
Some Complexity Considerations on the Uniqueness of Graph Colouring

Abstract: For some well-known NP-complete problems, linked to the colourability of a graph, we study the
variation which consists in asking about the uniqueness of a solution (up to permutations of the colours). In
particular, we show that the decision problems Unique k-Colouring (U-k-COL) with k > 3 and Unique Colouring
(U-COL), have equivalent complexities, up to polynomials, as Unique Satisfiability (U-SAT) and Unique One-
in-Three Satisfiability (U-1-3-SAT) by establishing polynomial reductions relating these four problems. As a
consequence, all are co-NP-hard (or, equivalently, NP-hard with respect to Turing reductions) and belong to
the complexity class DP . We also consider the problem Unique Optimal Colouring (U-OCOL) and show that it
belongs to LNP (also denoted Θ2).
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1 Introduction
1.1 Goal, Outline and Results
In the theory of complexity, decision problems are
stated with a question that admits only the answer
YES or NO; the question can be stated in the very
general following form: “Given an instance I and
a property Pr on I , is Pr true for I?” where Pr
can be expressed as: “Is there a structure satisfying
a given characteristic?”. In our study, we add the
extra word “unique” to the latter question: “Is there
a unique structure satisfying a given characteristic?”
Then we investigate the complexity of these newly
defined problems. In this paper, we pay attention
to the uniqueness of the vertex-colouration of graphs
(up to colour permutations). For this, we consider
the uniqueness for some variations of the well-known
problem SAT.

In Section 1.2, we give some notation and defini-
tions from graph theory and then, in Section 1.3, the
basic background for the complexity theory; in Sec-
tion 1.4, we present some well-known Satisfiability
problems, together with their complexities. In Sec-
tion 2, we study how these complexities vary if we
consider the question of the uniqueness of a solution
for colouring problems. We prove that the colouring
problems called below U-k-COL (k > 3) and U-COL
have equivalent complexities as U-SAT and U-1-3-
SAT; consequently, they all belong to the class DP
and are co-NP-hard (or, equivalently,NP-hard with
respect to Turing reductions). We also show that U-
OCOL belongs to the class LNP . We present some
concluding remarks in Section 3.

We similarly revisited some famous problems,
from the viewpoint of uniqueness of solution: Vertex
Cover and Dominating Set (as well as its generaliza-
tion to domination within distance r) [17], Hamilto-
nian Cycle [18], and r-Identifying Code together with
r-Locating-Dominating Code [16].

Note that uniqueness of solutions, which may
be seen as part of the wider issue of the number
of solutions of a problem, had been studied earlier
in a few papers (see, e.g., [3], [4], [5], [9], [12],
[13], [20], [21], [22], [27]). In particular, the com-
plexity of the uniqueness for SAT problems has been
studied in [20], which provides a “dichotomy theo-
rem” characterizing the variants of SAT for which the
uniqueness is polynomial.

1.2 Notation and Definitions for Graphs
For graph theory, we refer to, e.g., [2] or [8]. We
shall denote by G = (V,E) a finite, simple, undi-
rected graph with vertex set V and edge set E, where
an edge between x ∈ V and y ∈ V is indifferently
denoted by xy or yx. The order of the graph is its
number of vertices.

An independent set, or stable set, is a subset
V ∗ ⊆ V such that for all u ∈ V ∗, v ∈ V ∗, uv is
not an edge of G: uv /∈ E. If k is an integer, k > 1, a
k-colouring ofG is a function f : V → {1, 2, . . . , k}
such that f(u) 6= f(v) whenever uv ∈ E. Two ver-
tices with the same value on the function f are said
to share the same colour. Obviously, a k-colouring
of G exists if and only if one can partition V into
k independent sets, with a correspondence between
an independent set and a set of vertices sharing the
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same colour. When it exists, such a partition of V
will be called a k-IS-partition. Since fewer than k
colours may be needed, we might be led to use the
word “partition” in a sense broader than usual, with
empty sets allowed. The smallest k such that there is
a k-IS-partition is called the chromatic number χ(G)
of G. A colouring with a number of colours equal to
χ(G) is said to be optimal.

1.3 Notation and Definitions for Complexity
We expound here the notions of complexity that will
be needed in the sequel. We refer the reader to, e.g.,
[1], [10], [19] or [23] for more on this topic. Here, we
consider complexity only with respect to computing
time and not with respect to memory space.

A decision problem is of the type “Given an ins-
tance I and a property Pr on I , is Pr true for I?”,
and has only two solutions, YES or NO. The com-
plexity class P denotes the set of problems which
can be solved by a polynomial (time) algorithm, and
the complexity class NP the set of problems which
can be solved by a nondeterministic polynomial algo-
rithm.

A polynomial reduction from a decision pro-
blem π1 to a decision problem π2 is a polynomial
algorithm that maps any instance of π1 into an equiva-
lent instance of π2, that is, an instance of π2 admitting
the same answer as the instance of π1; in this case,
we write π1 6p

m π2, or simply π1 6 π2. Cook [6]
proved that there is a problem inNP , namely “Satis-
fiability” or simply SAT (see below in Section 1.4),
to which every other problem in NP can be polyno-
mially reduced. Thus, in a sense, SAT is a “hardest”
problem inside NP . Other problems share this pro-
perty in NP and are called NP-complete problems;
their class is denoted by NP-complete or NP-C.

The way to show that a decision problem π is
NP-complete is, once it is proved to be in NP , to
choose some NP-complete problem and to polyno-
mially reduce it to π. From a practical viewpoint, the
NP-completeness of a problem π implies that we do
not know any polynomial algorithm solving π, and
that, under the assumption P 6= NP , which is widely
believed to be true, no such algorithm exists: the
time required can grow exponentially with the size
of the instance (for example, when the instance is a
graph, its size is polynomially linked to the order of
the graph; see below, Section 2).

The complement of a decision problem, “Given I
and Pr, is Pr true for I?”, is “Given I and Pr, is
Pr false for I?”. The class co-NP (respectively, co-
NP-complete or co-NP-C) is the class of the pro-
blems which are the complement of a problem inNP
(respectively, in NP-C).

For problems which are not necessarily decision
problems, a Turing reduction from a problem π1 to

a problem π2 is an algorithm A that solves π1 using
a (hypothetical) subprogram S solving π2 such that,
if S were a polynomial algorithm for π2, then A
would be a polynomial algorithm for π1; in this case,
we write π1 6T π2. Thus, in this sense, π2 is “at
least as hard” as π1. A problem π is NP-hard (res-
pectively, co-NP-hard) if there is a Turing reduc-
tion from someNP-complete (respectively, co-NP-
complete) problem to π [10, p. 113].

Remark 1 Note that with these definitions, NP-
hard and co-NP-hard coincide [10, p. 114].

The notions of completeness and hardness can of
course be extended to classes other than NP or co-
NP . Note that NP-hardness and co-NP-hardness
are defined differently in [7] and [15] for instance:
there, a problem π is NP-hard (respectively, co-
NP-hard) if there is a polynomial reduction from
someNP-complete (respectively, co-NP-complete)
problem to π; then, with these definitions, NP-
hardness and co-NP-hardness do not coincide any
more and this may lead to confusion (see Section 3).
For the problems studied here, our results show that
U-k-COL (k > 3) and U-COL are co-NP-hard for
both polynomial and Turing reductions, while they
are NP-hard only for Turing reductions.

We will use two more classes. They received dif-
ferent notations, or were shown to be the same as
classes defined differently, hence the multiple nota-
tions (see, e.g., [14]).
• The class LNP [19] contains the decision problems
which can be solved by applying, with a number of
calls which is logarithmic with respect to the size of
the instance, a subprogram able to solve an appro-
priate problem in NP (usually, an NP-complete
problem). It is also denoted by PNP[O(logn)], or
PNP[log], or Θ2, or ΘP

2 , or still P ||NP ; in the sequel,
we will use the notation LNP , easier to remember.
This class should not be confused with the class L,
which is the class of decision problems solvable by
a Turing machine restricted to use an amount of me-
mory logarithmic in the size of the input.
• Finally, let us define DP [25] (or DIFP [3] or
BH2 [19], [28], . . .) as the class of languages (or
problems) L such that there are two languages L1 ∈
NP and L2 ∈ co-NP satisfying L = L1 ∩ L2. This
class is not to be confused with NP ∩ co-NP (see
the warning in, e.g., [23, p. 412]); actually, DP con-
tains NP ∪ co-NP and is contained in LNP (see
Figure 1).

Membership to P , NP , co-NP , DP , or LNP
gives an upper bound on the complexity of a problem
(this problem is not more difficult than . . .), whereas
a hardness result gives a lower bound (this problem
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is at least as difficult as . . .). Still, such results are
conditional in some sense; if for example P = NP ,
they would lose their interest.

1.4 Satisfiability Problems
We first recall some problems related to Boolean
Satisfiability, and present what is known about their
complexities.

We consider a set X of n Boolean variables
xi (1 6 i 6 n). A literal is a variable x or
its complement (or negated variable) x; let X de-
note the set of the complement variables of X :
X = {x with x ∈ X}. A clause defined on X is a
subset of X ∪ X . We consider a set C of m clauses
cj (1 6 j 6 m); C is also called a Boolean formula.
Each clause cj contains κj literals. Equivalently, C
can read as a logical formula:

C = ∧16j6mcj , with cj = ∨16i6κj
`ji ,

with `ji ∈ X ∪ X for 1 6 j 6 m and 1 6 i 6 κj .
This form is called a normal conjunctive form. A

truth assignment for X sets the variable xi to TRUE,
also denoted by T, and its complement to FALSE
(or F), or vice-versa. A truth assignment is said to
satisfy the clause cj if cj contains at least one true lite-
ral, and to satisfy the set of clauses C if every clause
contains at least one true literal. The following deci-
sion problems, for which the size of the instance is
polynomially linked to n+m, are classical problems
in complexity.

Problem SAT (Satisfiability):
Instance: A set X of variables, a collection C of
clauses over X .
Question: Is there a truth assignment forX that satis-
fies C?

Problem 1-3-SAT (One-in-Three Satisfiability):
Instance: A set X of variables, a collection C of
clauses over X , each clause containing exactly three
different literals.
Question: Is there a truth assignment for X such that
each clause of C contains exactly one true literal?

We shall say that a clause (respectively, a set
of clauses) is 1-3-satisfied by an assignment if this
clause (respectively, every clause in the set) contains
exactly one true literal.

Problem SAT (co-Satisfiability):
Instance: A set X of variables, a collection C of
clauses over X .
Question: Is it true that no truth assignment for X
satisfies C?

The problem SAT is one of the basic and most
well-known NP-complete problems [6], [10, p. 39

and p. 259]. It follows that the problem SAT is co-
NP-complete.

The problem 1-3-SAT is also NP-complete [26,
Lemma 3.5], [10, p. 259].

The problems U-SAT and U-1-3-SAT are obtained
from the above problems SAT and 1-3-SAT respec-
tively by adding the word “unique” in the question.
The problem U-SAT has been studied as far back as
1982 ([3], [24]). The problems U-SAT and U-1-3-
SAT share the same complexity. More precisely, we
have:

U-SAT 6 U-1-3-SAT 6 U-SAT. (1)

They are both NP-hard and both belong to DP .

Remark 2 In [23], it is stated that “U-SAT is not
believed to be DP–complete”. It is shown in [3]
that there exists one oracle under which U-SAT is not
DP–complete; and one oracle under which it is, if
NP and co-NP are distinct.

2 Uniqueness for Colouring Problems
We now turn to the colouring decision problems,
stated in their two usual forms. First, for a given inte-
ger k > 1:

Problem k-COL (k-Colouring):
Instance: A graph G.
Question: Does G admit a k-colouring?

It is well known that this problem is trivial for
k = 1, polynomial for k = 2 and NP-complete for
k > 3, see [11], [10, p. 191]. We can also state the
problem COL with k belonging to the instance:

Problem COL (Colouring):
Instance: A graph G, an integer k.
Question: Does G admit a k-colouring?

The problem COL is also NP-complete.

In their spirit, the problems U-k-COL and U-COL
are derived from the above problems k-COL and
COL respectively in a similar manner as previously
done for satisfiability problems.

Anyway, if we define the problem of the existence
of a unique k-colouring in a graph by simply adding
the word “unique” in the statements of the problems
k-COL or COL, it is quite obvious that the answer
will always be NO for k > 1, since any permutation
(other than the identity) on the values of a k-colouring
provides another k-colouring. So, rather than saying
that we look for a unique colouring up to permuta-
tions, it is more relevant to consider the problems
stated in terms of IS-partitions. Also, if the graph
is not connected, the answer will be NO for k > 1.
Thus, the problems that we study assume the graphs
to be connected, as stated below:
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Let k be a fixed integer with k > 1.
Problem U-k-COL (Unique k-IS-Partition):
Instance: A connected graph G.
Question: Does G admit a unique k-IS-partition?

Problem U-COL (Unique IS-Partition):
Instance: A connected graph G, an integer k.
Question: Does G admit a unique k-IS-partition?

We add the following problem, which would be
irrelevant without the word “unique” in its question,
and which will be dealt with in Section 2.3:

Problem U-OCOL (Unique Optimal IS-Partition):
Instance: A connected graph G = (V,E).
Question: Is there a unique way of partitioning V
into a minimum number of independent sets?

Note that, like 1-COL and 2-COL, U-1-COL and
U-2-COL are, quite obviously, polynomial.

As the graphs are assumed to be connected, we
may assume also, without loss of generality, that they
are encoded by their adjacency matrices. Thus, the
size of a graph G with n vertices is equal to n2.

2.1 Preliminary Results on 3-Colourings
The following lemma is somehow inspired by the
proof of the NP-completeness of 3-COL, see Theo-
rem 2.1 and Figure 1 in [11]. Note that the proof
from [11] cannot convey uniqueness, even up to per-
mutations of colours.

Lemma 3 Consider the graph G0 = (V0, E0) des-
cribed by Figure 2.

(a) Any 3-IS-partition of {a, b, d} such that these
three vertices belong to the same independent set,
cannot be extended to a 3-IS-partition in G0.

(b) Any 3-IS-partition of {a, b, d} such that these
three vertices belong to exactly two independent sets,
can be uniquely extended to a 3-IS-partition in G0.

Proof. Without loss of generality, we assume that in
any 3-IS-partition of V0 into S1, S2, S3, the vertex v2
belongs to S3. Then a, b and d can belong only to S1
or S2.

(a) First, we assume that the vertices a, b and d
belong to S1. Then, because of the triangle a,w1, v2,
we have w1 ∈ S2. Similarly, z2 ∈ S2, z3 ∈ S2.
Then z1 ∈ S3, and step by step, w2 ∈ S1, w3 ∈ S3,
v1 ∈ S2, w4 ∈ S1, y6 ∈ S2, y2 ∈ S3, y1 ∈ S2,
y4 ∈ S1, and y5 ∈ S3. But now the neighbours of y3
are y6 ∈ S2, y5 ∈ S3 and d ∈ S1, which makes
it impossible to have a 3-IS-partition. Obviously, the
conclusion is the same if a, b and d belong to S2, with
the roles of S1 and S2 permuted.

(b) Assume first that a ∈ S1, b ∈ S1, d ∈ S2.
Then {w1, z2} ⊂ S2, z3 ∈ S1, z1 ∈ S3, w2 ∈ S1,
v1 ∈ S2, w3 ∈ S3, w4 ∈ S1, y6 ∈ S2, y2 ∈ S3,

y1 ∈ S2, y4 ∈ S1, y5 ∈ S3 and y3 ∈ S1, which
constitutes a 3-IS-partition, obtained in a unique way.
The same is true for a ∈ S2, b ∈ S2, d ∈ S1, with the
roles of S1 and S2 permuted.

For a ∈ S1, b ∈ S2, d ∈ S1, we simply give the
three sets S1, S2 and S3, since it is straightforward
to check that there is only one way to obtain them:
S1 = {a, d, z2, w3, w4, y5, y2}, S2 = {b, z1, z3, w1,
v1, y6, y4}, S3 = {v2, w2, y3, y1}. The case with
a ∈ S2, b ∈ S1, d ∈ S2 is the same, with the roles
of S1 and S2 permuted.

For a ∈ S2, b ∈ S1, d ∈ S1, the partition
S1 = {b, d, w1, w3, z1, w4, y5, y1}, S2 = {a, z2, z3,
v1, y6, y4}, S3 = {v2, w2, y3, y2} is the only 3-IS-
partition. The case with a ∈ S1, b ∈ S2, d ∈ S2 is
the same, with the roles of S1 and S2 permuted. 4
Remark 4 We can see from the previous proof that
w4, which is linked to v1 and v2, belongs to S1 as
soon as two of the three vertices a, b, d belong to S1
— and w4 ∈ S2 if two of a, b, d belong to S2. This
implies that v1 ∈ S2 in the first case, v1 ∈ S1 in the
latter case.

We are now ready to show that U-SAT and U-COL
have equivalent complexities (up to polynomials).

2.2 Equivalence of Uniqueness of Colouring
and of Satisfiability

We are going to prove the following polynomial
reductions:

• U-1-3-SAT 6 U-3-COL (Theorem 5),

• for k > 3, U-3-COL 6 U-k-COL 6 U-COL
(Proposition 6),

• and U-COL 6 U-SAT (Theorem 7).

Theorem 5 There exists a polynomial reduction from
U-1-3-SAT to U-3-COL: U-1-3-SAT 6 U-3-COL.

Proof. Consider an instance of U-1-3-SAT consis-
ting in a set C of m clauses over n variables xi
(1 6 i 6 n). We associate to it an instance of U-3-
COL, i.e. a graph G, as follows. The vertex set W of
G is defined by:

W ={xi, xi : 1 6 i 6 n} ∪ {v1, v2}
∪ {zi,j : 1 6 i 6 3, 1 6 j 6 m}
∪ {wi,j : 1 6 i 6 4, 1 6 j 6 m}
∪ {yi,j : 1 6 i 6 6, 1 6 j 6 m}.

The order of G is 2n + 2 + 13m. For every j in
{1, . . . ,m}, we denote by V −j the set

V −j ={zi,j : 1 6 i 6 3}
∪ {wi,j : 1 6 i 6 4}
∪ {yi,j : 1 6 i 6 6},
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and by Vj the set

Vj = V −j ∪ {v1,j , v2,j}.

For each clause cj = {aj , bj , dj} (1 6 j 6 m)
where aj , bj and dj belong to {xi, xi : 1 6 i 6 n},
we take a copy Gj = (Vj ∪ {aj , bj , dj}, Ej) of the
graph G0 = (V0, E0) from the previous lemma, with
aj = a, bj = b, dj = d, and complete identification
of the other vertices of V0 to the vertices of Vj . Then
we merge all the vertices v1,j , 1 6 j 6 m, into one
vertex v1, i.e., the new vertex v1 replaces the v1,j’s
and is linked to all their neighbours; we proceed simi-
larly to create a new vertex v2. The vertices v1 and
v2 are now common for all the clauses cj and sub-
graphs Gj — we still call these subgraphs Gj , with a
slight notational abuse.

We add the edges xixi, xiv2 and xiv2, 1 6 i 6 n,
and we have our graph G; see Figure 3 for a small
example.

Let us now show that the answer is the same for
the initial instance of U-1-3-SAT and the instance of
U-3-COL.

(1) Let us first assume that the answer to U-1-3-
SAT is YES: there is a unique truth assignment 1-3-
satisfying the clauses of C. We construct a valid 3-
IS-partition W = S1 ∪ S2 ∪ S3 in the following way:
we put v2 in S3, we put in S2 the literals that have the
assignment TRUE, and in S1 those which are FALSE.
Since each clause contains exactly one true literal, we
are in condition (b) of Lemma 3, and from now on,
there is a unique way for obtaining a 3-IS-partition
of W , by proceeding in each graph Gj as in the proof
of the lemma for V0: note that we cannot proceed
independently in each graph Gj , which could lead to
more than one partition, because of the vertices v1
and v2 which are shared by all the graphs Gj .

Can we have another 3-IS-partition
W = S∗1 ∪ S∗2 ∪ S∗3? Still assuming, without
loss of generality, that v2 ∈ S∗3 , this 3-IS-partition,
like every 3-IS-partition in G, induces, because of
the triangles xixiv2, a valid truth assignment A for
the variables xi, 1 6 i 6 n, by setting A(xi) = T
if xi ∈ S∗2 and A(xi) = F if xi ∈ S∗1 . If we study,
in a subgraph Gj0 , the vertices aj0 , bj0 and dj0 , we
know, by Lemma 3(a), that they cannot all belong to
the same set, S∗1 or S∗2 . If two of them belong to S∗1 ,
then, by Remark 4, w4,j0 ∈ S∗1 and v1 ∈ S∗2 . This in
turn implies that all the vertices w4,j , 1 6 j 6 m,
belong to S∗1 , and then that, for all j, two among the
three vertices aj , bj and dj belong to S∗1 . Similarly,
if two of aj0 , bj0 and dj0 belong to S∗2 , then for all j,
two of aj , bj and dj belong to S∗2 . Therefore, the
assignment A is such that (a) in all the clauses, two
of the three vertices aj , bj , dj belong to S∗1 , or (b) in
all the clauses, two of the three vertices aj , bj , dj

belong to S∗2 . This proves that the assignment A, or
its complement, 1-3-satisfies all the clauses. Since
such an assignment was assumed to be unique, the
3-IS-partition W = S∗1 ∪ S∗2 ∪ S∗3 is the same as
W = S1 ∪ S2 ∪ S3.

Thus a YES answer to U-1-3-SAT implies a YES
answer to U-3-COL.

(2) Assume next that the answer to U-1-3-SAT is
NO: this may be either because no truth assignment
1-3-satisfies the instance, or because at least two as-
signments do; in the latter case however, this would
lead to at least two 3-IS-partitions, and a NO answer
to U-3-COL. So we are left with the case when the
set of clauses C cannot be 1-3-satisfied. But if a
3-IS-partition of W exists, then we have seen, with
S∗1 ∪ S∗2 ∪ S∗3 above, how to construct an assignment
which 1-3-satisfies all the clauses; therefore, no 3-IS-
partition can exist.

We have proved that, in all cases, the answer to
U-3-COL is also NO.

Thus the answer is the same for the two instances.
Moreover, the complexity of the reduction is di-

rectly linked to the size of G. Since the order of G
is 2n + 13m + 2, the size of G is in O((n + m)2)
while the size of the instance of U-1-3-SAT is at least
n+m. So the reduction is polynomial.

In conclusion, we have what we wanted:
U-1-3-SAT 6 U-3-COL. 4

Reducing U-3-COL into U-k-COL for k > 4 and
then U-k-COL for k > 3 to U-COL is much easier,
as shown by Proposition 6:

Proposition 6 For every integer k > 3, there exists a
polynomial reduction from U-3-COL to U-k-COL: U-
3-COL 6 U-k-COL, and from U-k-COL to U-COL:
U-k-COL 6 U-COL.

Proof. To go from U-`-COL to U-(` + 1)-COL for
any integer `, the trick is standard: a graph G ad-
mits a (unique) `-IS-partition if and only if the graph
obtained from G by adding, in polynomial time, one
vertex connected to all the vertices of G, admits a
(unique) (` + 1)-IS-partition. Starting from ` = 3,
we can reach any fixed k > 3.

The problem U-COL, where k, the number of
colours, is not fixed but is part of the instance, is at
least as hard as U-k-COL, for any fixed integer k:
to any instance G of U-k-COL, we can associate the
instance consisting of G and k for U-COL, also in
polynomial time. 4

When dealing with the usual problems like COL
and SAT, it is not necessary to establish the reduction
from COL to SAT explicitly: the belonging of COL to
NP and the NP-completeness of SAT are sufficient
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to involve that such a reduction does exist. In other
words, because SAT is known to be NP-complete,
the properties COL ∈ NP and SAT 6 COL are suf-
ficient to show that SAT and COL belong to the same
complexity class, namelyNP-C. For U-COL and U-
SAT, it is not sufficient to reduce U-SAT to U-COL to
be able to conclude that these two problems have the
same complexity: we may only conclude from such a
reduction that U-COL is at least as difficult as U-SAT.
So, in order to have the reciprocal statement, we now
reduce U-COL into U-SAT polynomially.

Theorem 7 There exists a polynomial reduction from
U-COL to U-SAT: U-COL 6 U-SAT.

Proof. We start from an instance of U-COL, ie. a
connected graph G = (V,E) and an integer k, with
V = {x1, . . . , x|V |} (where |V | denotes the order of
G); we assume that k > 3 and |V | > 3. We create the
set of variables X = {xhi : 1 6 h 6 |V |, 1 6 i 6 k}
and the following clauses:

(0) {x11};
(i) for 1 6 h 6 |V |, clauses of size k:

{xh1 , xh2 , . . . , xhk};
(ii) for 1 6 h 6 |V | and 1 6 i < j 6 k, clauses

of size two: {xhi , xhj };
(iii) for every edge xhxh

′ ∈ E, k clauses of
size two: {xh1 , xh

′

1 }, {xh2 , xh
′

2 }, . . ., {xhk−1, xh
′

k−1},
{xhk , xh

′

k };
(iv) for 2 6 h 6 |V | and 1 6 i 6 k, clauses
We shall say that {xhi } is the first part

of chi , {x1i , . . . , x
h−1
i } its second part, and

{x1i−1, . . . , x
h−1
i−1 } its third part. When i = 1,

chi reduces to its first and second parts. All these
clauses form the instance of U-SAT.

The role of the variables and of the clauses will
appear below in the proof.

Note that the number of variables and clauses is
polynomial with respect to the order of G, in particu-
lar because we may take k 6 |V |. As the complexity
of the reduction is polynomially related to this num-
ber of variables and clauses, the reduction is polyno-
mial.

Let us show now that the answer is kept by the
reduction.
(1) We assume that there is a k-IS-partition of V into
k sets S1, S2, . . . , Sk. If necessary, we redefine this
partition, with renamed sets S∗1 , S∗2 , . . . , S

∗
k , in the

following way: we put x1 in S∗1 ; then if x2 was in the
same set as x1, we also put x2 in S∗1 , otherwise we
put it in S∗2 ; more generally, if xp was in the same set
as some xq, q < p, we put xp in the same set as xq,

otherwise we put it in S∗t , where t is the smallest in-
dex that has not been used yet for a set S∗; and so
on, until we have processed all the vertices. In other
words, we re-order the sets S1, S2, . . . , Sk according
to the order of the smallest superscript of their ele-
ments. In particular, x1 belongs to the first set.

Example. k = 5, |V | = 14, S1 = {x5, x2, x8},
S2 = {x3, x14, x4}, S3 = {x10, x1, x12}, S4 = {x7,
x9, x11}, S5 = {x13, x6}. After re-ordering as
described above, we have S∗1 = {x1, x10, x12},
S∗2 = {x2, x5, x8}, S∗3 = {x3, x4, x14}, S∗4 = {x6,
x13}, S∗5 = {x7, x9, x11}.

If we have a k-IS-partition S1, S2, . . . , Sk ordered as
above, we can define a truth assignment A1 by set-
ting, for every variable xhi , A1(x

h
i ) = T if and only if

xh ∈ Si, and this assignment satisfies all the clauses;
indeed:

(0) {x11} is satisfied thanks to the re-ordering;
(i) each clause {xh1 , xh2 , . . . , xhk} contains at least

one true literal, the contrary meaning that the ver-
tex xh belongs to no set of the k-IS-partition;

(ii) each clause {xhi , xhj } contains at least one true
literal, the contrary meaning that the vertex xh be-
longs to two sets Si and Sj ;

(iii) each clause {xhi , xh
′

i } contains at least one
true literal, the contrary meaning that two neighbours
in G belong to the same set Si;

(iv) let us consider chi for given h and i,
2 6 h 6 |V |, 1 6 i 6 k, and assume that it
is not satisfied by A1. Then the first part
of chi implies that xh ∈ Si, the second part that
{x1, . . . , xh−1} ∩ Si = ∅; if i = 1, this is impossi-
ble, since x1 ∈ S1. So i > 1 and chi has a third
part, which, when not satisfied, implies that
{x1, . . . , xh−1} ∩ Si−1 = ∅. But then xh should
have been put in Si−1 (or possibly even earlier) when
re-ordering the k-IS-partition, and we have a con-
tradiction. Therefore, all the clauses chi are satisfied
by A1. We can conclude that any k-IS-partition
gives a truth assignment satisfying all the clauses
constructed for U-SAT.

Assume now that this k-IS-partition is unique, i.e.,
we have a YES answer for U-COL. We claim that
there is only one assignment satisfying the instance
of U-SAT. Assume on the contrary that another as-
signment, A2, also satisfies it. Then, thanks to the
clauses described in (i) and (ii), for every h, at least
one literal xhi is set TRUE by A2, and for every pair
{i, j}, i 6= j, at least one of xhi or xhj is set TRUE,
which means that at most one xhi is set TRUE: so for
every h, exactly one xhi is TRUE. Using this, let us
construct a partition S+

1 , . . . , S
+
k using the following

rule: xh ∈ S+
i if and only if A2(x

h
i ) = T.
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Now because of the clauses {xhi , xh
′

i } correspon-
ding to neighbours xh and xh

′
in G, at least one of

xhi or xh
′

i is set FALSE by A2: this means that two
neighbours cannot be in the same set and guarantees
that the partition S+

1 , . . . , S
+
k is a k-IS-partition of V ,

and, by assumption, it must coincide with S1, S2,
. . . , Sk, up to permutations of the subscripts. This is
where the clauses introduced in Step (iv) intervene:
without them, a single k-IS-partition could give more
than one assignment, differing only according to the
permutations on the subscripts of the sets of the k-IS-
partition.

We are going to prove that S1 = S+
1 , S2 = S+

2 ,
. . ., Sk = S+

k . Because of the clause {x11}, we have
A2(x

1
1) = T, implying that x1 ∈ S+

1 and S1 = S+
1 .

Now assume that there are two sets S+
p and S+

q such
that 1 < p, q = p + 1, and the element with smal-
lest superscript in S+

p , xp1 , has superscript greater
than the element with smallest superscript in S+

q , xq1 :
p1 > q1. Consider the clause

cq1q = cq1p+1

= {xq1p+1, x
1
p+1, . . . , x

q1−1
p+1 , x

1
p, . . . , x

q1−1
p }.

Now A2(x
q1
p+1) = T, and none of the vertices

x1, . . . , xq1−1, which all have superscripts smaller
than q1 and p1, can belong to S+

q = S+
p+1 nor

to S+
p . This implies that cq1q cannot be satisfied byA2,

a contradiction. It follows that the k-IS-partition
S+
1 , . . . , S

+
k is ordered according to the smallest

superscript of the elements in its sets, i.e., it has the
same set order as the k-IS-partition S1, . . . , Sk, which
was our claim, and consequently A1 = A2, i.e., we
have also a YES answer to U-SAT.

Example. Let G be a triangle: k = 3, G = (V,E)
with V = {x1, x2, x3}, E = {x1x2, x1x3, x2x3}.
The clauses are:
(0) {x11};
(i) {x11, x12, x13}, {x21, x22, x23}, and {x31, x32, x33};
(ii) {x11, x12}, {x11, x13}, {x12, x13}, {x21, x22}, {x21, x23},
{x22, x23}, {x31, x32}, {x31, x33}, and {x32, x33};
(iii) {x11, x21}, {x12, x22}, {x13, x23}, {x11, x31}, {x12, x32},
{x13, x33}, {x21, x31}, {x22, x32}, and {x23, x33}.
If we stop here, two assignments A1,A2 are pos-
sible, one corresponding to x1 ∈ S1, x2 ∈ S2,
x3 ∈ S3: A1(x

1
1) = A1(x

2
2) = A1(x

3
3) = T ,

A1(x
1
2) = A1(x

1
3) = A1(x

2
1) = A1(x

2
3) =

A1(x
3
1) = A1(x

3
2) = F, the other corresponding

to x1 ∈ S1, x2 ∈ S3, x3 ∈ S2: A2(x
1
1) =

A2(x
2
3) = A2(x

3
2) = T , A2(x

1
2) = A2(x

1
3) =

A2(x
2
1) = A2(x

2
2) = A2(x

3
1) = A2(x

3
3) = F . How-

ever, only A1 satisfies the clauses (iv), which are:
c21 = {x21, x11}, c31 = {x31, x11, x21}, c22 = {x22, x12, x11},

c32 = {x32, x12, x22, x11, x21}, c23 = {x23, x13, x12}, and
c33 = {x33, x13, x23, x12, x22}. Indeed, c23 is not satisfied
by A2.

(2) Assume now that the answer to U-COL is nega-
tive. If it is negative because there are at least two
k-IS-partitions of V , then we have at least two as-
signments satisfying the instance of U-SAT: we have
seen above how to construct a suitable assignment
from a k-IS-partition, and different partitions lead to
different assignments. If there is no k-IS-partition,
then there is no assignment satisfying U-SAT, be-
cause such an assignment would give a k-IS-partition,
as we have seen above in the proof with A2. So in
both cases, a NO answer to U-COL implies a NO ans-
wer to U-SAT.

In conclusion, the reduction saves the answer and
is polynomial: thus U-COL 6 U-SAT. 4

As U-SAT and U-1-3-SAT have equivalent com-
plexities (see the relationship (1) above), we directly
obtain the conclusion stated by the following theorem
as a consequence of the transitivity of the relation 6
and of Theorem 5, Proposition 6 and Theorem 7:

Theorem 8 The problems U-SAT, U-1-3-SAT, U-k-
COL for every integer k > 3 and U-COL have equi-
valent complexities, up to polynomials. All are co-
NP-hard (and NP-hard by Remark 1) and belong
to the class DP . 4

Note that it could have been shown directly that
U-k-COL (k > 1) and U-COL belong to DP . In-
deed, for U-k-COL, we have to exhibit two languages
L1 ∈ NP and L2 ∈ co-NP such that the set of YES
instances of U-k-COL is L1 ∩ L2. To reach this aim,
it is sufficient to define L1 as {G: there is at least one
k-IS-partition in G} and L2 as {G: there is at most
one k-IS-partition in G}. We can proceed similarly
for U-COL.

2.3 Location of U-OCOL
Proposition 9 below provides an upper bound on the
complexity of U-OCOL in the complexity classes
hierarchy.

Proposition 9 The problem U-OCOL belongs to the
class LNP .

Proof. Let us design an algorithm A2 solving U-
OCOL based on an algorithm A1 solving COL,
which belongs to NP , in such a way that the num-
ber of calls to A1 is logarithmic with respect to the
size of the instance; for this, consider any instance
I of U-OCOL: I is defined by a graph G. So, if n
denotes the order ofG, the size |I| of I is equal to n2.
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Step 1. Consider the instances of COL of the form
(G, k) whereG is the graph of I and k an integer bet-
ween 1 and n. By applying a standard dichotomous
process on k between 1 and n, we can build an algo-
rithm A2 based on A1 and outputting the chromatic
number χ(G) of G. In A2, the number of calls to A1

is about log2 n, i.e. is upper-bounded by log2 |I|.
So we may perform Step 1 with a logarithmic

number (with respect to |I|) of calls to an algorithm
solving a problem in NP .

Step 2. Once we have computed χ(G), we ques-
tion the instance (G,χ(G)) of U-COL, and we get
the answer to U-OCOL.

Since U-COL belongs to DP and because DP is
a subset of LNP , this step can also be performed with
a logarithmic number (with respect to |I|) of calls to
an algorithm solving a problem in NP .

Conclusion: all in all, by performing Step 1 and
then Step 2, we obtain an algorithm solving U-OCOL
with a logarithmic number of calls to an algorithm
solving a problem in NP , which is the definition of
the membership to U-OCOL to LNP . 4

Note that using an algorithm for U-COL without
knowing the chromatic number leads nowhere, be-
cause a NO answer cannot be interpreted unambi-
guously: either k is smaller than the chromatic num-
ber, and there is no colouring, or k is greater than or
equal to the chromatic number, but there is more than
one colouring.

3 Conclusion
Theorem 8 states that the four problems U-SAT, U-1-
3-SAT, U-k-COL with k > 3 and U-COL are equi-
valent; they lie somewhere in the area of Figure 1
located below the DP line and above the NP-hard
dashed line; according to [23] (cf. Remark 2), they
are probably not DP-complete.

For the problem U-OCOL, we have a poorer result
(Proposition 9): U-OCOL belongs to LNP .

In [3], the authors wonder whether U-SAT isNP-
hard; but what they mean seems to be: “does there
exist a polynomial reduction from an NP-complete
problem to U-SAT?” i.e., they use the second defi-
nition of NP-hardness, based on polynomial reduc-
tions (see the paragraph after Remark 1).

They show that this would be the case if and only
if U-SAT is DP-complete. Because of the results
stated in Theorem 8, the same applies to U-k-COL
for k > 3 and for U-COL.

This constitutes a part of the concluding open
problems.

Open problems.
1. Determine a better location for U-k-COL (k > 3),
U-COL and U-OCOL in the classes of complexity.

2. Are U-k-COL (k > 3) and U-COLDP-complete?
3. Is U-OCOL LNP -complete?

References:
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Figure 1: Some classes of complexity.
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Figure 2: The graph G0 of Lemma 3. Because of their particular roles, the vertices v1, v2, w4, a, b and d are
represented by black circles.
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Figure 3: A small example for Theorem 5: c1 = {x1, x2, x3}, c2 = {x1, x2, x4}. Some vertices or edges are
missing.
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