𝑧3

 

and for the 𝜎𝑗′2 , 𝑗′ = 𝑧1 + 1,… ,𝑚, we have the 
estimators 
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{
 
 

 
 �̃�𝑗′

2 = �̃�𝑗′+𝑧2
2 =

𝒀𝑇 𝑸𝑗′+𝑧2𝒀

 𝑔𝑗′+𝑧2
, 𝑗′ = 𝑧1 + 1,… , 𝑧1 + 𝑧2

�̃�𝑗′
2 =

𝒀𝑇 𝑸𝑗′ 𝒀

 𝑔𝑗′
                     , 𝑗′ = 𝑧1 + 2𝑧2 + 1,… ,𝑚

 

where  𝑔ℎ′ is the rank of  𝑸ℎ′, ℎ′ = 𝑧1 + 𝑧2 +
1,… ,𝑚. Note that, in general, we cannot estimate 
the 𝜎𝑗′2 , 𝑗′ = 1,… , 𝑧1, and that the estimators for the 
remaining variance components follow from 

 𝑸𝑙 = 𝐵𝑙
T𝐵𝑙, 𝑙 = 𝑧1 + 𝑧2 + 1,… ,𝑚 

implying 𝐵𝑙𝒀 to have a null mean vector and 
covariance matrix 𝜎𝑙2𝑰𝑔𝑙 , 𝑙 = 𝑧1 + 𝑧2 + 1,… ,𝑚, 
with 𝑔𝑙 =  𝑟𝑎𝑛𝑘 ( 𝑸𝑙). 

Moreover, we will have 𝒀𝑇 𝑸𝑗′ 𝒀 = ‖𝐵𝑙𝒀‖𝟐 , 
𝑙 = 𝑧1 + 𝑧2 + 1,… ,𝑚, which lightens the estimator 
of the estimable variance components. 

We now point out that, 

{
  
 

  
 
∑𝑸𝑗

0

𝑚0

𝑗=1

= ∑𝑸ℎ

𝑚

ℎ=1

= 𝑰𝑛

∑ 𝑸𝑗

𝑧1+𝑧2

𝑗=1

= 𝑻                    

 (19) 

Let us put 

𝜸1 = (𝛾1, … , 𝛾𝑧1+𝑧2), 

𝜸2 = (𝛾𝑧1+𝑧2+1, … , 𝛾𝑚0) and 

𝝈2 = (𝜎1
2, …  , 𝜎𝑤

2)  

and consider the partition of matrix 𝑩, 

𝑩 = [𝑩1|𝑩2] , (20) 

where matrix 𝑩1 has 𝑧1 + 𝑧2 columns. Thus 

𝜸𝑙 = 𝑩𝑙
𝑇𝝈2 ,  𝑙 = 1, 2 ,  (21) 

and when 𝑩2 has linearly independent row vectors 
the same happens with the column vectors of 𝑩2𝑇 
and, [7], 

{
𝝈2 = (𝑩2

𝑇)+𝜸2       

𝜸1 = 𝑩1
𝑇 (𝑩2

𝑇)+𝜸2 
  (22) 

So, we may estimate 𝝈2 and 𝜸1, through 𝜸2. Then 
the relevant parameters 𝝈2 and 𝜸2, of the random 
effects part of the model, determine each other. This 

reveals that there is segregation since that part of the 
model segregates a sub-model. 

If 𝑧1 = 0, the 𝑧2 columns of 𝑩1 and the  𝑧2 first 
columns of 𝑩2 are identical, and the corresponding 
components of 𝜸1 and 𝜸2 are also identical. This is 
called matching. Thus, estimating 𝛄2 leads directly 
to estimate 𝜸 = [𝜸𝟏𝑻𝜸𝟐𝑻]

𝑻
. Besides this, since the 

models have COBS, the LSE is UBLUE, [9], so we 
only considered in detail the estimation of the 
variance components, both canonical, 𝛾10, … , 𝛾𝑚0

0 , 

[𝛾1, … , 𝛾𝑤], and usually, 𝜎12, … , 𝜎𝑤2. 
 
 
6 Joining Models 
The matrices 𝑴𝑖 = 𝑿𝑖𝑿𝑖

𝑇 , 𝑖 = 1,… ,𝑤 express the 
structure of the model. Namely {𝑴1, …,𝑴𝑤} and 
{𝑴0,𝑴1, …,𝑴𝑤} generate the relevant CJA 𝐴0 and 
𝐴. We thus say that models with the same matrices 
𝑴𝑖, 𝑖 = 1,… ,𝑤, are iso-structured. 

Let us now consider 𝑢 independent observations 
vectors of iso-structured COBS, 𝒀(1), …, 𝒀(𝑢), and 
represent by 𝑸j, 𝑗 = 1,… ,𝑚, the POOPM of 𝑝𝑏(𝐴). 

Applying the models joining operation to these 
models, by overlapping the observations vectors of 
the initial models, [8], we obtain a joined model, 
whose observations vector is 

[𝒀(1)𝑇  … 𝒀(𝑢)𝑇]𝑇 , (23) 

and the CJAS ⨂𝑙=1
𝑢 𝐴𝑙, given by the cartesian 

product of the CJAS 𝐴1, . . . , 𝐴𝑢, with 𝑝𝑏(𝐴𝑙) =
{𝑸𝑙,1, … , 𝑸𝑙,h𝑙}, 𝑙 = 1,… , 𝑢, whose principal basis is 
constituted by the blockwise diagonal matrices with 
null principal blocks, but one which will belong to 
𝑝𝑏(𝐴𝑙), with 𝑙 as its index. The null blocks will 
have the same dimension as the matrices of the 
corresponding CJAS, [8]. 

Given the Independence of  𝒀(1), …, 𝒀(𝑢), the 
covariance matrix of the joined model will be the 
blockwise diagonal matrix, 

D(𝑉(𝜸(1)), … , 𝑉(𝜸(𝑢))), (24) 

with principal blocks 𝑉(𝜸(1)), … , 𝑉(𝜸(𝑢)), where 

𝜸(1), … , 𝜸(𝑢) are the vectors of canonical variance 
components for 𝒀(1), … , 𝒀(𝑢). So, the estimators 
for variance components obtained for the individual 
models can be used for the joint model. 

With 𝜷(1),…, 𝜷(𝑢) the vectors of 
coefficients and 𝑿𝜷(1),… , 𝑿𝜷(𝑢) the mean 
vectors of the 𝑢 iso-structured (individual) COBS, 
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for the joint model we will have the vector of 
coefficients, 

𝜷 = [𝜷(1)𝑇 … 𝜷(𝑢)𝑇]𝑇 (25) 

and the mean vector  

𝝁 = (𝟏𝑢⨂𝑿)𝜷 (26) 

where ⨂ denotes the Kronecker matrix product. 
Thus, the orthogonal projection matrix on the space 
spanned by 𝛍 will be, 

𝐓[u] = Du(𝐓) = [
𝐓 … 𝟎
⋮ ⋱ ⋮
𝟎 … 𝐓

] = Iu⨂𝐓 , (27) 

with 𝐓 the orthogonal projection matrix on Ω.  

As shown below, for the joined model, the 
covariance matrix, D(𝑉(𝜸(1)), … , 𝑉(𝜸(𝑢))), and 
the orthogonal projection matrix on the space 
spanned by the mean vector, 𝐓[u], commute,  

𝑻[𝑢]𝐷 (𝑉(𝜸(1)), … , 𝑉(𝜸(𝑢))) =

=  𝐷 (𝑻 𝑉(𝜸(1)), … , 𝑻 𝑉(𝜸(𝑢))) =

=  𝐷( 𝑉(𝜸(1)) 𝑻, … , 𝑉(𝜸(𝑢)) 𝑻) =

= 𝐷 (𝑉(𝜸(1)), … , 𝑉(𝜸(𝑢)))𝑻[𝑢]     

 (28) 

This means that the joined model is also COBS. 
As already established, this guarantees that the LSE 
of the estimable functions in this model will be 
UBLUE. Namely, we also will have 

�̃�[𝑢] = (𝐷𝑢(𝑿)
𝑇 𝐷𝑢(𝑿))

+
𝐷𝑢(𝑿)

𝑇 𝒀 =

=  𝐷𝑢(𝑿
𝑇𝑿)+ 𝐷(𝑿𝑇𝒀(1),… , 𝑿𝑇𝒀(𝑢)) =  

=  𝐷𝑢((𝑿
𝑇𝑿)+)𝐷(𝑿𝑇𝒀(1), … , 𝑿𝑇𝒀(𝑢)) =

= [�̃�(1)𝑇 … �̃�(𝑢)𝑇]
𝑇
                                       

 (29) 

with �̃�(ℎ) , ℎ = 1,… , 𝑢, the LSE estimator of the 
coefficients vector of the ℎ-th model. 

Now the 

�̃�𝑗 = (𝑿0
T𝑿0)

+
𝑿0

T𝒀𝒋 ,  𝑗 = 1,… , 𝑢 

will be independent and BLUE for each model. 
Moreover if the 𝜷𝑗𝛼 ,  𝑗 = 1,… , 𝑢, are linear 
unbiased statistics obtained from the initial models 
the 

𝑽(𝜷𝑗
𝛼) −  𝑽(�̃�𝑗),  𝑗 = 1,… , 𝑢 

will be positive semi-definite, since �̃�𝑗 ,  𝑗 =

1,… , 𝑢, are BLUE. Now the 𝒀(1), …, 𝒀(𝑢) are 
independent, so the �̃�1, . . . , �̃�𝑢  [𝜷1𝛼 , . . . , 𝜷𝑢𝛼]   are 
independent with 

{
�̃� = [ �̃�1

𝑇
… �̃�𝑢

𝑇
]
𝑇
    

𝜷𝛼 = [𝜷1
𝛼𝑇 , . . . , 𝜷𝑢

𝛼𝑇]
𝑇
   

we have 

{
𝑽(�̃�) = 𝐷(�̃�1… �̃�𝑢)    

𝑽(𝜷𝛼) = 𝐷(𝜷1
𝛼 , . . . , 𝜷𝑢

𝛼)
   

Going over to the estimators of variance 
components we point out that the joined models, 
being iso-structured, have identical 𝑧1 , 𝑧2 and 𝑧3 in 
𝑝𝑏(𝐴0) as well as identical CJAS 𝐴 and 𝐴0. The 
variance components are distinct from model to 
model, so we can estimate them separately. 
 
 

7 Conclusion 
Models joining operation opens the possibility of 
jointly treating models obtained separately.  

When dealing with models with commutative 
orthogonal block structure (COBS), we obtain 
uniformly best linear unbiased estimators for 
estimable functions of these joined models and 
estimate their variance components, showing that 
the estimators for the joint model may be obtained 
from those for the individual models. 

Addressing iso-structured COBS, that is, models 
whose covariance matrices are linear combinations 
of the same POOPM, and their mean vectors span 
the same space, we have shown that joining iso-
structured COBS gives COBS and that the 
estimators for the joint model may be obtained from 
those for the individual models. The estimators of 
variance components for the individual models can 
therefore be used for the joint model. Moreover, the 
BLUE for the vector 𝜷[𝑢] = [𝜷(1)𝑇 … 𝜷(𝑢)𝑇]𝑇 of 
coefficients for the joint model is �̃�[𝑢] =

[�̃�(1)𝑇 … �̃�(𝑢)𝑇]
𝑇
, where the sub-vectors are the 

LSE for the coefficients’ vectors for the sub-models. 
Thus, the estimators obtained for sub-models can be 
applied to the joint model. Since joining COBS 
gives COBS, the optimality of LSE then extends 
from the individual models to the joint model. 
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