On \mathcal{F}–flat structures in vector bundles over foliated manifolds

C. APREUTESEI

Department of Mathematics
“Alexandru Ioan Cuza” University of Iași
Iași - 700506, Carol Blv. 11
ROMANIA

Abstract: We give the definition of the families of \mathcal{F}–flat structures and \mathcal{F}–flat connections in vector bundles over \mathcal{F}–foliated manifolds. Essential: existence of a \mathcal{F}–flat structure is equivalent to the existence of a \mathcal{F}–flat connection. Let $\{\xi^\lambda\}$ be a family of subbundles of a vector bundle ξ. There exists a family of \mathcal{F}–flat structure $\{\xi^\lambda\}$ in ξ, relative at ξ, if and only if exists a family of \mathcal{F}–flat connections $\{\nabla^\lambda\}$ in ξ (Theorem III.5). \mathcal{F}–flat structures (Theorem III.1), and integrable \mathcal{F}–flat structures (Theorem III.5), are considered. Finally, integrable Γ–structure and \mathcal{F}–flat structures on total space of a vector bundle are presented (Theorem IV.1).

Key-Words: \mathcal{F}–flat structure, \mathcal{F}–flat connection, integrable \mathcal{F}–flat structure.

1 Introduction

The notion of foliation of manifold is of great interest for geometers. It is the basis of some results regarding the decomposition of tangent bundle of the foliated manifold into the tangent bundle to the leaves and the transverse bundle. Many authors have dealt with this topic from different point of view. The tangent bundle can be structured in various ways, [1], [2], [6].

In, [5] the foliations studied are induced by geometric structures. In our paper, on the contrary, we use the \mathcal{F}–flat structures to obtain (affine) geometric structures on the leaves. In other work, [6], the leaves have remarkable structures, that is piecewise-linear, differentiable or analytic structure.

The origin of the present work can be found in, [4]. The notion of \mathcal{F}–flat structures was introduced by us, [3]. In present paper we obtain some interesting characteristic results regarding the links between \mathcal{F}–flat structures and \mathcal{F}–flat connections for paracompact manifolds. We also prove an existence theorem of \mathcal{F}–flat structures and formula for connection which define a \mathcal{F}–flat structure.

Here the word “foliation” means a foliated atlas and a decomposition of a manifold M into connected submanifolds of dimension p. We suppose that the manifolds, foliations, maps are C^∞–differentiable $(C^\infty$–diff.) on the morphisms of vector bundles are of constant rank. We use terms “fiber bundle with structure group”, or “vector bundle”. The \mathcal{F}–flat structures and \mathcal{F}–flat connections are defined in vector bundles over foliated manifolds, for which the transition functions are constant along the leaves of foliation \mathcal{F}. Suppose that the leaf topology admits a countable base.

Convention: $i,i',j,j',k,k',... = 1,2,...,p$; $\hat{i},\hat{i}',\hat{j},\hat{j}',\hat{k},\hat{k}',... = p+1,p+2,...; a,b,c,... = 1,2,...,m$ (or $m+n$). $m=\text{dim}M$.

We use the classical summation convention for indices.

2 Families of \mathcal{F}–flat structures (\mathcal{F}.f.s.) and \mathcal{F}–flat connections (\mathcal{F}.f.c.) on vector bundles

The principal tool of this section is to present some relations between \mathcal{F}.f.s. ξ^λ and \mathcal{F}.f.c. ∇^λ defined in vector bundles over foliated manifolds. Let M be a C^∞–diff., paracompact, \mathcal{F}–foliated manifold, where $\mathcal{F} = \{((U_d,\Psi_\alpha))\}_{\alpha \in I} = \{(U_d,x^k,x^\lambda)\}_{\alpha \in I}$. Let $\xi = (E,\pi,M)$ be a vector bundle over M; E is total space of ξ, $n = \pi$ is its projection, and $R^\mu = \text{fiber of } \xi$.

Denote: TM is tangent bundle of M, and $T\mathcal{F}$ is the tangent bundle of \mathcal{F}. Here (x^λ) are coordinates in a leaf of \mathcal{F}, $\tilde{x} = (x^\lambda)$ = secondary coordinates.

Consider a family of subgroups $\{G^\lambda\}$ of $GL(n,R)$, $\lambda = 1,2,...$ and $r = \text{rang} \xi$. The set of all sections of a vector bundle ξ is denoted $\Gamma(\xi)$. Let $\xi^\lambda = (E,\pi,M)$ be the subbundle of ξ with structure group G; E is to-
tal space of ξ, Π =projection, and R^u =fiber of λ.

Denote $A_{\alpha\beta} : U_\alpha \cap U_\beta \rightarrow G$ the transition functions of ξ which define ξ, $\alpha, \beta \in I$. We use sections of ξ relative to ξ, i.e. $s_d : U_d \rightarrow E/\xi U_d$. Consider the open covering $\{U_\alpha\}_{\alpha \in I}$ of M and s_α, s_β two local frames of ξ on U_α, U_β, respectively.

Definition 2.1. A set $\Lambda = \{(s_\alpha, A_{\alpha\beta})/s_\alpha = A_{\alpha\beta}s_\beta\}$ defines an \mathcal{F}-flat structure in vector bundle ξ relative to ξ if the transition functions $A_{\alpha\beta}$ are constant along the leaves of \mathcal{F}, i.e. $A_{\alpha\beta}(x) = A_{\alpha\beta}(x^\xi)$, $x = \Psi_\alpha(x^k, x^\xi) = \Psi_\beta^{-1}(x^k, x^\xi)$. The vector bundle ξ endowed with an \mathcal{F}-flat structure Λ is called an \mathcal{F}-flat vector bundle relative to ξ.

Let $\check{\nabla}$ be a connection of λ.

Definition 2.2. The frame fields $\sigma_\alpha, \sigma_\beta$ of λ are parallel at the connection $\check{\nabla}$ along leaves of \mathcal{F}-flat (p. a. l. \mathcal{F}) if $\nabla_X \sigma_\alpha = \nabla_X \sigma_\beta = 0$, $\forall X \in \Gamma(T, \mathcal{F})$.

Lemma 2.3. Let $\check{\nabla}$ be a connection on ξ, $h \in (U_\alpha; x^k, x^\xi) \in \mathcal{F}$, and $\sigma_\alpha, \sigma_\beta$ frame fields of ξ (p.a.l.\mathcal{F}), and $\sigma_\alpha = B_{\alpha\beta}\sigma_\beta$ on $U_\alpha \cap U_\beta$.

If $\nabla_X \sigma_\alpha = \nabla_X \sigma_\beta = 0$, then:

$B_{\alpha\beta}$ are constant along the leaves of \mathcal{F}.

Proof. Let ω, ω' be the connection forms of $\check{\nabla}$ with respect to $\sigma_\alpha, \sigma_\beta$, respectively. Then $\omega(X) = B^{-1}_{\alpha\beta}\omega'(X)B_{\alpha\beta}$, $X = \frac{\partial}{\partial x^k} \in \Gamma(T, \mathcal{F})$. Hence

$$\frac{\partial B_{\alpha\beta}}{\partial x^k} = 0.$$

Using this lemma, we are able to study some properties of \mathcal{F}-f.s. of ξ relative to λ.

Definition 2.4. The connection $\check{\nabla}$ of ξ is \mathcal{F}-flat along the leaves of \mathcal{F} if its curvature $\Omega(\check{\nabla})$ satisfies the condition $\Omega(\check{\nabla}(X, Y)) = 0$, $\forall X, Y \in \Gamma(T, \mathcal{F})$.

The following result justifies the denomination of “\mathcal{F}-flat structure”.

Theorem 2.5. Consider a vector bundle $\xi = (E, \pi, M)$ over a paracompact, \mathcal{F}-foliated manifold M. Let ξ be a subbundle of ξ. There exists an \mathcal{F}-flat structure Λ in ξ if and only if exists an \mathcal{F}-flat connection $\check{\nabla}$ in ξ.

Proof. Consider, for λ arbitrary fixed, an \mathcal{F}-flat connection $\check{\nabla}$ in ξ, and $s_\alpha = (s_\alpha^b)$ a frame field of $E/\xi U_\alpha$, $a, b = 1, 2, \ldots, n$. We determine a frame field $s_d = A_{d\beta} \cdot s_\beta$, $s_\alpha = (s_\alpha^b)$, $A_{\alpha\beta} = (A_{\alpha\beta}^b)$ such that $\nabla_X s_\alpha = 0$, $X \in \Gamma(T, \mathcal{F})$ where $A_{\alpha\beta}$ is an unknown matrix. Denote $\lambda = (\lambda^b_a)$ the connection form of $\check{\nabla}$ relative to $s_\alpha = (s_\alpha^b)$, where $\lambda^b_a = \Gamma^b_{ak}dx^k + \lambda^b_{ak}dx^k$.

On $U_\alpha \cap U_\beta \neq \emptyset$, we have:

$$\frac{\partial \lambda^b_a}{\partial x^k} + A^c_b \Gamma^b_{ak} \check{s}_b = 0.$$

Therefore, $(A_{\alpha\beta}^b)$ satisfies the equations

$$\frac{\partial A_{\alpha\beta}^b}{\partial x^k} + A^c_b \Gamma^b_{ak} = 0. \tag{2.1}$$

In this system, $x = (x^k)$ are independent variables and $\check{x} = (x^\xi)$ are parameters. We transform this system in the Pfaff system $dA_{\alpha\beta}^b + A^c_b \Gamma^b_{ak}dx^k = 0$, where d is the exterior differentiation operator. Using Frobenius theorem, [7], and $\det(A_{\alpha\beta}^b) \neq 0$, we obtain the following compatibility conditions:

$$\frac{\partial \Gamma^b_{ak}}{\partial x^k} - \frac{\partial A_{\alpha\beta}^b}{\partial x^k} + \gamma_c^b \lambda^b_{ck} - \lambda^b_{ak} \Gamma^b_{ck} = 0. \tag{2.2}$$

On the other hand, $\Omega(\check{\nabla})$ denotes the curvature of $\check{\nabla}$. These relations coincide with the relation (2.2). Hence exists: $A_{\alpha\beta} = (A_{\alpha\beta}^b)$ and $s_\alpha = (s_\alpha^b)$, where $\nabla_X s_\alpha = \nabla_X s_\beta = 0$, $X \in \Gamma(T, \mathcal{F})$. Then, using the lemma 2.3, the set

$$\Lambda = \{s_\alpha, A_{\alpha\beta}\}_{\alpha \beta \in I}$$

is an \mathcal{F}-f.s. in ξ.

Conversely: let $\Lambda = \{s_\alpha, A_{\alpha\beta}\}_{\alpha \beta \in I}$ be an \mathcal{F}-f.s. in ξ, where $A_{\alpha\beta}(x) = A_{\alpha\beta}^b(x)$, $x \in U_\alpha \cap U_\beta$.

Over U_α define an operator $\check{\nabla}$ on $E/\xi U_\alpha$, hence:
The aim of this Section is to highlight the link between \(\mathcal{F} \)-structures and tensor fields.

Let \(J^0_1(M) \) be the set of \(C^\infty \)-diff tensor fields of type \((\frac{1}{2}, \frac{1}{2}) \) defined on \(M \). Consider a family of connections \(\nabla = D + \alpha t \), where \(D \) is a given connection on \(M \). \(\mathcal{F} \) is \(\mathcal{F} \)-flat structures and \(\mathcal{F} \)-f.s show interest in the to-
on $U_\alpha \cap U_\beta$, and ∇ a connection of TM. If
$\nabla \frac{\partial}{\partial x^\alpha} \sigma_\alpha = \nabla \frac{\partial}{\partial x^\beta} \sigma_\beta = 0$, then $B_{\alpha\beta}$ are independent
from (x^k).

Definition 3.3. We say that an \mathcal{F}-flat structure
Λ on TM is integrable if Λ is defined by the family
$\{ \frac{\partial}{\partial x^e} \}$ of natural frames and Jacobian matrices $J_{\alpha\beta} =
\left(\frac{\partial x^e}{\partial x^f} \right)_\alpha$, $\alpha, \beta \in I$.

Let $\{ \Gamma_{\beta c}^a \}$ be the coefficients of a connection ∇ relative to the chart $h = (U; x^k, x^\xi)$.

Definition 3.4. An arbitrary vector field $t = t^a \frac{\partial}{\partial x^a}$ on M is parallel relative to ∇, along the leaves of \mathcal{F}. (p.a.l.\mathcal{F}) if covariant derivative of t in connection ∇, along the leaves of \mathcal{F}, is null: $t^a_j = \frac{\partial t^a}{\partial x^j} + \Gamma_{\beta c}^a t^\beta_ j = 0$, $j, k = 1, 2, ..., p; a, b, c = 1, 2, ..., m$.

Theorem 3.5. Let M be a C^∞-diff., paracompact, \mathcal{F}-foliated manifold and ∇ a connection on M. Consider an arbitrary C^∞-diff. vector field t on M, $t(x) \neq 0, \forall x \in M$. Then, there exists an \mathcal{F}-flat structure Λ on TM if t is parallel relative to ∇, along the leaves of \mathcal{F}. Moreover, in precedent conditions, ∇ is \mathcal{F}-flat.

Proof. Step I. Consider $t = t^a \frac{\partial}{\partial x^a}$ and $t^a_j = 0$ (t^a_k denotes covariant derivative). Then: $\frac{\partial t^a}{\partial x^j} = -\Gamma_{\beta c}^a t^\beta_ j$, and

$$\frac{\partial^2 t^a}{\partial x^k \partial x^j} = \frac{\partial^2 t^a}{\partial x^j \partial x^k} \leftrightarrow \begin{pmatrix} \Gamma^a_{j b} \\
\Gamma^a_{j b} \\
\Gamma^a_{j b} \\
\Gamma^a_{j b} \end{pmatrix} \frac{\partial}{\partial x^a} \frac{\partial}{\partial x^j} = 0.

Because t is arbitrary, $t(x) \neq 0, x \in M$, precedent relations give

$$\frac{\partial t^a_j}{\partial x^k} - \frac{\partial t^a_k}{\partial x^j} + \Gamma^a_{k c} \Gamma^c_{j b} - \Gamma^a_{j c} \Gamma^c_{k b} = 0. \quad (3.1)$$

Step II. Let $t^a \frac{\partial}{\partial x^a}$ be an arbitrary frame field of TM/U. We prove that there exists a frame field $t^a \frac{\partial}{\partial x^a}$ parallel in connection ∇ along the leaves of \mathcal{F}. Indeed, let $\nabla \frac{\partial}{\partial x^a} = A^b_a \frac{\partial}{\partial x^b}$ be a frame field (p.a.l.\mathcal{F}), where $A = (A^b_a)$ is a unknown matrix, that satisfies the conditions $\nabla \frac{\partial}{\partial x^a} = 0$. Therefore, $\nabla \frac{\partial}{\partial x^a} = \nabla \frac{\partial}{\partial x^a} (A^b_a \frac{\partial}{\partial x^b}) = 0$. Hence, $A_{\alpha\beta} = (A^b_a)$ satisfies the equations

$$\frac{\partial A^b_a}{\partial x^k} + A^b_a \Gamma^c_{k b} = 0. \quad (3.2)$$

To study this system we use Fröbenius theorem, [2]. The result coincides with the relations (3.1). Therefore, the system (3.2) is compatible. Hence, there exists: $A_{\alpha\beta}(x) = (A^b_a(x))$ and $\nabla \frac{\partial}{\partial x^a} = 0$.

Now, we use Lemma 3.2. Consequently, there exists on TM, the \mathcal{F}-flat structure $\Lambda = \{ \left(\frac{\partial}{\partial x^a}, A_{\alpha\beta}(x^\xi) \right) \}_{\alpha\beta \in I}$.

The second statement follows from the definition of curvature $\Omega(\nabla)$ along the leaves of \mathcal{F}. Indeed, let $\tilde{s}_a = (s_b)$ be a frame field of TM/U. Then:

$$\Omega(\nabla) \left(\frac{\partial}{\partial x^a}, \frac{\partial}{\partial x^j} \right) \tilde{s}_b =$$

$$= \nabla \frac{\partial}{\partial x^a} (\Gamma^b_{j a} \tilde{s}_b) - \nabla \frac{\partial}{\partial x^a} (\Gamma^b_{j a} \tilde{s}_b) =$$

$$= \left(\frac{\partial \Gamma^b_{j a}}{\partial x^c} - \frac{\partial \Gamma^b_{j a}}{\partial x^c} + \Gamma^a_{k c} \Gamma^c_{j b} - \Gamma^a_{j c} \Gamma^c_{k b} \right) \tilde{s}_b = 0.$$

This proves the theorem.

3.3 \mathcal{F}-flat structures and vector fields

Lemma 3.6. Let M be a C^∞ diff., paracompact, \mathcal{F}-foliated manifold, t a C^∞-diff. vector field on M, $t(x) \neq 0, \forall x \in M$. A symmetric connection ∇ on M is \mathcal{F}-flat if and only if the second covariant derivations of t, in connection ∇, and along the leaves of \mathcal{F}, coincide; i.e. $t^a_{i j} = t^a_{i j}, i, j = 1, 2, ..., p; a, b = 1, 2, ..., m$.

Proof. Expression of t in the chart $h = (U; x^i, x^\xi)$ is $t = t^a \frac{\partial}{\partial x^a}$. Now, we use the definitions of curvature and torsion of a connection (along the leaves of \mathcal{F}). Partial covariant derivations of t in connection ∇, along the leaves of \mathcal{F}, satisfies the relations:

$$t^a_{i j} = \frac{\partial t^a}{\partial x^i} + \Gamma^a_{i b} t^b_j, \text{ and } t^a_{i j} - t^a_{j i} = \Omega(\nabla) t^a_{i j} t^b_j - T(\nabla) t^a_{i j} t^b_j \quad (3.3)$$

Since ∇ is symmetric, $T_{b c}(\nabla) = 0$, and hence $T(\nabla) t^a_{i j} = 0$. Therefore, the relations (3.3) implies:

$$t^a_{i j} = t^a_{j i} = \Omega(\nabla) t^a_{i j} t^b_j.$$

Then, precedent relations prove Lemma 3.6.

Using precedent results and Remark (*) one obtain

Theorem 3.7. Let M be a C^∞-diff., paracompact, \mathcal{F}-foliated manifold. Let t be a C^∞-diff. vector field, $t(x) \neq 0, \forall x \in M$. If ∇ is an \mathcal{F}-symmetric connection on M, then the following affirmations are equivalent:
1) ∇ is an F-flat connection;
2) ∇ determines an F-flat structure on M;
3) Mixed covariant derivations of t in connection ∇, along the leaves of F, coincide.

Proof. It is clear, from the Lemma 3.6, that 1)\Rightarrow2). From the Remark (*) and Lemma 3.6 follows that 2)\Leftrightarrow3). This proves the theorem.

4 Integrable F-flat structures on the total space of a vector bundle over an F-foliated manifold

Define a differentiable structure on the total space E of $\xi = (E, \pi, M)$ in the following way. Consider a trivializing atlas $A_1 = \{(U_\alpha, \varphi_\alpha, R^m)\}_{\alpha \in I}$ of E and $\mathcal{F} = \{(U_\alpha, \psi_\alpha)\}_{\alpha \in I} = \{(U_\alpha; x^k, x^\hat{k})\}_{\alpha \in I}$.

Then, the atlas of E is $A = \{\{(\pi^{-1}U_\alpha, h_\alpha)\}_{\alpha \in I} = \{(U_\alpha; x^k, \hat{x}^k, y^\alpha)\}_{x \in U_\alpha} \text{ where } h_\alpha : \pi^{-1}U_\alpha \rightarrow R^m \times R^n, h_\alpha(u) = (\psi_\alpha(\pi(u), \varphi_\alpha, \varphi_\alpha, \psi_\alpha)(u)), u \in \pi^{-1}U_\alpha \subset E.$

The coordinates change for A is $x' = x_k^k(x_{\hat{k}}, \hat{x})$, $x'' = x_k^k(x_{\hat{k}}, \hat{x})$, $y' = M_\alpha(x)\psi_\alpha$, $x = \psi_\alpha^{-1}(x', x^\hat{k}) = \psi_\beta^{-1}(x', x^\hat{k})$, where $(M_\alpha(x))$ is a field-matrices that describes the precedent coordinate change in $\pi^{-1}(x), (M_\alpha(x)) \in GL(n, R)$.

An F-flat structure Λ on E is integrable if Λ is defined by the family of frames $\left(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^k}, \frac{\partial}{\partial y^\alpha}\right)$, $a = 1, 2, ..., n$.

Denote $\Gamma = \left\{\begin{array}{ccc} \alpha & \beta & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right\}$ where α, β, γ are $p \times p$, $(n - p) \times (n - p)$, $n \times n$ real matrices, respectively. We remark that Γ is a subgroup of $GL(m + n, R)$.

Theorem 4.1. Let M be a C^∞-diff., paracompact, F-foliated manifold, $\xi = (E, \pi, M)$ a vector bundle over M. Suppose that E has a differentiable structure defined by the atlas A. Then:

1) The atlas $\mathcal{F} = \{(U_\alpha, x^k, x^\hat{k})\}_{\alpha \in I}$ defines an integrable F-flat structure Λ on TM if and only if \mathcal{F} induces a locally affine structure on the leaves of \mathcal{F}. Moreover, in this case, $\Lambda = \left\{\left(\left(\frac{\partial}{\partial x^k}, \frac{\partial}{\partial x^\hat{k}}\right); J_{\alpha\beta}(x)\right)\right\}_{\alpha, \beta \in I}$, $x \in U_\alpha \cap U_\beta$,

where $J_{\alpha\beta}(x) = \left(\begin{array}{cc} A_{ij}^i & \frac{\partial b^i}{\partial x^j} \\ 0 & 0 \end{array}\right)(x), (A_{ij}^i)$ is a constant $p \times p$ matrix, $\det(A_{ij}^i) \neq 0$ and $b^i(x^\hat{k})$ are arbitrary real functions on $U_\alpha \cap U_\beta$.

2) The atlas \mathcal{F} defines an integrable F-flat structure $\Lambda = \left\{\left(\frac{\partial}{\partial x^k}, \frac{\partial}{\partial x^\hat{k}}; \frac{\partial}{\partial y^\alpha}\right); J_{\alpha\beta}(x)\right\}_{\alpha, \beta \in I}$ on TM if and only if the atlas A defines an integrable Γ-structure on the manifold E, where Λ is some real functions, $\det(g_a^\alpha(x^\hat{k})) \neq 0$.

Proof. 1) We determine $J_{\alpha\beta}(x)$. To obtain $(x^\hat{k})$ consider the system P.D.E. $(A_{ij}^i) \pi \partial x^i = A_{ij}^i(x), \pi \partial x^i = B_{ij}^i(x), x = (x^\hat{k}, x', x^\hat{k})$, where $A_{ij}^i(x), B_{ij}^i(x)$ are arbitrary real functions. The solution of the first equations is $x' = A_{ij}^i(x) + b^i(x)$, where $b^i(x)$ denote arbitrary real functions. Now, we require that the functions $(x^\hat{k})$ to verify the following equations:

$$\frac{\partial A_{ij}^i}{\partial x^i} + \frac{\partial b^i}{\partial x^i} = B_{ij}^i(x),$$

$i, j, j' = 1, 2, ..., p; i, i' = p + 1, p + 2, ..., m$. The integrability conditions for this system of P.D.E. are

$$\frac{\partial^2 x^i}{\partial x^i \partial x^j} = \frac{\partial^2 x^i}{\partial x^j \partial x^i} = \frac{\partial^2 x^i}{\partial x^j \partial x^i} = \frac{\partial B_{ij}^i}{\partial x^i} = 0.$$

Therefore, $A_{ij}^i(x) = \text{constant. Using precedent relations, we have } \frac{\partial b^i}{\partial x^i} = B_{ij}^i(x), \text{ and hence } b^i \text{ depends only on } x = (x').$ The coordinate transformations are: $x' = A_{ij}^i x^i + b^i(x), x' = x' = (x' \hat{k})$. Hence (x') defines an affine structure on a leaf of \mathcal{F}. Therefore

$$\Lambda = \left\{\left(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j}; J_{\alpha\beta}(x)\right)\right\}_{\alpha, \beta \in I},$$

where

$$J_{\alpha\beta}(x) = \left(\begin{array}{cc} A_{ij}^i & \frac{\partial b^i}{\partial x^i} \\ 0 & 0 \end{array}\right)(x).$$

Λ is an integrable F-flat structure on TM.

Conversely: Let F be an arbitrary leaf of \mathcal{F} defined by the equations $x^\hat{k} = \text{constant. Using precedent
notations, the locally affine structure on F is given by $x^i = A^i_j x^j + b^i$. Consequently:

$$\Lambda = \left\{ \left(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j} \right); J_{\alpha\beta}(x) \right\},$$

$$J_{\alpha\beta}(x) = \left(\begin{array}{cc} A^i_j & \frac{\partial g^i_{\alpha\beta}}{\partial x^j} \\ 0 & \frac{\partial g^i_{\alpha\beta}}{\partial x^i} \end{array} \right)(x).$$

2) Remark: If \mathcal{F} defines an \mathcal{F}-f.s. on TM given by $J_{\alpha\beta}(x)$, then $J_{\alpha\beta}(x)$ is a submatrix of $2^2 J_{\alpha\beta}(u)$, $\pi(u) = x \in U_\alpha \cap U_\beta$. Hence, the problem is to determine all the elements of $2^2 J_{\alpha\beta}(u)$ in the hypothesis that $2^2 J_{\alpha\beta}(u)$ is independent from (x^i). To obtain the last line of $J_{\alpha\beta}(u)$, we use the coordinate transformations:

$$x^k = A^k_j x^j + b^k(x^i), \quad \tilde{x}^k = \tilde{A}^k_j(x^j),$$

$$y^a = M^a_i(x^i)y^i,$$

$$x^i \rightarrow \tilde{x}^k = \tilde{A}^k_j(x^j).$$

By an abuse of notation, we write $M_a^\alpha(x^k, \tilde{x}^k)$, for $(M_a^\alpha \circ \Psi^{-1})(x^k, \tilde{x}^k)$.

We obtain the system of P.D.E.:

$$\frac{\partial y^a}{\partial x^k} = \frac{\partial (M_a^\alpha(x^k, \tilde{x}^k))}{\partial x^k} y^a,$$

$$\frac{\partial y^a}{\partial x^k} = \frac{\partial M_a^\alpha(x^k, \tilde{x}^k)}{\partial x^k} y^a, \quad (4.1)$$

The solution of the system (4.2) do not depend on (x^k) if and only if there exist some functions $f^\alpha_a(x^k)$, $g^\alpha_a(x^k)$ so that

$$\frac{\partial M_a^\alpha}{\partial x^k} = f^\alpha_a(x^k), \quad \frac{\partial M_a^\alpha}{\partial x^k} = g^\alpha_a(x^k), \quad (4.3)$$

$$i, j, k = 1, 2, ..., p; \hat{i}, \hat{j}, \hat{k} = p + 1, p + 2, ..., n, a, a' = 1, 2, ..., m.$$ The solution of (4.3). Obtain $M_a^\alpha = f^\alpha_a(x^k)x^i + \tilde{g}^\alpha_a(x^k)$, where $\tilde{g}^\alpha_a(x^k)$ are arbitrary real functions, $\det(\tilde{g}^\alpha_a(x^k)) \neq 0$. Now we want that M_a^α to verify the last equations (4.3):

$$\frac{\partial M_a^\alpha}{\partial x^i} = \frac{\partial f^\alpha_a(x^k)}{\partial x^i} + \frac{\partial g^\alpha_a(x^k)}{\partial x^i} = g^\alpha_a(x^k).$$

For the integrability conditions we use (4.3) and (4.4):

$$\frac{\partial^2 M_a^\alpha}{\partial x^i \partial x^j} = \frac{\partial^2 f^\alpha_a(x^k)}{\partial x^j \partial x^i} = \frac{\partial^2 M_a^\alpha}{\partial x^j \partial x^i} = \frac{\partial^2 g^\alpha_a(x^k)}{\partial x^i} = 0.$$ Hence $f^\alpha_a = \text{constant}$, and therefore $\frac{\partial^2 f^\alpha_a}{\partial x^i} = g^\alpha_a(x^k)$, i.e. g^α_a do not depend on (x^i). Coordinate change of A are:

$$x^k = A^k_j x^j + b^k(x^i), \quad \tilde{x}^k = \tilde{A}^k_j(x^j),$$

$$y^a = (f^\alpha_a(x^i) + 2^\alpha_a(x^k))y^a.$$ (4.5)

The last elements of $2^2 J_{\alpha\beta}(u)$ are:

$$\frac{\partial y^a}{\partial x^k} = \frac{\partial (2^\alpha_a(x^k))}{\partial x^k} y^a = \tilde{f}^\alpha_a y^a,$$

$$\frac{\partial y^a}{\partial x^k} = \frac{\partial (2^\alpha_a(x^k))}{\partial x^k} - y^a,$$

$$\frac{\partial y^a}{\partial x^k} = \tilde{f}^\alpha_a x^k + \tilde{g}^\alpha_a(x^k).$$

The matrix $2^2 J_{\alpha\beta}(u)$ defines an \mathcal{F}-f.s. if $2^2 J_{\alpha\beta}(x) = 2^2 J_{\alpha\beta}(\tilde{x}^k)$. Therefore, $\tilde{f}^\alpha_a = 0$.

The last element of $2^2 J_{\alpha\beta}(u)$ are:

$$\left(0, \frac{\partial \tilde{g}^\alpha_a(x^k)}{\partial x^k}, \tilde{g}^\alpha_a(x^k) \right)$$

and hence $\tilde{J}_{\alpha\beta}(u) \in \Gamma$. Therefore, A defines an integrable Γ-structure on E.

Conversely: If there exists the matrix $2^2 J_{\alpha\beta}(u)$ from theorem, then the existence of $2^2 J_{\alpha\beta}(u)$ determines the existence of $2^2 J_{\alpha\beta}(u)$, $x = \pi(u) \in U_\alpha \cap U_\beta$. The affirmation follows.

Conclusions: The F-flat structures are based on families of local frames linked to each other by constant matrices along the leaves of foliation.

These structures are useful in the study of vector field on Riemannian foliated manifolds. The remarkable structures included in the work are of interest for the total space of a vector bundle.

It would be interesting to develop the study of these structures on analytic complex manifold.

References:

1/. Contribution of Individual Authors to the Creation of a Scientific Article (Ghostwriting Policy)

The authors equally contributed in the present research, at all stages from the formulation of the problem to the final findings and solution.

2/. Sources of Funding for Research Presented in a Scientific Article or Scientific Article Itself

No funding was received for conducting this study.

3/. Conflict of Interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Creative Commons Attribution License 4.0 (Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US