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Abstract: - In a recent study, we introduce the concept of orthogonality and transversality according to an 
index, obtaining some results on linear dependence and independence in semi-normed spaces. In this paper, we 
discuss the concept of orthogonality in semi-normed spaces. 
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1 Introduction 
This paper derives from our previous work, [1]. 
Specifically, to carry over Hilbert space type 
arguments to the theory of Banach spaces, [3], 
constructed on a vector space a type of inner 
product, named semi–inner product (s.i.p), [9], with 
a more general axiom system that of Hilbert space, 
[4]. 

Definition 1.1  

Let X be a real vector space. We say that a real 
semi-inner product (in short s.i.p.) is defined on 
X if for every there corresponds a real number 
and the following properties hold, [3]:  

(1)(i)  

(ii)  for  and  

(2)  for  

(3)  

The pair  is a semi-inner product space (in 
short, s.i.p.s.). 

A s.i.p.s. is a normed vector space with 

, [3]. 

For Lumer the importance of an s.i.p. space is 
that every normed vector space can be represented 
as an s.i.p. space so that the theory of operators on 
Banach space can be penetrated by Hilbert space 
arguments, [4].  

Aiming to generalize condition (2) in the 
definition of s.i.p., we have introduced in [1], the 
semi-pre-inner product function, which is a 
generalization of the s.i.p. function’s concept. 

Definition 1.2  

Let X be a real vector space. Consider a function 

defined on  as follows, [2]: 

 

. 

If satisfies the conditions: 

(1)  

(2)  and  

(3)   
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(4)  

then, we say that is a semi-pre-inner product on X 
(in short s.p.i.p.). 

The pair  is called a semi-pre-inner product 
space (in short s.p.i.p.s.). 

In [2], it proved that for every semi-norm function p 

in the vector space X, there is a s.p.i.p. , such 

that  

Let X be a real vector space and  be a 

semi-normed space, where  is a family of 

semi-norms on X and  is an index set. For every 

 let us denote by  the s.p.i.p., 

corresponding to the semi-norm . 

In [1], we defined an orthogonality relation in 
s.p.i.p. spaces as follows: 

 

Definition 1.3 

Let be  and . The vector x is called 
orthogonal according to the index over the vector 

y, if . In this case, the vector y is called 
transversal according to the index  over the vector 
x, [1].  

 

Definition 1.4  

Let be . The vector x is called orthogonal 
over the vector y, if the vector x is orthogonal 

according to every index  over the vector y. 
In this case, the vector y is called transversal over 
the vector x, [1]. 

 

 

 

Definition 1.5 

Let  , V  be a normed linear space. Denote by S 

the unit sphere in V. The normed space  , V  is 
called Gâteaux differentiable [4], if for all 

, x y S and real  : 

0
lim


 x y x






 exists. 

 

Definition 1.6 

Let   X  be a s.i.p. space. Denote by S the unit 

sphere in X. The s.i.p. space   X  is called a 
continuous s.i.p. space if for all ‚ x y S  and real 
 , [4]: 

0
‚ ‚


     lim y x y y x .


  

 

Theorem 1.1 

An s.i.p. space is a continuous s.i.p. space if and 
only if the norm is Gâteaux differentiable, [4].  

 

Theorem 1.2 

In a continuous s.i.p. space   X  x is normal to 

, which is equivalent to 0 x y , if and only if 

 x y x  for all scalar , [4]. 

 

 

2 Main Results 
Our first main concern is to define the class of 
continuous s.p.i.p. spaces. We will show that in such 
spaces the orthogonality [5] according to an index is 
a generalization to the orthogonality relation as 
studied by J. Gilles in Theorem 1.2. Also, we show 
that in continuous s.p.i.p. spaces, it holds similar 
results compared with the results of Theorem 1.1.  

In the end, we will get some good results for 
orthogonality according to an index on separable 
semi-normed spaces, [6]. 
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Definition 2.1 

Let be  an s.p.i.p. space and p the semi-

norm, corresponding to the s.p.i.p. .  

The s.p.i.p. space  is called a continuous 

s.p.i.p. space if the s.p.i.p.  has the property: 

For every  such that     1, p x p y  

 

Let X be a real vector space and  be a 

semi-normed space, where  is a family of 

semi-norms on X and  is an index set. For every 

 let us denote by  the s.p.i.p., 

corresponding to the semi-norm . 

Theorem 2.1 

Let be , such that the s.p.i.p. space 

 is a continuous s.p.i.p. space.  

Let be  such that  

The vector x is orthogonal according to the index  

over the vector y, if and only if for every  

. 

Proof: Let be , such that the s.p.i.p. space 

 is a continuous s.p.i.p. space.  

Let be  such that  

Assume that for every , R  . 

For all,  it’s true that 

 

On the other hand, using (3) and (4) properties of 

semi–pre–inner product, for every  we have: 

 

 
From here it follows that: 

if  then  and if  then 

 

It’s true that: 

 
From the above equations, the following inequalities 
hold: 

 and  

So,  As a result, the vector  is 

orthogonal according to the index  over the vector 

. 

Assume that the vector  is orthogonal according to 

the index  over the vector . For every,  we 
have that: 
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from which, forever , it’s held the inequality 

. 

 

Corollary 2.1 

Let's assume that for every , the s.p.i.p. space 

 is a continuous s.p.i.p. space.  

Let be  such that for every index 

,  

The vector x is orthogonal over the vector y, if and 

only if for every index  and for every  

. 

 

Theorem 2.2 

Let be . The s.p.i.p. space  is a 
continuous s.p.i.p. space if and only if for every 

 such that     1 p x p y  : 

   
0

lim


 p x y p x 






 

exists. 

Proof: Let be .  

Assume that the s.p.i.p. space  is a 
continuous s.p.i.p. space. 

Since  is a semi–norm on X, we have that 

 is a closed subspace 
of the vector space X. We note that the relation: 

 

is an equivalent relation in X. Let denote by  the 

quotient set  with respect to this 

equivalence relation and by  an equivalence class 
with a representative x. The function: 

 such that for every 

 

is a norm in , [2]. Then, by [3], there exists a 

s.i.p. on : 

 

such that  for every  
Let us consider the function:  

such that 

 for every   

The above function is a s.p.i.p. function, [2]. 

Let be  such that  so 

 Since: 

 
by [4], we have that the norm function 

 is Gâteaux differentiable, i.e.,  

 
exists.  

On the other hand, since for every  the 
following equations are true: 
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 and  

, 

it follows that it exists  

Let us assume now that exists  

for every two points  such that 

 From here, it follows that 

exists  , for every two points 

 such that  So, the 

norm function  is Gâteaux 
differentiable. By [4], we have that the s.i.p. space 

 is a continuous s.i.p. space, from 
where it follows that 

  

On the other hand, since for all   hold 
equations: 

 and 

 

we get that for every two points  such that 

 

 

Thus, the s.p.i.p. space  is a continuous 
s.p.i.p. space. 

As the semi–normed space  can be 

considered filtered, [2], we have that  

where , if  for all   

 

Definition 2.2 

Let be ,  and . The vector x is 
called orthogonal according to the index over the 

set , if the vector  is orthogonal according to the 

index overall vectors .  

In this case, the set  is called transversality, [7], 

[8], according to the index over the vector . 

 

Definition 2.3 

Let be  and . The vector  is called 

orthogonal over the set  if the vector  is 

orthogonal according to every index  over 

the set . In this case, the set  is called 

transversality over the vector . 

 

Definition 2.4 

Let be  and . The set  is called 

orthogonal according to the index over the set , 

if all vectors  are orthogonal according to the 

index over the set  In this case, the set  is 
called transversality according to the index over 

the set . 
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Definition 2.5 

Let be . The set  is called orthogonal over 

the set , if the set  is orthogonal according to 

every index  over the set . In this case, the 

set  is called transversality over the set . 

Let be  and  Denote by  the set of 

all vectors , which are orthogonal according to 

the index over the set  and denote by  the set 

of all vectors , which are orthogonal over the 

set . It is clear that . 

 

Theorem 2.3 

Let's assume that semi–normed space  
is separable, i.e., we assume that this set satisfies the 
condition: 

Let be  and  then there is an index 

, such that  

Let be  and  The following inclusions 
are true: 

(i)  

(ii) ; 

Proof: (i) Let be  Then,  

From here it follows that  thus 

 

(ii) Let be  Then, for all index , 

 From (i) it follows that for every index 

 Since the semi–normed 

space  is separable, we get  So, 

 On the other hand, it is clear 

 

We note that if B is a linear subset of X, then 

 

 

Theorem 2.4 

Let  be a separable semi–normed 
space.  

The following statements are equivalent: 

(i) If for points  there is a , such 

that  then for every , we have 

that . 

(ii) If for two points , where  there is 

only one  such that for every , we 

have that . 

Proof: (i)  (ii) 

Let be , where  Since the semi–

normed space  is separable, there is a 

, such that  Denote 

 We have that: 
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Thus, exists , such that  

Since the statement (i) is true, we take that for every 

,  

Let's suppose that except the  exists also 

another scalar  such that for every , 

 In particular: 

. 

We have: 

 

so, the scalar  is unique. 

(ii)  (i) 

Let's assume that for point  exists an 

, such that  

If , then for all ,  

Let's suppose that  Since the semi–normed 

space  is separable, then exists a 

, such that  On the other hand, 
since the statement (ii) is true, we get that exists a 

unique scalar  such that for every 

,  In particular, 

 We have: 

 

For all  , we have 

 

 

Theorem 2.5 

Let  be a separable semi–normed 
space.  

The following statements are equivalent: 

(i) For every two points , there  

exists a unique scalar  such that for every 

, we have that . 

(ii) For every two points  and for every two 

indexes , have: 

. 

Proof: (i)  (ii) 

Let be ,  and , .  

If  then it is clear 

. 

Let's suppose  Since the semi–normed space 

 is separable, then exists , 

such that  On the other hand, since the 
statement (i) is true, we get that exists a unique 
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scalar  such that for every , we have 

 For all , we get: 

 
We have: 

  

and  

 

If  then  from where it 
follows: 

. 

Let suppose that  We will prove that for 

every ,  Assume the contrary, so 

we assume that exists an , such that 

 Since the statement (i) is true, based 

on Theorem 2.3, we will get that for every , 

 In particular, , so  

which contradicts the assumption  Thus, for 

every ,  From here it follows 

that  and . Moreover, we 
have that:  

 and . 

Dividing side by side the equations (1) and (2) we 
will get: 

 

 

  

  

2

2

,

,

x y p y

x y p y

 


 

. 

(ii)  (i) 

Let be , where  Assume that exists 

, such that . 

Since the statement (ii) is true, for all  and 

, we have: 

, 

from where it follows  for every 

 and , i.e.,  for all 

. 

By Theorem 2.4 we get that exists a unique scalar 

 such that for all ,  

 
 

 

3 Conclusions 
This research grew out of our earlier work and our 
goal was to see what new advancements may be 
achieved for classes of s.p.i.p. spaces formed by 
placing additional constraints on the s.p.i.p. 
function. We defined the class of continuous s.p.i.p. 
spaces. We demonstrated that orthogonality 
according to an index in such spaces is a 
continuation of the orthogonality relation studied by 
J. Gilles. We also demonstrated that the continuity 
limitation on the s.p.i.p. function is equal to the 
norm's Gâteaux differentiability. In continuous 
s.p.i.p. spaces, we obtained similar findings to other 
outcomes. Finally, using an index on separable 
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semi-normed spaces, we confirmed robust 
orthogonality discoveries. 



 

References: 

[1]  Stringa A., Qoshja A., (2022) On Semi–
Normed Spaces, via Semi–Pre–Inner Product 
and Orthogonality According to an Index, 
Journal of Multidisciplinary Engineering 
Science and Technology (JMEST), Vol. 9, 
Issue 12, December 2022, ISSN: 2458-9403. 

[2]  Stringa A., (2021) On Strictly Convex and 
Strictly Convex according to an index Semi-
Normed Vector Spaces, General Mathematics 
Notes, Vol. 4, No 2, June 2011, pp.10–22, 
ISSN 2219–7184, Copyright ICSRS 
Publication, 2011, www.i-crs.org Available 
free online at http://www.geman.in. 

[3]  Lumer G., (1961) Semi-Inner-Product Spaces, 
Transactions of the American Mathematical 
Society, Vol. 100, No 1, 1961, pp. 29-43. 

[4]  Giles J.R., (1967) Classes of Semi-Inner-
Product Spaces, Transactions of the American 
Mathematical Society, Volume 129, Number 3, 
1967, pp. 436-446. 

[5]  J. A. Wheeler; C. Misner; K.S. Thorne (1973). 
Gravitation. W.H. Freeman & Co. p. 58. ISBN 
0-7167-0344-0. 

[6]  Simon, J. (2017). Semi-normed Spaces. In 
Banach, Fréchet, Hilbert and Neumann Spaces, 
J.Simon (Ed.). 

[7]  R. Thom, "Un lemma sur les applications 
différentiables" Bol. Soc. Mat. Mex. , 1 (1956) 
pp. 59–71. 

[8] S. Lang, "Introduction to differentiable 
manifolds" , Interscience (1967). 

[9]  J. B. Conway. A Course in Functional 
Analysis. 2nd Edition, Springer-Verlag, New 
York, 1990, page 1. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Contribution of Individual Authors to the 

Creation of a Scientific Article (Ghostwriting 

Policy) 

The authors equally contributed to the present 
research, at all stages from the formulation of the 
problem to the final findings and solution. 
 
Sources of Funding for Research Presented in a 

Scientific Article or Scientific Article Itself 

No funding was received for conducting this study. 
 

Conflict of Interest 

The authors have no conflicts of interest to declare.  
 

Creative Commons Attribution License 4.0 

(Attribution 4.0 International, CC BY 4.0) 
This article is published under the terms of the 
Creative Commons Attribution License 4.0 
https://creativecommons.org/licenses/by/4.0/deed.en
_US 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2023.22.61 Artur Stringa, Arbër Qoshja

E-ISSN: 2224-2880 561 Volume 22, 2023

https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US

	Blank Page



