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1 Introduction
An absolute valued algebra, is a nonzero real algebra,
that is equipped with a multiplicative norm (∥xy∥ =
∥x∥∥y∥). These algebras have attracted the attention
of many mathematicians, [3], [7], [8], [9], [10], [11],
[12], [13], [14], [15]. In 1947 Albert, [1]. Proved that
the finite dimensional unital absolute valued algebras
are classified by R, C,H,O. And that every finite di-
mensional absolute valued algebra is isotopic to one
of the algebras R, C, H, O. And so has dimension 1,
2, 4 or 8, [1]. Note that, the norm ∥.∥ of any finite-
dimensional absolute valued algebras, comes from an
inner product (./.), [2]. Urbanik and Wright proved
in 1960 that, all unital absolute valued algebras are
classified by R, C, H, O, [4]. It is easily to seen
that, the one-dimensional absolute valued algebras are
classified by R. And it is well-known that the two-
dimensional absolute valued algebras, are isomorphic
to, C, *C, C∗, or

∗
C, [5]. The four-dimensional ab-

solute valued algebras, have been described by M.I.
Ramírez Álvarez in 1997, [6]. The problem of classi-
fying all four (eight)-dimensional absolute valued al-
gebras seems still to be open.

Motivated by these facts, we became interested in
the study of four-dimensional absolute valued alge-
bras, with a nonzero omnipresent idempotent. which
generalizes the studies of M.L. El-Mellah, [3]. The
classification of these algebras containing only one
two-dimensional sub-algebra is still an open prob-
lem. We note that there are a four-dimensional ab-
solute valued algebras, with left unit not containing a
nonzero omnipresent idempotent, [6]. On the other
hand the four-dimensional absolute valued algebra
with a nonzero central idempotent, contains a subal-
gebras of dimension two. Which means that a cen-

tral idempotent is an omnipresent idempotent . The
reciprocal does not hold in general, and the counter-
example is given (remark 3.2). From the comments
below, it arises in a naturel way the following ques-
tion: what is the classification of four-dimensional
absolute valued algebras with a nonzero omnipresent
idempotent and containing two different sub-algebras
of dimension two?. This paper is devoted to shed
some lighe on this problem.

In section 2, we introduce the basic tools for the
study of four-dimensional absolute valued algebras,
with a nonzero omnipresent idempotent, and contain-
ing two different sub-algebras of dimension two.

Moreover, In section 3, we introduce news classes
of four-dimensional absolute valued algebras, with a
nonzero omnipresent idempotent, namely M1, M2,
M3, M4,

∗
M1,

∗
M2,

∗
M3,

∗
M4, *M1, *M2, *M3, *M4,

M∗
1,M∗

2,M∗
3 andM∗

4.
In section 4, we classify algebraically, all four-

dimensional absolute valued algebras, containing at
least, two different subalgebras of dimension two.

In section 5, we summarize our study in the ta-
ble.6.

2 Notations and Preliminary Results
Throughout this paper, the word algebra refers to a
non-necessarily associative algebra, over the field of
real numbers R.

Definition 2.1 Let A be an arbitrary algebra.

i) A is called a normed algebra (resp, absolute val-
ued algebra) if it’s endowed with a space norm:
∥.∥ such that ∥xy∥ ≤ ∥x∥∥y∥ (resp, ∥xy∥ =
∥x∥∥y∥), for all x, y ∈ A.
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ii) A is called a division algebra if, for all nonzero
a ∈ A, the operators La(x) = ax and Ra(x) =
xa (for all x ∈ A) of left and right multiplica-
tion by a are bijectives. Note that every finite-
dimensional absolute valued algebra is a division
algebra.

iii) We mean by a nonzero omnipresent idempotent,
an idempotent which is contained in all two-
dimensional sub-algebras of A.

iv) A(x,y) denote the sub-algebra of A generated by
x, and y.

The most natural examples of absolute valued alge-
bras areR,C,H (the algebra of Hamilton quaternion),
andO (the algebra of Cayley numbers). The algebras
*C, C∗, and

∗
C (obtained by endowing the space C

with the products defined respectively by

x ∗ y = x̄y, x ∗ y = xȳ, and x ∗ y = x̄ȳ (P )

Where x→ x̄ is the standard conjugation of C.
We shall also denote by *H, H∗, or

∗
H the real

algebras obtained by endowing the space H with the
products defined by (P) respectively, with x → x̄ is
the standard conjugation of H. The reader is referred
to [11] for more informations of these classical
absolute valued algebras.

We need the following results.
Theorem 2.2 .[2]. The norm of any finite dimen-
sional absolute valued algebra come from an inner
product.

Lemma 2.3 .[9]. Every algebra in which x2 = 0 only
if x = 0. Contains a nonzero idempotent.

Lemma 2.4 . LetA be an absolute valued algebra of
dimension n ≥ 2, containing a nonzero central idem-
potent e, and let B a 2-dimensional sub-algebra of A.
Then B contains a nonzero element orthogonal to e.

Proof.. Let a, b be an orthonormal basis of B. Then
there exists λ, β ∈ R and u, v ∈ {e}⊥ such that a =
λe + u, b = βe + v. Now βa − λb = w ∈ B \ {0}
and w = βu− λv ∈ {e}⊥

Lemma 2.5 . Let A be a four-dimensional absolute
valued algebra, containing a nonzero central idem-
potent f , then the following statements hold:
i) A contains a 2-dimensional sub-algebra.

ii) x2 = −∥x∥2f , for all x ∈ {f}⊥.

iii) If e ∈ A is another nonzero idempotent such that
e ̸= f , then the subalgebraA(e, f) is isomorphic

to
∗
C.

Proof..

i) We can induce isometries from the commutative
linear isometries Lf and Rf on the orthogonal
space {e}⊥ := E of dimension 3. So there ex-
ist common norm-one eigenvector u ∈ E for
both Lf andRf associated to eigenvalues α, β ∈
{−1, 1}. That is, u2 = −f . Consequently
A(u, f) is a two-dimensional subalgebra of A.

ii) As A has an inner product space, we can assum
that ∥x∥ = 1. We have

∥x2 − f∥ = ∥x− f∥∥x+ f∥ = 2

That is (x2/f) = −1, then x2 = −f .

iii) As e ̸= f . We have

∥e− f∥ = ∥e2 − f2∥ = ∥e− f∥∥e+ f∥

That is ∥e+ f∥ = 1, this imply (e/f) = −1

2
. So

e+ f + ef = 0

Consequently, A(e, f) is isomorphic to
∗
C.

Lemma 2.6 . Let A be a four-dimensional absolute
valued algebra containing 2-dimensional subalgebra
B.

1) If x ∈ B⊥, then x2 ∈ B.

2) If f is a nonzero central idempotent of A, then f
is an omnipresent idempotent.

Proof.. By Rodríguez theorem, [5]. B is isomorphic
to C, *C, C∗, or

∗
C, and by lemma 2.3, B contains a

nonzero idempotent e. We can setB = A(e, i), where
ei = ±i, ie = ±i, and i2 = ±e.

1) We have {e, i} is an orthonormal basis of B,
which can be extended to an orthonormal basis
F = {e, i, j, k} of A. Since Lj is bijective, there
exist j1, and j2, such that

jj1 = i and jj2 = e

Let x = aj + bk ∈ B⊥, we have

(j1/e) = (jj1/je) = (i/je) = ±(ie/je) = ±(i/j) = 0

And

(j1/i) = (jj1/ji) = (i/ji) = ±(ei/ji) = ±(e/j) = 0

Hence, j1 = αj + βk, likewise j2 = α′j + β′k.
So we have

i = jj1 = αj2 + βjk
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and
e = jj2 = α′j2 + β′jk

As αβ′ − βα′ = ±1, then j2 ∈ B, and jk ∈ B.
Similarly we show that k2 ∈ B and kj ∈ B, so

x2 = a2j2 + b2k2 + ab(jk + kj) ∈ B

2) Let x be a nonzero element of A orthogonal to
f, so x2 = −∥x∥2f then f = −∥x∥−2x2 ∈ B
which mean that f is an omnipresent idempotent.

Remark 2.7 . For any orthogonal two elements
x, y ∈ e⊥, we have (xy/yx) = −(x2/y2).

Proof. A simple linearisation of the identity ∥x2∥ =
∥x∥2 give this result.

3 New class of four-dimensional
absolute valued algebras with a
nonzero omnipresent idempotent

In this paraghraph we construct some news classes
of four-dimensional absolute valued algebras with a
nonzero omnipresent idempotent.

3.1 Construction ofM1,M2,M3, andM4

Let {e, i, j, k} be the orthonormal basis of the algebra
H of quaternions with the usual multiplication table:

Table.1. H
e i j k

e e i j k
i i -e k -j
j j -k -e i
k k j -i -e

Let ϕ, ψ,Λ the linaer isometries of the euclidian
spaceH whose matrices with respect to the canonical
basis are given, respectively, by diag {1, 1, 1,−1},
diag {1, 1,−1,−1}, diag{1, 1,−1, 1}. We define
news multiplications on the space H.

x ∗1 y = ϕ(x)ϕ(y)

x ∗2 y = ϕ(x)y

x ∗3 y = xϕ(y)

x ∗4 y = ψ(x)Λ(y)

we get new class of algebras with the multiplica-
tion tables defined respectively by:

Table.2. M1

e i j k
e e i j -k
i i -e k j
j j -k -e -i
k -k -j i -e

Table.3. M2

e i j k
e e i j k
i i -e k -j
j j -k -e i
k -k -j i e

Table.4. M3

e i j k
e e i j -k
i i -e k j
j j -k -e -i
k k j -i e

Table.5. M4

e i j k
e e i -j k
i i -e -k -j
j -j k -e -i
k -k -j -i e

Lemma 3.1 . The algebras M1,M2,M3, and M4 are
absolute valued algebras with omnipresent idempo-
tent e.

Proof. All these algebras are trivially absolute val-
ued. We have also:

1. e is central idempotent for M1, so it’s an om-
nipresent.

2. e is left-unit for algebraM2 so the only non zero
idempotent. It belongs to all subalgebras ofM2,
[10]. So e is omnipresent.

3. e is a right-unit for algebra M3 so it is om-
nipresent.

4. Let B be a two dimensional sub-algebra of
M4, then there exist an nonzero idempotent f
and t in B, such that (f/t) = 0 and t2 =
±f . Using the basis {e, i, j, k} there exists
α1, β1, γ1, δ1, α2, β2, γ2, δ2 ∈ R such that f =
α1e + β1i + γ1j + δ1k and t = α2e + β2i +
γ2j + δ2kWe have

i2 = j2 = −e, k2 = e, ie = ei = i

je = ej = −j, ke = −k, ek = k

And

ik = ki = −j, ij = −ji = −k, jk = kj = −i
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Since f2 = f , then

α2
1 − β21 − γ21 + δ21 = α1 (1)
2α1β1 − 2γ1δ1 = β1 (2)

−2α1γ1 − 2β1δ1 = γ1 (3)
δ1 = 0 (4)

As ∥f∥ = 1, then α2
1 + β21 + γ21 + δ21 = 1 also

α2
1 − β21 − γ21 − δ21 = α1 (1), we get

2α2
1 − α1 − 1 = 0

thus α1 = 1 or α1 = −1
2 .

(a) If α1 = 1, therefore e = f ∈ B

(b) If α1 = −1
2 , then the equalities (2) and (4)

give β1 = δ1 = 0. So

f = −1

2
e±

√
3

2
j ∈ A(e, j)

On the other hand, we know that t2 = ±f
then

α2
2 − β22 − γ22 + δ22 = ±α1 (5)
2α2β2 − 2γ2δ2 = 0 (6)

−2α2γ2 − 2β2δ2 = ±γ1 (7)
δ2 = 0 (8)

Since ∥t∥ = ∥f∥ = 1, then α2
2 + β22 +

γ22 + δ22 = 1. The equalities (5)and (8) give
2α2

2 − 1 = ±α1, thus α2 ̸= 0 and γ2 ̸= 0.
Hence the equalities (6) and (8) imply that
β2 = δ2 = 0, that is, t = α2e + γ2j ∈
A(e, j). Therefore B = A(e, j), so e ∈ B.
As a result e is a nonzero omnipresent idem-
potent ofM4.

Remark 3.2 . e is a nonzero omnipresent idempotent
for the algebrasM2,M3 andM4 which isn’t a central
idempotent.

3.2 Construction of the standard isotope of
M1,M2,M3 andM4

Let M denote one of absolute valued algebras M1,
M2, M3 or M4. We constructon the vectorial space
of M by the news multiplications given respectively,
by x ∗ y = x̄ȳ, x ∗ y = x̄y, x ∗ y = xȳ, where x→ x̄
is the standard conjugation of M. The algebras ob-
tained called the standard isotopes ofM, and denoted
respectively by

∗
M, *M,M∗.

Since the conjugation is an isometry,
∗
M, *M, M∗

are absolute valued algebras, As any two dimensional
sub-algebra ofM is invariant under conjugation, then
e is also an omnipresent idempotent of these news al-
gebras.

4 Main results
In this section, we assume thatA is a four dimensional
absolute valued algebra with omnipresent idempotent
e and having at least two different subalgebrasB1 and
B2 of dimension two.
We have the following studies.

4.1 B1 and B2 are isomorphic to C or
∗
C

Proposition 4.1 . If B1 and B2 are isomorphic to C.
Then A is isomorphic to H, M1, M2 or M3.

Proof. Let B1 = A(e, i) and B2 = A(e, j) be a two
subalgebras of A isomorphic to C, then we have

i2 = j2 = −e, ie = ei = i and je = ej = j

We know also (e/i) = (e/j) = 0, so without loss of
generality we may assume that (i/j) = 0. indeed, if
(i/j) ̸= 0 then t = j−(i/j)i

∥j−(i/j)i∥ is orthogonal to e. Since
te = et = t and ∥e∥ = ∥t∥ = 1, we get t2 = −e.
Which implies that A(e, t) is isomorphic to C.
Now in A there exists an orthonormal subset {e, i, j}
which can be extended to an orthonormal basis
{e, i, j, k} for A. Since k ∈ {e, i, j}⊥, then k2 ∈
A(e, i) ∩ A(e, j) = {e} (lemma 2.6.(1)). We get
k2 = ±e. But since

(ek/e) = (ek/e2) = (e/k) = 0

(ke/e) = (ke/e2) = (k/e) = 0

(ek/i) = (ek/ei) = (k/i) = 0

(ke/i) = (ke/ie) = (k/i) = 0

(ek/j) = (ek/ej) = (k/j) = 0

(ke/j) = (ke/je) = (k/j) = 0

we obtain ek = εk and ke = ζk, where |ε| = |ζ| = 1.
We conclude thatA(e, k) is two-dimensional subalge-
bra ofA, that isA(e, k) is isomorphic toC, *C, C∗ or
∗
C. We distinguish the following cases:
1. If A(e, k) is isomorphic to C.

Then e will be the unit element of A and, there-
fore the multiplication of A is given by Table.1,
so A is isomorphic to the quaternion H.

2. If A(e, k) is isomorphic to
∗
C.

So ke = ek = −k and k2 = −e, since

(ij/e) = (ij/− i2) = −(i/j) = 0

(ij/i) = (ij/ie) = (i/j) = 0

and
(ij/j) = (ij/j) = (i/j) = 0
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Hence ij = k or ij = −k. In a similar manner,
we can show that

ik = j or ik = −j

and
jk = i or jk = −i

Assume that ij = k, in this case we have ik = j
and jk = −i. Indeed, if ik = −j, then

i(j + k) = k − j = −ek − ej = −e(k + j)

Which gives i = −e (A has no zero divisors),
contradiction. Also if jk = i, then

(i+ j)k = j + i = (j + i)e

which implies k = e, absurd. Moreover, by re-
mark 2.7, we have

(ij/ji) = −(i2/j2) = −1

which means that

∥ij + ji∥2 = 0

So ij = −ji, and by the same way we have
ik = −ki, and jk = −kj. Therefore, the mul-
tiplication of A is given by the Table.2, which
mean that A is isomorphic toM1.

3. A(e, k) is isomorphic to *C.
We have ek = k, ke = −k and k2 = e. Using
remark 2.7, we have (ik/ki) = −(i2/k2) = 1
which means that

∥ik − ki∥2 = 0

So ik = ki, similarly, we get

jk = kj and ij = −ji

By simple calculations, we show that

ij = k or ij = −k

,
ik = j or ik = −j

and
jk = i or jk = −i

Assume that ij = k, in this case we have ik =
−j and jk = i. Indeed, if ik = j, then

i(j + k) = k + j = ek + ej = e(k + j)

Which gives i = e (A has no zero divisors), con-
tradiction. Also if jk = −i, then

(i+ j)k = −j − i = −je− ie = −(j + i)e

which implies k = −e, absurd. So the multi-
plication of A is given by the Table.3, and A is
isomorphic toM2.

4. A(e, k) is isomorphic to C∗,
We have ek = −k, ke = k and k2 = e. By
remark 2.7, we get

ik = ki, jk = kj and ij = −ji

And by simple calculations, we show that

ij = k or ij = −k

,
ik = j or ik = −j

and
jk = i or jk = −i

Assume that ij = k, in this case we have ik = j
and jk = −i. Indeed, if ik = −j, then

i(j + k) = k − j = −ek − ej = −e(k + j)

This implies that i = −e (A has no zero divi-
sors), contradiction. Also if jk = i, then

(i+ j)k = j + i = je+ ie = (j + i)e

which implies k = e, absurd. Then the product
ofA is given by Table.4, So A isomorphic toM3.

Proposition 4.2 . If B1 and B2 are isomorphic to
∗
C.

Then A is isomorphic to
∗
H,

∗
M1,

∗
M2 or

∗
M3.

Proof.. we define a new multiplication on A by
x∗y = x̄ȳ, we obtain an algebra

∗
Awhich contains two

different subalgebras isomorphic toC. Therefore, ap-
plying proposition 4.1,

∗
A is isomorphic toH,M1,M2

orM3. Consequently, A is isomorphic to
∗
H,

∗
M1,

∗
M2

or
∗
M3.

4.2 B1 isomorphic to C and B2 isomorphic

to
∗
C

We assume that B1 = A(e, i) isomorphic to C and
B2 = A(e, j) isomorphic to

∗
C, we have

∥i+ j∥2 = ∥e∥2∥i+ j∥2 = ∥ei+ ej∥2 = ∥i− j∥2

That is
2 + 2(i/j) = 2− 2(i/j)

Hence (i/j) = 0.

Proposition 4.3 . If B1 is isomorphic to C and B2 is
isomorphic to

∗
C. Then A is isomorphic to M1, M4,

∗
M1, or

∗
M4.
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Proof.. We can form an orthonormal basis {e, i, j, k}
of A. Since k ∈ {e, i, j}⊥, then k2 ∈ A(e, i) ∩
A(e, j) = {e} (lemma 2.6.(1)). We get k2 = ±e.
But since

(ek/e) = (ek/e2) = (e/k) = 0

(ke/e) = (ke/e2) = (k/e) = 0

(ek/i) = (ek/ei) = (k/i) = 0

(ke/i) = (ke/ie) = (k/i) = 0

(ek/j) = (ek/− ej) = (k/j) = 0

(ke/j) = (ke/− je) = (k/j) = 0

Weobtain ek = εk and ke = ζk, where |ε| = |ζ| = 1.
We conclude thatA(e, k) is two-dimensional subalge-
bra ofA, that isA(e, k) is isomorphic toC, *C, C∗ or
∗
C. We have the following cases:

1. If A(e, k) is isomorphic to C, or
∗
C.

Then A has two different subalgebras isomor-
phic to C or isomorphic to

∗
C. Hence A is iso-

morphic toM1,
∗
M1, (Proposition 4.1, and Propo-

sition 4.2.).
2. If A(e, k) is isomorphic to *C.

We have ek = k, ke = −k and k2 = e.
According to remark 2.7, we have (ik/ki) =
−(i2/k2) = (e/e) = 1 which means that

∥ik − ki∥2 = 0

So ik = ki, and similarly, we get

jk = kj and ij = −ji

We can also show that

ij = k or ij = −k

ik = j or ik = −j
and

jk = i or jk = −i
If ij = −k, then ik = −j and jk = −i. Indeed,
if ik = j, then

i(j + k) = −k + j = −ek − ej = −e(k + j)

So i = −e (Absurde).
Also if jk = i, then

(i+ j)k = −j + i = je+ ie = (j + i)e

which implies k = e, absurd. So the multiplica-
tion of A is given by Table.5, and A is isomor-
phic toM4.

3. If A(e, k) is isomorphic to C∗,
OnAwe can define a new algebra

∗
A by the mul-

tiplication x ∗ y = x̄ȳ. Then
∗
A contains three

different subalgebras isomorphic to
∗
C,C and *C

respectively. Hence the last result imply that
∗
A

is isomorphic toM4. So A is isomorphic to
∗
M4.

4.3 B1 and B2 are isomorphic to *C or C∗

We have the following results
Proposition 4.4 . IfB1 andB2 are isomorphic to *C.
Then A is isomorphic to *H, *M1, *M2 or *M3.
Proof.. We define a new multiplication on A by
x ∗ y = x̄y, we obtain an algebra *A which contains
two different subalgebras isomorphic to C. There-
fore, applying proposition 4.1, *A is isomorphic to
H,M1,M2 orM3. Consequently, A is isomorphic to
*H, *M1, *M2 or *M3.
Proposition 4.5 . IfB1 andB2 are isomorphic toC∗.
Then A is isomorphic to H∗, M1

∗, M2
∗ or M3

∗.
Proof.. We change the product of A by x∗y = xȳ, we
get the algebra notedA∗ which contains two different
subalgebras isomorphic to C. So by Proposition 4.1.
A∗ is isomorphic to H, M1, M2 orM3. Which mean
that A is isomorphic to H∗,M1

∗,M2
∗, orM3

∗.

4.4 B1 isomorphic to C and B2 isomorphic
to *C

We can poseB1 = A(e, i), andB2 = A(e, j) isomor-
phic to *C, we have (i/j) = 0.
Proposition 4.6 . If B1 isomorphic to C and B2 iso-
morphic to *C. Then A is isomorphic to M2, M4,
*M2, or *M4.
Proof.. We can construct an orthonormal basis
{e, i, j, k} ofA. and we have by the same argument in
the precedent case, A(e, k) is two-dimensional subal-
gebra of A.
1. If A(e, k) is isomorphic to C, or *C.

Then A has two different subalgebras isomor-
phic to C or isomorphic to *C. Hence A is iso-
morphic to M2, or *M2 (Propositions 4.1, and
Proposition 4.4).

2. If A(e, k) is isomorphic to
∗
C.

By Proposition 4.3. A is isomorphic toM4

3. If A(e, k) is isomorphic to C∗.
We considere the product x ∗ y = x̄y, we ob-
tain an algebra *Awhich contains three different
subalgebras isomorphic to

∗
C, C and *C respec-

tively. Therefore, applying the last result, *A is
isomorphic to M4. Consequently, A is isomor-
phic to *M4.
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4.5 B1 isomorphic to C and B2 isomorphic
to C∗

We pose B1 = A(e, i), and B2 = A(e, j). we always
have (i/j) = 0. the identity

∥i+ j∥2 = ∥e∥2∥i+ j∥2 = ∥ei+ ej∥2 = ∥i− j∥2

Give
2 + 2(i/j) = 2− 2(i/j)

So (i/j) = 0.

Proposition 4.7 . If B1 isomorphic to C and B2 iso-
morphic to C∗. Then A is isomorphic to M3, M3

∗,
*M4 or

∗
M4.

Proof.. We have (i/j) = 0 so {e, i, j} is an or-
thonormal familly which can be extend to an or-
thonormal basis {e, i, j, k} ofA. SinceA(e, k) is two-
dimensional subalgebra of A. We have the following
cases:
1. If A(e, k) is isomorphic to C or C∗.

Then A has two different subalgebras isomor-
phic to C or isomorphic to C∗. Hence A is
isomorphic to M3,or M3

∗ (Proposition 4.1, and
Proposition 4.5).

2. If A(e, k) is isomorphic to
∗
C.

By Proposition 4.3. A is isomorphic to
∗
M4.

3. IfA(e, k) is isomorphic to *C, thenA is isomor-
phic to *M4 (Proposition 4.6).

Remark 4.8 .
1. If A has two subalgebras B1 = A(e, i), isomor-

phic to
∗
C, and B2 = A(e, j) isomorphic to *C.

We can define a new algebra
∗
A, with product

x∗y = x̄ȳ. So
∗
A contains two different subalge-

bras isomorphic to C and C∗ respectively. So
∗
A

is isomorphic to M3, M3
∗, *M4, or

∗
M4 (Propo-

sition 4.7). ConsequentlyA is isomorphic toM4,
,

∗
M3, *M3, or M4

∗.
2. if A has two subalgebras B1 = A(e, i) iso-

morphic to
∗
C, and B2 = A(e, j) isomorphic

to C∗. We define a new multiplication on A by
x ∗ y = x̄ȳ, and we obtain an algebra

∗
A, which

contains two different subalgebras isomorphic
to C, and *C respectively. By Proposition 4.6,
∗
A is isomorphic M2, M4, *M2, or *M4. Hence
A is isomorphic to

∗
M2,

∗
M4, M2

∗ or M4
∗.

4.6 B1 isomorphic to *C and B2 isomorphic
to C∗

Let’s B1 = A(e, i), and B2 = A(e, j). We have

∥i+ j∥2 = ∥i+ j∥2∥e∥2 = ∥ie+ je∥2 = ∥− i+ j∥2

So
2 + 2(i/j) = 2− 2(i/j)

Hence (i/j) = 0.

Proposition 4.9 If B1 isomorphic to *C and B2 iso-
morphic to C∗. Then A is isomorphic to *M1, , *M4,
M1

∗,or M4
∗

Proof. We construct an orthonormal basis {e, i, j, k}
of A.:
1. If A(e, k) is isomorphic to C∗, or *C.

Then A has two different subalgebras isomor-
phic to *C or isomorphic to C∗. Hence A is iso-
morphic to *M1,or M1

∗ (Propositions. 4.4, and
Proposition. 4.5).

2. If A(e, k) is isomorphic to C, the result is a con-
sequence of the Proposition. 4.6, thus A is iso-
morphic to *M4.

3. If A(e, k) is isomorphic to
∗
C, the result is a con-

sequence of the remark. 4.8. HenceA is isomor-
phic toM4

∗.

Remark 4.10 If ij = −k, we subistitute −k = t we
obtain ij = t, so we use the basis {e, i, j, t}, we again
get the same classifications.

5 Conclusion
In this section, we have the following main result.

Theorem 5.1 Let A be a four dimensional absolute
valued algebra with a nonzero omnipresent idempo-
tent e, and having two different subalgebras B1 and
B2 of dimension two. The following table specifies
the isomorphisms classes.
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Table.6. All classifications

B1 B2 A
C C H, M1, M2, M3
∗
C

∗
C

∗
H,

∗
M1,

∗
M2,

∗
M3

C
∗
C M1, M4,

∗
M1,

∗
M4

*C *C *H, *M1, *M2, *M3

C∗ C∗ H∗, M1
∗, M2

∗, M3
∗

C *C M2, M4, *M2, *M4

C C∗ M3, M3
∗, *M4,

∗
M4

∗
C *C M4,

∗
M3, *M3, M4

∗
∗
C C∗

∗
M2,

∗
M4, M2

∗, M4
∗

*C C∗ *M1, , *M4, M1
∗,or M4

∗
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