On Four Dimensional Absolute Valued Algebras With nonzero Omnipresent Idempotent

NOUREDDINE MOTYA¹, ABDELHADI MOUTASSIM² ¹ Science Mathematics and Applications Laboratory(LaSMA). Sidi Mohamed Ben Abdellah University, Faculty of Sciences Dhar El Mehraz, Fez. ² Regional Center for Education and Training, settat.

MOROCCO

Abstract: In this paper, we studies the absolute valued algebras of dimension four, containing nonzero omnipresent idempotent. And we construct algebraically some news classes of algebras.

Key-Words: Absolute valued algebras, omnipresent idempotent, central idempotent.

Received: December 18, 2022. Revised: June 4, 2023. Accepted: June 25, 2023. Published: July 25, 2023.

1 Introduction

An absolute valued algebra, is a nonzero real algebra, that is equipped with a multiplicative norm (||xy|| =||x|| ||y||). These algebras have attracted the attention of many mathematicians, [3], [7], [8], [9], [10], [11], [12], [13], [14], [15]. In 1947 Albert, [1]. Proved that the finite dimensional unital absolute valued algebras are classified by \mathbb{R} , \mathbb{C} , \mathbb{H} , \mathbb{O} . And that every finite dimensional absolute valued algebra is isotopic to one of the algebras \mathbb{R} , \mathbb{C} , \mathbb{H} , \mathbb{O} . And so has dimension 1, 2, 4 or 8, [1]. Note that, the norm $\|.\|$ of any finitedimensional absolute valued algebras, comes from an inner product (./.), [2]. Urbanik and Wright proved in 1960 that, all unital absolute valued algebras are classified by \mathbb{R} , \mathbb{C} , \mathbb{H} , \mathbb{O} , [4]. It is easily to seen that, the one-dimensional absolute valued algebras are classified by \mathbb{R} . And it is well-known that the twodimensional absolute valued algebras, are isomorphic to, $\mathbb{C},$ * $\mathbb{C},$ $\mathbb{C}^*,$ or $\hat{\mathbb{C}},$ [5]. The four-dimensional absolute valued algebras, have been described by M.I. Ramírez Álvarez in 1997, [6]. The problem of classifying all four (eight)-dimensional absolute valued algebras seems still to be open.

Motivated by these facts, we became interested in the study of four-dimensional absolute valued algebras, with a nonzero omnipresent idempotent. which generalizes the studies of M.L. El-Mellah, [3]. The classification of these algebras containing only one two-dimensional sub-algebra is still an open problem. We note that there are a four-dimensional absolute valued algebras, with left unit not containing a nonzero omnipresent idempotent, [6]. On the other hand the four-dimensional absolute valued algebra with a nonzero central idempotent, contains a subalgebras of dimension two. Which means that a central idempotent is an omnipresent idempotent . The reciprocal does not hold in general, and the counterexample is given (**remark 3.2**). From the comments below, it arises in a naturel way the following question: what is the classification of four-dimensional absolute valued algebras with a nonzero omnipresent idempotent and containing two different sub-algebras of dimension two?. This paper is devoted to shed some lighe on this problem.

In section 2, we introduce the basic tools for the study of four-dimensional absolute valued algebras, with a nonzero omnipresent idempotent, and containing two different sub-algebras of dimension two.

Moreover, In section 3, we introduce news classes of four-dimensional absolute valued algebras, with a nonzero omnipresent idempotent, namely M_1 , M_2 , M_3 , M_4 , M_1^* , M_2^* , M_3^* , M_4^* , $*M_1$, $*M_2$, $*M_3$, $*M_4$, M_1^* , M_2^* , M_3^* and M_4^* .

In section 4, we classify algebraically, all fourdimensional absolute valued algebras, containing at least, two different subalgebras of dimension two.

In section 5, we summarize our study in the table.6.

2 Notations and Preliminary Results

Throughout this paper, the word algebra refers to a non-necessarily associative algebra, over the field of real numbers \mathbb{R} .

Definition 2.1 Let A be an arbitrary algebra.

i) A is called a normed algebra (resp, absolute valued algebra) if it's endowed with a space norm: $\|.\|$ such that $\|xy\| \le \|x\| \|y\|$ (resp, $\|xy\| = \|x\| \|y\|$), for all $x, y \in A$.

- ii) A is called a division algebra if, for all nonzero $a \in A$, the operators $L_a(x) = ax$ and $R_a(x) = xa$ (for all $x \in A$) of left and right multiplication by a are bijectives. Note that every finite-dimensional absolute valued algebra is a division algebra.
- *iii) We mean by a nonzero omnipresent idempotent, an idempotent which is contained in all two-dimensional sub-algebras of A.*
- *iv)* A(x,y) denote the sub-algebra of A generated by x, and y.

The most natural **examples** of absolute valued algebras are \mathbb{R} , \mathbb{C} , \mathbb{H} (the algebra of Hamilton quaternion), and \mathbb{O} (the algebra of Cayley numbers). The algebras

* \mathbb{C} , \mathbb{C}^* , and \mathbb{C} (obtained by endowing the space \mathbb{C} with the products defined respectively by

 $x * y = \bar{x}y, \quad x * y = x\bar{y}, \quad and \quad x * y = \bar{x}\bar{y} \quad (P)$

Where $x \to \bar{x}$ is the standard conjugation of \mathbb{C} .

We shall also denote by $*\mathbb{H}$, \mathbb{H}^* , or \mathbb{H} the real algebras obtained by endowing the space \mathbb{H} with the products defined by (P) respectively, with $x \to \bar{x}$ is the standard conjugation of \mathbb{H} . The reader is referred to [11] for more informations of these classical absolute valued algebras.

We need the following results.

Theorem 2.2 .[2]. The norm of any finite dimensional absolute valued algebra come from an inner product.

Lemma 2.3 .[9]. Every algebra in which $x^2 = 0$ only if x = 0. Contains a nonzero idempotent.

Lemma 2.4 . Let A be an absolute valued algebra of dimension $n \ge 2$, containing a nonzero central idempotent e, and let B a 2-dimensional sub-algebra of A. Then B contains a nonzero element orthogonal to e.

Proof. Let a, b be an orthonormal basis of B. Then there exists $\lambda, \beta \in \mathbb{R}$ and $u, v \in \{e\}^{\perp}$ such that $a = \lambda e + u, b = \beta e + v$. Now $\beta a - \lambda b = w \in B \setminus \{0\}$ and $w = \beta u - \lambda v \in \{e\}^{\perp}$

Lemma 2.5 . Let A be a four-dimensional absolute valued algebra, containing a nonzero central idempotent f, then the following statements hold:

i) A contains a 2-dimensional sub-algebra.

ii)
$$x^2 = -\|x\|^2 f$$
, for all $x \in \{f\}^{\perp}$.

iii) If $e \in A$ is another nonzero idempotent such that $e \neq f$, then the subalgebra A(e, f) is isomorphic to \mathbb{C} .

Proof.

- i) We can induce isometries from the commutative linear isometries L_f and R_f on the orthogonal space {e}[⊥] := E of dimension 3. So there exist common norm-one eigenvector u ∈ E for both L_f and R_f associated to eigenvalues α, β ∈ {-1,1}. That is, u² = -f. Consequently A(u, f) is a two-dimensional subalgebra of A.
- ii) As A has an inner product space, we can assum that ||x|| = 1. We have

$$||x^{2} - f|| = ||x - f|| ||x + f|| = 2$$

That is $(x^2/f) = -1$, then $x^2 = -f$.

iii) As $e \neq f$. We have

$$||e - f|| = ||e^2 - f^2|| = ||e - f|| ||e + f||$$

That is $||e + f|| = 1$, this imply $(e/f) = -\frac{1}{2}$. So

$$e + f + ef = 0$$

Consequently, A(e, f) is isomorphic to $\hat{\mathbb{C}}$.

Lemma 2.6 . Let A be a four-dimensional absolute valued algebra containing 2-dimensional subalgebra B.

- 1) If $x \in B^{\perp}$, then $x^2 \in B$.
- 2) If f is a nonzero central idempotent of A, then f is an omnipresent idempotent.

Proof. By Rodríguez theorem, [5]. *B* is isomorphic to \mathbb{C} , $*\mathbb{C}$, \mathbb{C}^* , or \mathbb{C} , and by lemma 2.3, *B* contains a nonzero idempotent *e*. We can set B = A(e, i), where $ei = \pm i$, $ie = \pm i$, and $i^2 = \pm e$.

We have {e, i} is an orthonormal basis of B, which can be extended to an orthonormal basis F = {e, i, j, k} of A. Since L_j is bijective, there exist j₁, and j₂, such that

$$jj_1 = i$$
 and $jj_2 = e$

Let $x = aj + bk \in B^{\perp}$, we have

$$(j_1/e) = (jj_1/je) = (i/je) = \pm (ie/je) = \pm (i/j) = 0$$

And

$$(j_1/i) = (jj_1/ji) = (i/ji) = \pm (ei/ji) = \pm (e/j) = 0$$

Hence, $j_1 = \alpha j + \beta k$, likewise $j_2 = \alpha' j + \beta' k$. So we have

$$i = jj_1 = \alpha j^2 + \beta jk$$

and

$$e = jj_2 = \alpha'j^2 + \beta'jk$$

As $\alpha\beta' - \beta\alpha' = \pm 1$, then $j^2 \in B$, and $jk \in B$. Similarly we show that $k^2 \in B$ and $kj \in B$, so

$$x^{2} = a^{2}j^{2} + b^{2}k^{2} + ab(jk + kj) \in B$$

2) Let x be a nonzero element of A orthogonal to f, so $x^2 = -||x||^2 f$ then $f = -||x||^{-2}x^2 \in B$ which mean that f is an omnipresent idempotent.

Remark 2.7. For any orthogonal two elements $x, y \in e^{\perp}$, we have $(xy/yx) = -(x^2/y^2)$.

Proof. A simple linearisation of the identity $||x^2|| = ||x||^2$ give this result.

3 New class of four-dimensional absolute valued algebras with a nonzero omnipresent idempotent

In this paraghraph we construct some news classes of four-dimensional absolute valued algebras with a nonzero omnipresent idempotent.

3.1 Construction of M_1 , M_2 , M_3 , and M_4

Let $\{e, i, j, k\}$ be the orthonormal basis of the algebra \mathbb{H} of quaternions with the usual multiplication table:

Table.1. \mathbb{H}

	e	i	j	k
e	e	i	j	k
i	i	-е	k	-j
j	j	-k	-е	i
k	k	j	-i	-е

Let ϕ, ψ, Λ the linaer isometries of the euclidian space \mathbb{H} whose matrices with respect to the canonical basis are given, respectively, by diag $\{1, 1, 1, -1\}$, diag $\{1, 1, -1, -1\}$, diag $\{1, 1, -1, 1\}$. We define news multiplications on the space \mathbb{H} .

$$x *_{1} y = \phi(x)\phi(y)$$
$$x *_{2} y = \phi(x)y$$
$$x *_{3} y = x\phi(y)$$
$$x *_{4} y = \psi(x)\Lambda(y)$$

we get new class of algebras with the multiplication tables defined respectively by:

T 11 0

Table.2.			IMI -	L
	e	i	j	k
e	e	i	j	-k
i	i	-е	k	j
j	j	-k	-е	-i
k	-k	-j	i	-e

Table.3. M_2

	e	i	j	k
e	e	i	j	k
i	i	-е	k	-j
j	j	-k	-е	i
k	-k	-j	i	e

Table.4. \mathbb{M}_3

e	i	j	k
e	i	j	-k
i	-е	k	j
j	-k	-е	-i
k	j	-i	e
		e i	e i j i -e k

Table.5. \mathbb{M}_4

	e	i	j	k
e	e	i	-j	k
i	i	-е	-k	-j
j	-j	k	-е	-i
k	-k	-j	-i	e

Lemma 3.1 . The algebras $\mathbb{M}_1, \mathbb{M}_2, \mathbb{M}_3$, and \mathbb{M}_4 are absolute valued algebras with omnipresent idempotent *e*.

Proof. All these algebras are trivially absolute valued. We have also:

- 1. e is central idempotent for \mathbb{M}_1 , so it's an omnipresent.
- e is left-unit for algebra M₂ so the only non zero idempotent. It belongs to all subalgebras of M₂, [10]. So e is omnipresent.
- 3. e is a right-unit for algebra \mathbb{M}_3 so it is omnipresent.
- 4. Let B be a two dimensional sub-algebra of \mathbb{M}_4 , then there exist an nonzero idempotent f and t in B, such that (f/t) = 0 and $t^2 = \pm f$. Using the basis $\{e, i, j, k\}$ there exists $\alpha_1, \beta_1, \gamma_1, \delta_1, \alpha_2, \beta_2, \gamma_2, \delta_2 \in \mathbb{R}$ such that $f = \alpha_1 e + \beta_1 i + \gamma_1 j + \delta_1 k$ and $t = \alpha_2 e + \beta_2 i + \gamma_2 j + \delta_2 k$ We have

$$i^{2} = j^{2} = -e, \ k^{2} = e, \ ie = ei = i$$

 $ie = ei = -i, \ ke = -k, \ ek = k$

And

$$ik = ki = -j, \ ij = -ji = -k, \ jk = kj = -i$$

Since $f^2 = f$, then

$$\alpha_1^2 - \beta_1^2 - \gamma_1^2 + \delta_1^2 = \alpha_1 \tag{1}$$

$$2\alpha_1\beta_1 - 2\gamma_1\delta_1 = \beta_1 \tag{2}$$

$$-2\alpha_1\gamma_1 - 2\beta_1\delta_1 = \gamma_1 \tag{3}$$

$$\delta_1 = 0 \qquad (4)$$

As ||f|| = 1, then $\alpha_1^2 + \beta_1^2 + \gamma_1^2 + \delta_1^2 = 1$ also $\alpha_1^2 - \beta_1^2 - \gamma_1^2 - \delta_1^2 = \alpha_1$ (1), we get $2\alpha_1^2 - \alpha_1 - 1 = 0$

thus $\alpha_1 = 1$ or $\alpha_1 = -\frac{1}{2}$.

- (a) If $\alpha_1 = 1$, therefore $e = f \in B$
- (b) If $\alpha_1 = -\frac{1}{2}$, then the equalities (2) and (4) give $\beta_1 = \delta_1 = 0$. So

$$f=-\frac{1}{2}e\pm\frac{\sqrt{3}}{2}j\in A(e,j)$$

On the other hand, we know that $t^2 = \pm f$ then

> $\alpha_2^2 - \beta_2^2 - \gamma_2^2 + \delta_2^2 = \pm \alpha_1$ (5)

$$2\alpha_2\beta_2 - 2\gamma_2\delta_2 = 0 \tag{6}$$

 $-2\alpha_2\gamma_2 - 2\beta_2\delta_2 = \pm\gamma_1$ $\delta_2 = 0$ (7)

(8)

Since ||t|| = ||f|| = 1, then $\alpha_2^2 + \beta_2^2 + \gamma_2^2 + \delta_2^2 = 1$. The equalities (5) and (8) give $2\alpha_2^2 - 1 = \pm \alpha_1$, thus $\alpha_2 \neq 0$ and $\gamma_2 \neq 0$. Hence the equalities (6) and (8) imply that $\beta_2 = \delta_2 = 0$, that is, $t = \alpha_2 e + \gamma_2 j \in$ A(e, j). Therefore B = A(e, j), so $e \in B$. As a result e is a nonzero omnipresent idempotent of \mathbb{M}_4 .

Remark 3.2 . e is a nonzero omnipresent idempotent for the algebras \mathbb{M}_2 , \mathbb{M}_3 and \mathbb{M}_4 which isn't a central *idempotent*.

3.2 Construction of the standard isotope of

 \mathbb{M}_1 , \mathbb{M}_2 , \mathbb{M}_3 and \mathbb{M}_4

Let \mathbb{M} denote one of absolute valued algebras \mathbb{M}_1 , \mathbb{M}_2 , \mathbb{M}_3 or \mathbb{M}_4 . We constructon the vectorial space of \mathbb{M} by the news multiplications given respectively, by $x * y = \bar{x}\bar{y}, x * y = \bar{x}y, x * y = x\bar{y}$, where $x \to \bar{x}$ is the standard conjugation of M. The algebras obtained called the standard isotopes of M, and denoted

respectively by \mathbb{M} , * \mathbb{M} , \mathbb{M}^* .

Since the conjugation is an isometry, M, *M, M* are absolute valued algebras, As any two dimensional sub-algebra of \mathbb{M} is invariant under conjugation, then e is also an omnipresent idempotent of these news algebras.

Main results 4

In this section, we assume that A is a four dimensional absolute valued algebra with omnipresent idempotent e and having at least two different subalgebras B_1 and B_2 of dimension two.

We have the following studies.

B_1 and B_2 are isomorphic to $\mathbb C$ or $\mathbb C$ 4.1

Proposition 4.1 . If B_1 and B_2 are isomorphic to \mathbb{C} . Then A is isomorphic to \mathbb{H} , \mathbb{M}_1 , \mathbb{M}_2 or \mathbb{M}_3 .

Proof. Let $B_1 = A(e, i)$ and $B_2 = A(e, j)$ be a two subalgebras of A isomorphic to \mathbb{C} , then we have

$$i^2 = j^2 = -e$$
, $ie = ei = i$ and $je = ej = j$

We know also (e/i) = (e/j) = 0, so without loss of generality we may assume that (i/j) = 0. indeed, if $(i/j) \neq 0$ then $t = \frac{j - (i/j)i}{\|j - (i/j)i\|}$ is orthogonal to e. Since te = et = t and ||e|| = ||t|| = 1, we get $t^2 = -e$. Which implies that A(e, t) is isomorphic to \mathbb{C} .

Now in A there exists an orthonormal subset $\{e, i, j\}$ which can be extended to an orthonormal basis $\{e, i, j, k\}$ for A. Since $k \in \{e, i, j\}^{\perp}$, then $k^2 \in$ $A(e,i) \cap A(e,j) = \{e\}$ (lemma 2.6.(1)). We get $k^2 = \pm e$. But since

$$(ek/e) = (ek/e^2) = (e/k) = 0$$
$$(ke/e) = (ke/e^2) = (k/e) = 0$$
$$(ek/i) = (ek/ei) = (k/i) = 0$$
$$(ke/i) = (ke/ie) = (k/i) = 0$$
$$(ek/j) = (ek/ej) = (k/j) = 0$$
$$(ke/j) = (ke/je) = (k/j) = 0$$

we obtain $ek = \varepsilon k$ and $ke = \zeta k$, where $|\varepsilon| = |\zeta| = 1$. We conclude that A(e, k) is two-dimensional subalgebra of A, that is A(e, k) is isomorphic to $\mathbb{C}, *\mathbb{C}, \mathbb{C}^*$ or

- \mathbb{C} . We distinguish the following cases:
 - 1. If A(e, k) is isomorphic to \mathbb{C} . Then e will be the unit element of A and, therefore the multiplication of A is given by Table.1, so A is isomorphic to the quaternion \mathbb{H} .
 - 2. If A(e, k) is isomorphic to \mathbb{C} . So ke = ek = -k and $k^2 = -e$, since

$$(ij/e) = (ij/-i^2) = -(i/j) = 0$$

 $(ij/i) = (ij/ie) = (i/j) = 0$

and

$$(ij/j) = (ij/j) = (i/j) = 0$$

Hence ij = k or ij = -k. In a similar manner, we can show that

$$ik = j$$
 or $ik = -j$

and

$$jk = i \text{ or } jk = -i$$

Assume that ij = k, in this case we have ik = jand jk = -i. Indeed, if ik = -j, then

$$i(j+k) = k-j = -ek-ej = -e(k+j)$$

Which gives i = -e (A has no zero divisors), contradiction. Also if jk = i, then

$$(i+j)k = j+i = (j+i)e$$

which implies k = e, absurd. Moreover, by remark 2.7, we have

$$(ij/ji) = -(i^2/j^2) = -1$$

which means that

$$|ij+ji||^2 = 0$$

So ij = -ji, and by the same way we have ik = -ki, and jk = -kj. Therefore, the multiplication of A is given by the Table.2, which mean that A is isomorphic to \mathbb{M}_1 .

3. A(e, k) is isomorphic to *C.
We have ek = k, ke = -k and k² = e. Using remark 2.7, we have (ik/ki) = -(i²/k²) = 1 which means that

$$||ik - ki||^2 = 0$$

So ik = ki, similarly, we get

$$jk = kj$$
 and $ij = -ji$

By simple calculations, we show that

$$ij = k \text{ or } ij = -k$$

,

$$ik = j \text{ or } ik = -j$$

and

$$jk = i \text{ or } jk = -i$$

Assume that ij = k, in this case we have ik = -j and jk = i. Indeed, if ik = j, then

$$i(j+k) = k + j = ek + ej = e(k + j)$$

Which gives i = e (A has no zero divisors), contradiction. Also if jk = -i, then

$$(i+j)k = -j - i = -je - ie = -(j+i)e$$

which implies k = -e, absurd. So the multiplication of A is given by the Table.3, and A is isomorphic to \mathbb{M}_2 .

4. A(e, k) is isomorphic to C^{*}, We have ek = −k, ke = k and k² = e. By remark 2.7, we get

$$ik = ki$$
, $jk = kj$ and $ij = -ji$

And by simple calculations, we show that

$$ij = k \text{ or } ij = -k$$

ik = j or ik = -j

and

$$jk = i \text{ or } jk = -i$$

Assume that ij = k, in this case we have ik = jand jk = -i. Indeed, if ik = -j, then

$$i(j+k) = k - j = -ek - ej = -e(k+j)$$

This implies that i = -e (A has no zero divisors), contradiction. Also if jk = i, then

(i+j)k=j+i=je+ie=(j+i)e

which implies k = e, absurd. Then the product of A is given by Table.4, So A isomorphic to M_3 .

Proposition 4.2 . If B_1 and B_2 are isomorphic to \mathbb{C} . Then A is isomorphic to \mathbb{H} , \mathbb{M}_1 , \mathbb{M}_2 or \mathbb{M}_3 .

Proof. we define a new multiplication on A by $x*y = \bar{x}\bar{y}$, we obtain an algebra $\overset{*}{A}$ which contains two different subalgebras isomorphic to \mathbb{C} . Therefore, applying proposition 4.1, $\overset{*}{A}$ is isomorphic to $\mathbb{H}, \mathbb{M}_1, \mathbb{M}_2$ or \mathbb{M}_3 . Consequently, A is isomorphic to $\overset{*}{\mathbb{H}}, \overset{*}{\mathbb{M}_1}, \overset{*}{\mathbb{M}_2}$ or $\overset{*}{\mathbb{M}_3}$.

4.2 B_1 isomorphic to \mathbb{C} and B_2 isomorphic to $\overset{*}{\mathbb{C}}$

We assume that $B_1 = A(e, i)$ isomorphic to \mathbb{C} and $B_2 = A(e, j)$ isomorphic to $\overset{*}{\mathbb{C}}$, we have

$$||i+j||^2 = ||e||^2 ||i+j||^2 = ||ei+ej||^2 = ||i-j||^2$$

That is

$$2 + 2(i/j) = 2 - 2(i/j)$$

Hence (i/j) = 0.

Proposition 4.3 . If B_1 is isomorphic to \mathbb{C} and B_2 is isomorphic to $\overset{*}{\mathbb{C}}$. Then A is isomorphic to \mathbb{M}_1 , \mathbb{M}_4 , $\overset{*}{\mathbb{M}_1}$, or $\overset{*}{\mathbb{M}_4}$.

Proof. We can form an orthonormal basis $\{e, i, j, k\}$ of A. Since $k \in \{e, i, j\}^{\perp}$, then $k^2 \in A(e, i) \cap A(e, j) = \{e\}$ (lemma 2.6.(1)). We get $k^2 = \pm e$. But since

$$(ek/e) = (ek/e^{2}) = (e/k) = 0$$
$$(ke/e) = (ke/e^{2}) = (k/e) = 0$$
$$(ek/i) = (ek/ei) = (k/i) = 0$$
$$(ke/i) = (ke/ie) = (k/i) = 0$$
$$(ek/j) = (ek/-ej) = (k/j) = 0$$
$$(ke/j) = (ke/-je) = (k/j) = 0$$

We obtain $ek = \varepsilon k$ and $ke = \zeta k$, where $|\varepsilon| = |\zeta| = 1$. We conclude that A(e, k) is two-dimensional subalgebra of A, that is A(e, k) is isomorphic to \mathbb{C} , $*\mathbb{C}$, \mathbb{C}^* or

 \mathbb{C} . We have the following cases:

- If A(e, k) is isomorphic to C, or C. Then A has two different subalgebras isomorphic to C or isomorphic to C. morphic to M₁, M₁, (Proposition 4.1, and Proposition 4.2.).
- 2. If A(e, k) is isomorphic to $*\mathbb{C}$. We have ek = k, ke = -k and $k^2 = e$. According to remark 2.7, we have $(ik/ki) = -(i^2/k^2) = (e/e) = 1$ which means that

$$||ik - ki||^2 = 0$$

So ik = ki, and similarly, we get

$$jk = kj$$
 and $ij = -ji$

We can also show that

$$ij = k$$
 or $ij = -k$
 $ik = i$ or $ik = -i$

and

$$jk = i \text{ or } jk = -i$$

If ij = -k, then ik = -j and jk = -i. Indeed, if ik = j, then

$$i(j+k) = -k + j = -ek - ej = -e(k+j)$$

So i = -e (Absurde). Also if jk = i, then

$$(i+j)k = -j + i = je + ie = (j+i)e$$

which implies k = e, absurd. So the multiplication of A is given by Table.5, and A is isomorphic to \mathbb{M}_4 .

3. If A(e,k) is isomorphic to \mathbb{C}^* ,

On A we can define a new algebra \overline{A} by the multiplication $x * y = \overline{x}\overline{y}$. Then \overline{A} contains three different subalgebras isomorphic to \mathbb{C} , \mathbb{C} and $*\mathbb{C}$ respectively. Hence the last result imply that \overline{A} is isomorphic to \mathbb{M}_4 . So A is isomorphic to \mathbb{M}_4 .

4.3 B_1 and B_2 are isomorphic to \mathbb{C}^* we have the following results

Proposition 4.4 . If B_1 and B_2 are isomorphic to $*\mathbb{C}$. Then A is isomorphic to $*\mathbb{H}$, $*\mathbb{M}_1$, $*\mathbb{M}_2$ or $*\mathbb{M}_3$.

Proof. We define a new multiplication on A by $x * y = \bar{x}y$, we obtain an algebra *A which contains two different subalgebras isomorphic to \mathbb{C} . Therefore, applying proposition 4.1, *A is isomorphic to \mathbb{H} , \mathbb{M}_1 , \mathbb{M}_2 or \mathbb{M}_3 . Consequently, A is isomorphic to $*\mathbb{H}$, $*\mathbb{M}_1$, $*\mathbb{M}_2$ or $*\mathbb{M}_3$.

Proposition 4.5 . If B_1 and B_2 are isomorphic to \mathbb{C}^* . Then A is isomorphic to \mathbb{H}^* , \mathbb{M}_1^* , \mathbb{M}_2^* or \mathbb{M}_3^* .

Proof. We change the product of A by $x * y = x\overline{y}$, we get the algebra noted A^* which contains two different subalgebras isomorphic to \mathbb{C} . So by Proposition 4.1. A^* is isomorphic to \mathbb{H} , \mathbb{M}_1 , \mathbb{M}_2 or \mathbb{M}_3 . Which mean that A is isomorphic to \mathbb{H}^* , \mathbb{M}_1^* , \mathbb{M}_2^* , or \mathbb{M}_3^* .

4.4 B_1 isomorphic to \mathbb{C} and B_2 isomorphic to $*\mathbb{C}$

We can pose $B_1 = A(e, i)$, and $B_2 = A(e, j)$ isomorphic to $*\mathbb{C}$, we have (i/j) = 0.

Proposition 4.6 . If B_1 isomorphic to \mathbb{C} and B_2 isomorphic to $*\mathbb{C}$. Then A is isomorphic to \mathbb{M}_2 , \mathbb{M}_4 , $*\mathbb{M}_2$, or $*\mathbb{M}_4$.

Proof. We can construct an orthonormal basis $\{e, i, j, k\}$ of A. and we have by the same argument in the precedent case, A(e, k) is two-dimensional subalgebra of A.

- If A(e, k) is isomorphic to C, or *C. Then A has two different subalgebras isomorphic to C or isomorphic to *C. Hence A is isomorphic to M₂, or *M₂ (Propositions 4.1, and Proposition 4.4).
- If A(e, k) is isomorphic to C.
 By Proposition 4.3. A is isomorphic to M₄
- 3. If A(e, k) is isomorphic to \mathbb{C}^* . We considere the product $x * y = \overline{x}y$, we obtain an algebra *A which contains three different

subalgebras isomorphic to \mathbb{C} , \mathbb{C} and $*\mathbb{C}$ respectively. Therefore, applying the last result, *A is isomorphic to \mathbb{M}_4 . Consequently, A is isomorphic to $*\mathbb{M}_4$.

4.5 B_1 isomorphic to \mathbb{C} and B_2 isomorphic to \mathbb{C}^*

We pose $B_1 = A(e, i)$, and $B_2 = A(e, j)$. we always have (i/j) = 0. the identity

$$||i+j||^2 = ||e||^2 ||i+j||^2 = ||ei+ej||^2 = ||i-j||^2$$

Give

$$2 + 2(i/j) = 2 - 2(i/j)$$

So (i/j) = 0.

Proposition 4.7 . If B_1 isomorphic to \mathbb{C} and B_2 isomorphic to \mathbb{C}^* . Then A is isomorphic to \mathbb{M}_3 , \mathbb{M}_3^* , * \mathbb{M}_4 or \mathbb{M}_4 .

Proof. We have (i/j) = 0 so $\{e, i, j\}$ is an orthonormal familly which can be extend to an orthonormal basis $\{e, i, j, k\}$ of A. Since A(e, k) is two-dimensional subalgebra of A. We have the following cases:

- If A(e, k) is isomorphic to C or C*. Then A has two different subalgebras isomorphic to C or isomorphic to C*. Hence A is isomorphic to M₃, or M₃* (Proposition 4.1, and Proposition 4.5).
- 2. If A(e, k) is isomorphic to \mathbb{C} .

By Proposition 4.3. A is isomorphic to \mathbb{M}_4 .

3. If *A*(*e*, *k*) is isomorphic to *ℂ, then *A* is isomorphic to *𝓜₄ (Proposition 4.6).

Remark 4.8 .

- If A has two subalgebras B₁ = A(e, i), isomorphic to C, and B₂ = A(e, j) isomorphic to *C.
 We can define a new algebra Å, with product x * y = x̄ȳ. So Å contains two different subalgebras isomorphic to C and C* respectively. So Å is isomorphic to M₃, M₃*, *M₄, or M^{*}₄ (Proposition 4.7). Consequently A is isomorphic to M₄, M^{*}₃, *M₃, or M₄*.
- if A has two subalgebras B₁ = A(e, i) isomorphic to C, and B₂ = A(e, j) isomorphic to C*. We define a new multiplication on A by x * y = xy, and we obtain an algebra Å, which contains two different subalgebras isomorphic to C, and *C respectively. By Proposition 4.6, A is isomorphic M₂, M₄, *M₂, or *M₄. Hence * * * A is isomorphic to M₂, M₄, M₂* or M₄*.

4.6 B_1 isomorphic to $*\mathbb{C}$ and B_2 isomorphic to \mathbb{C}^*

Let's $B_1 = A(e, i)$, and $B_2 = A(e, j)$. We have

$$||i+j||^2 = ||i+j||^2 ||e||^2 = ||ie+je||^2 = ||-i+j||^2$$

So

$$2 + 2(i/j) = 2 - 2(i/j)$$

Hence (i/j) = 0.

Proposition 4.9 If B_1 isomorphic to $*\mathbb{C}$ and B_2 isomorphic to \mathbb{C}^* . Then A is isomorphic to $*\mathbb{M}_1$, $*\mathbb{M}_4$, \mathbb{M}_1^* , or \mathbb{M}_4^*

Proof. We construct an orthonormal basis $\{e, i, j, k\}$ of A.:

- If A(e, k) is isomorphic to C^{*}, or *C. Then A has two different subalgebras isomorphic to *C or isomorphic to C^{*}. Hence A is isomorphic to *M₁, or M₁* (Propositions. 4.4, and Proposition. 4.5).
- If A(e, k) is isomorphic to C, the result is a consequence of the Proposition. 4.6, thus A is isomorphic to *M₄.
- If A(e, k) is isomorphic to C, the result is a consequence of the remark. 4.8. Hence A is isomorphic to M₄*.

Remark 4.10 If ij = -k, we subistitute -k = t we obtain ij = t, so we use the basis $\{e, i, j, t\}$, we again get the same classifications.

5 Conclusion

In this section, we have the following main result.

Theorem 5.1 Let A be a four dimensional absolute valued algebra with a nonzero omnipresent idempotent e, and having two different subalgebras B_1 and B_2 of dimension two. The following table specifies the isomorphisms classes.

Table.6.	All	classifications

		J
B_1	B_2	A
\mathbb{C}	\mathbb{C}	\mathbb{H} , \mathbb{M}_1 , \mathbb{M}_2 , \mathbb{M}_3
$\overset{*}{\mathbb{C}}$	$\overset{*}{\mathbb{C}}$	$\overset{*}{\mathbb{H}}$, $\overset{*}{\mathbb{M}}_{1}$, $\overset{*}{\mathbb{M}}_{2}$, $\overset{*}{\mathbb{M}}_{3}$
\mathbb{C}	$\overset{*}{\mathbb{C}}$	\mathbb{M}_1 , \mathbb{M}_4 , \mathbb{M}_1 , \mathbb{M}_4
*C	*C	*H, *M ₁ , *M ₂ , *M ₃
\mathbb{C}^*	\mathbb{C}^*	\mathbb{H}^* , \mathbb{M}_1^* , \mathbb{M}_2^* , \mathbb{M}_3^*
\mathbb{C}	*C	\mathbb{M}_2 , \mathbb{M}_4 , * \mathbb{M}_2 , * \mathbb{M}_4
\mathbb{C}	\mathbb{C}^*	\mathbb{M}_3 , \mathbb{M}_3^* , * \mathbb{M}_4 , \mathbb{M}_4^*
$\overset{*}{\mathbb{C}}$	*C	\mathbb{M}_4 , \mathbb{M}_3 , * \mathbb{M}_3 , \mathbb{M}_4 *
$\overset{*}{\mathbb{C}}$	\mathbb{C}^*	$\overset{*}{\mathbb{M}_{2}}$, $\overset{*}{\mathbb{M}_{4}}$, \mathbb{M}_{2}^{*} , \mathbb{M}_{4}^{*}
C	\mathbb{C}^	* \mathbb{M}_1 , , * \mathbb{M}_4 , \mathbb{M}_1 *, $or \mathbb{M}_4$ *

References:

- A. A. Albert, Absolute valued real algebras. Ann. Math. 48 (1947), 495-501.
- [2] M. L. El-Mallah, On finite dimensional absolute valued algebras satisfying (x, x, x) = 0, Arch Math. 49 (1987), 16-22.
- [3] M. L. El-Mallah, On four-dimensional absolute valued algebras with involution, J. Egypt. Math. Soc., 14 (2006), no. 2, 129-136.
- [4] K. Urbanik and F. B. Wright, Absolute valued algebras. Proc. Amer. Math. Soc. 11 (1960), 861-866.
- [5] A. Rodríguez, Absolute valued algebras of degree two. In Nonassociative Algebra and its applications (Ed. S. González), Kluwer Academic Publishers, Dordrecht-Boston-London (1994), 350-356.
- [6] M.I. Ramírez, On four-dimensional absolute valued algebras. Proceedings of the International Conference on Jordan Structures (Málaga, 1997), univ. Málaga, 1999, pp. 169-173.
- [7] M. Benslimane and A. Moutassim, Some New Class of Absolute Valued Algebras with Left Unit, Advances in Applied Cliford Algebras, 21 (2011), 31-40.
- [8] A. Calderón, A. Kaidi, C. Martín, A. Morales, M.I. Ramírez, A. Rochdi, Finite-dimensional absolute valued algebras, Isr. J. Math. 184 (2011) 193-220.

- [9] B. Segre, La teoria delle algebre ed alcune questione di realta, Univ. Roma, Ist. Naz. Alta. Mat., Rend. Mat. E Appl. Serie 5, 13 (1954), 157-188
- [10] F. Hirzebruch, M. Koecher and R. Remmert, Numbers. Springer Verlag (1991).
- [11] A. Kaidi, M.I. Ramírez, A. Rodrýuez, Absolute valued algebraic algebras are finite dimensional, J. Algebra 195 (1997) 295-307.
- [12] Kandé Diaby, Oumar Diankha, Amar Fall, Abdellatif Rochdi. "On absolute-valued algebras satisfying (x2,y,x2)=0", Journal of Algebra, Volume 585, 1 November 2021, Pages 484-500.
- [13] Abdellatif Rochdi. "Absolute Valued Algebras with Involution", Communications in Algebra, Pages 1151-1159, 04/2009.
- [14] Alassane Diouf, Andre S. Diabang, Alhousseynou Ba, Mankagna A. Diompy. "Over Absolute Valued Algebras with Central Element not Necassary Idempotent", Journal of Mathematics Research, Vol. 9, No. 2, April 2017.
- [15] N. Motya, H. Mouanis, and A. Moutassim, On Pre-Hilbert Algebras Containing a nonzero Central Idempotent f Such That $||x^2|| \le$ $||x||^2$, and ||fx|| = ||x||, Journal of Southwest Jiaotong University, Vol 57, No 6 (2022), https://doi.org/10.35741/issn.0258-2724.57.6.27

Contribution of Individual Authors to the Creation of a Scientific Article (Ghostwriting Policy)

The authors equally contributed in the present research, at all stages from the formulation of the problem to the final findings and solution.

Sources of Funding for Research Presented in a Scientific Article or Scientific Article Itself

No funding was received for conducting this study.

Conflicts of Interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Creative Commons Attribution License 4.0 (Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative Commons Attribution License 4.0

https://creativecommons.org/licenses/by/4.0/deed.en _US