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1 Introduction 
In recent years, many researchers, in the different 
cases of the values of the memory kernel, 
specifically when 𝑔 = 0 or 𝑔 > 0, a nonlinear wave 
equation with a memory, damping, and source terms 
associated with the Laplace operator with Dirichlet 
type condition has been considered 

𝑢 − Δ𝑢 − 𝛾Δ𝑢 + 𝑔(𝑡 − 𝑠)Δ𝑢(𝑥, 𝑠)ds 

      +𝑟|𝑢 | 𝑢 (𝑥, 𝑡) 
     = |𝑢| 𝑢(𝑥, 𝑡)  in  Ω × ℝ ,                                     
     𝑢 = 0 on Γ × (0, +∞),  

𝑢(𝑥, 0) = 𝑢 (𝑥), 𝑢 (𝑥, 0) = 𝑢 (𝑥), 𝑥 ∈ Ω,        
            (1.1) 

where 𝑇 > 0, 𝑝, 𝑘 ≥ 2, 𝑟, 𝛾 are positive 
constants, Δ stands for the Laplacian with respect to 
the spatial variables, Ω is a bounded domain of ℝ  
(𝑛 ≥ 1) with a smooth boundary 𝜕Ω. The relaxation 
function 𝑔 is a positive and uniformly decaying 
function, 𝑢 , 𝑎𝑛𝑑 𝑢  are given functions belonging 
to suitable spaces. 

Under suitable conditions on 𝑔, 𝑝, 𝑘, 𝑢 , and 𝑢 , 
using some known theorems in the mathematical 
literature, the global existence in time, blow up in 
finite time, the asymptotic behavior, and a lower 
bound for the blow-up time of the unique weak 
solution have been discussed. 

From the physical point of view, this type of 
problem arises usually in viscoelasticity. It has been 
considered first by, [12], in 1970, where the general 
decay was discussed. Related problems to (1.1) have 
attracted a great deal of attention in the last two 
decades, and many results have appeared on the 
existence and long-time behavior of solutions. Look 
at this area, in, [6], [12], [17], [11], [18], [16], [19], 
and references therein. 

 
In this work given positive measurable functions 
𝑝(. ), 𝑘(. ) On Ω satisfying:  
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(1.2) 
we consider the following semilinear generalized 
hyperbolic boundary value problem governed by 
partial differential equations that describe the 
evolution of viscoelastic materials with 
nonlinearities of variable exponent type under 
Dirichlet type condition: 

𝑢 − Δ𝑢 − 𝛾Δ𝑢 + ∫ 𝑔(𝑡 − 𝑠)Δ𝑢(𝑥, 𝑠)d𝑠 

+𝑟|𝑢 | ( ) 𝑢 (𝑥, 𝑡) 
= |𝑢| ( ) 𝑢(𝑥, 𝑡) in Ω × ℝ ,                     (1.3) 

𝑢 = 0 on Γ × (0, +∞),                           (1.4) 
𝑢(𝑥, 0) = 𝑢 (𝑥), 𝑢 (𝑥, 0) = 𝑢 (𝑥), 𝑥 ∈ Ω.  (1.5) 

 
Problems with variable exponents of nonlinearity 
arise from many important mathematical models in 
engineering and physical sciences. For example, 
modeling of physical phenomena such as flows of 
electro-rheological fluids or fluids with temperature-
dependent viscosity, thermoelasticity, nonlinear 
viscoelasticity, filtration processes  through porous 
media, image processing, nuclear science, chemical 
reactions, heat transfer, population dynamics, 
biological sciences, etc., More details on these 
problems can be found in, [10], [13], [1], [2], [4], 
[8], [9], [3], [18], [5], [7], [15], and references 
therein. 
      As far as we have known, there is little 
information on the bounds for blow-up time to 
problem (1.3)-(1.5) when the initial energy is 
positive with 𝑝(. ) and 𝑘(. ) are not constants. So, it 
is natural to analyze the problem (1.3)-(1.5) and 
give further results on the behavior of solutions. 

 The contents of this paper are as follows. In 
Section 2 we give Preliminaries. In Section 3 we 
prove the exponential growth of the energy 𝐸(𝑡) of 
a solution. In Section 4, we consider an upper bound 
for the blow-up time in case 2 ≤ 𝑘 ≤ 𝑘 < 𝑝 . An 
upper bound for the blow-up time in case 𝑘(𝑥) = 2,
∀𝑥, is proved in Section 5. Section 6, is devoted to 
proving a lower bound for the blow-up time in case 
𝑘 ≥ 2. 

 
 

2 Preliminaries  
In the following section, we introduce some 
preliminaries and notations, which will be used 
throughout this paper. 

Given a function 𝑝: Ω → [𝑝 , 𝑝 ] ⊂ (2, ∞), 𝑝 , = 
const, we define the set 

𝐿 (.)(Ω)

=

𝑣: Ω → ℝ: 𝑣 measurablefunctionsonΩ,

𝜚(𝑣) = 𝜚 (.)(𝑣) = |𝑣(𝑥)| ( )d𝑥 < ∞.  

The variable-exponent space 𝐿 (.)(Ω) equipped with 
the Luxemburg norm 

‖𝑢‖ (.) = inf 𝜆 > 0,
𝑢

𝜆

( )

d𝑥 ≤ 1 , 

becomes a Banach space. In general, variable-
exponent Lebesgue spaces are similar to classical 
Lebesgue spaces in many aspects, see the first 
discussed the 𝐿 ( ) spaces and 𝑊 , ( ) spaces by 
Kovàcik and Rákosnik in [15]. 
We also assume that 𝑝(𝑥), 𝑘(. ) satisfies the 
following Zhikov–Fan uniform local continuity 
condition:  

|𝑘(𝑥) − 𝑘(𝑦)| + |𝑝(𝑥) − 𝑝(𝑦)| ≤
𝑀

log|𝑥 − 𝑦|
,   

for all 𝑥, 𝑦 in Ω with |𝑥 − 𝑦| <
1

2
, 𝑀 > 0. 

                                                                     (2.1) 
 

Let us list some properties of the spaces 𝐿 (.)(Ω) 
which will be used in the study of the problem (1.3)-
(1.5). 
     • If 𝑝(𝑥) is measurable and 

1 < 𝑝 ≤ 𝑝(𝑥) ≤ 𝑝 < ∞, in Ω, 
then 𝐿 (.)(Ω) is a reflexive and separable Banach 
space, and 𝐶 (Ω) is dense in 𝐿 (.)(Ω). 
    • If condition (2.1) is fulfilled, and Ω has a finite 
measure and 𝑝, 𝑞 are variable exponents so that 
𝑝(𝑥) ≤ 𝑞(𝑥) almost everywhere in Ω, the inclusion 

𝐿 (.)(Ω) ⊂ 𝐿 (.)(Ω) 
is continuous and 

∀𝑣 ∈ 𝐿 (.)(Ω) ‖𝑢‖ (.) ≤ 𝐶‖𝑢‖ (.), 𝐶 = 𝐶 |Ω|, 𝑝 ,  
                                                           (2.2) 

  • It follows directly from the definition of the norm 
that  

min ‖𝑢‖ (.), ‖𝑢‖ (.) ≤ 𝜚 (.)(𝑢)

≤ max ‖𝑢‖ (.), ‖𝑢‖ (.) , 

                                                                      
(2.3) 

and  

min 𝜚 (.)(𝑢) , 𝜚 (.)(𝑢) ≤ ‖𝑢‖ (.) ≤

max 𝜚 (.)(𝑢) , 𝜚 (.)(𝑢) .                           (2.4) 
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         • If 𝑝: Ω → [𝑝 , 𝑝 ] ⊂ [1, +∞) is a 
measurable function and 𝑝∗ > 𝑒𝑠𝑠sup

{ ∈ }
𝑝(𝑥) with 

𝑝∗ ≤ , then the embedding 𝐻 (Ω) ↪ 𝐿 (.)(Ω) is 

continuous and compact.  
 
2.1 Mathematical Hypotheses 
We begin this section by introducing some 
hypotheses and our main result. Throughout this 
paper, we use standard functional spaces, and 
denote that (. , . ),‖. ‖ the inner products, and norms 
in 𝐿 (Ω) and 𝐻 (Ω) represented and they are given 
by:  

(𝑢, 𝑣) = 𝑢(𝑥)𝑣(𝑥)d𝑥  and  ‖𝑢‖ ( ) = ‖𝑢‖

= 𝑢 d𝑥; 

  

‖𝑢‖ ( ) = ‖𝑢‖ = |∇𝑢| d𝑥. 

 Next, we state the assumptions for the problem 
(1.3)-(1.5). 
    Let 𝑘(. ) and 𝑝(. ) are given measurable functions 
on Ω satisfying the following conditions  
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                (2.5)    

𝑔: ℝ → ℝ  is a nonincreasing differentiable 
function satisfying   
1 − ∫ 𝑔(𝑠)d𝑠 = 𝑙 > 0, ∀𝑡 ∈ ℝ   .                (2.6) 
By Corollary 3.3.4 in [13], we know 𝐿 (Ω) ↪
𝐿 (.)(Ω). So, it is a consequence of the embedding 
𝐻 (Ω) ↪ 𝐿 (Ω) and Poincaré  
inequality  that ‖𝑢‖ (.) ≤ 𝐵‖∇𝑢‖ ,                   (2.7) 
where 𝐵 is the best constant of the embedding 
𝐻 (Ω) ↪ 𝐿 (.)(Ω) determined by 

𝐵 = inf |∇𝑢|: 𝑢 ∈ 𝐻 (Ω), ‖𝑢‖ (.) = 1 . 
The following constants play a crucial role in the 
proof of our results. Let 𝐵 , 𝛼 , 𝛼 , 𝐸  be constants 
satisfying 

𝐵 = max(1, 𝐵) , 𝛼 =
𝑙

𝐵
, 

𝛼 = ‖∇𝑢 ‖ , 𝐸 = 𝑙
1

2
−

1

𝑝
𝛼 . 

                                                                            (2.8) 
 
 

3 Exponential Growth 
In this section, will prove that the energy grows 
exponentially, and thus so the 𝐿   and 𝐿  norms to 
the problem (1.3)-(1.5) if the variable exponents 
𝑝(. ), and 𝑘(. ) satisfy some conditions and the initial 
data are large enough (in the energy viewpoint). 
Firstly, we start with a local existence result for the 
problem (1.3)-(1.5), which can be obtained by the 
combination of the Faedo-Galerkin argument and 
the compactness method together with the Banach 
fixed point theorem. Hereafter, for simplicity, we 
take 𝑎 = 1, and we have 
Lemma 3.1 Let 2 ≤ 𝑝 ≤ 𝑝(𝑥) ≤ 𝑝 ≤ 𝑞 and 

𝑚𝑎𝑥 2, ≤ 𝑘 ≤ 𝑘(𝑥) ≤ 𝑘 ≤ 𝑞. Then 

given (𝑢 , 𝑢 ) ∈ 𝐻 (𝛺) × 𝐿 (𝛺) there exists 𝑇 > 0 
and a unique solution 𝑢 of the problem (1.3)-(1.5) 
on (0, 𝑇) such that 

𝑢 ∈ 𝐶 0, 𝑇; 𝐻 (Ω) ∩ 𝐶 0, 𝑇; 𝐿 (Ω) , 

𝑢 ∈ 𝐿 0, 𝑇; 𝐻 (Ω) ∩ 𝐿 (.) (0, 𝑇) × Ω . 

The first main result of this paper reads as follows  
Theorem 3.2 Let 𝑘 < 𝑝 ≤ 𝑝(𝑥) ≤ 𝑝  where 2 ≤
𝑝 ≤ 𝑝(𝑥) ≤ 𝑝 ≤ 𝑞. Assume the initial value 𝑢  is 
chosen to ensure that 𝐸(0) < 𝐸  and 𝐵 ≥
‖∇𝑢 ‖ > 𝛼  hold. Then under the above 
conditions, the solution of problem (1.3)-(1.5) will 
grow exponentially in the 𝐿  and 𝐿  norms.  
 For this purpose, we start with the following lemma 
defining the energy of the solution 
Lemma 3.3 The corresponding energy to the 
problem (1.3)-(1.5) is given by 

𝐸(𝑡) =
1

2
(𝑔 ∘ ∇𝑢) +

1

2
‖𝑢 ‖

+
1

2
1 − 𝑔(𝑠)d𝑠 ‖∇𝑢‖

−
1

𝑝(𝑥)
|𝑢| ( )d𝑥, 

 (3.1) 
furthermore, by easily verified formula 
  

( )
= (𝑔 ∘ ∇𝑢) − 𝑔(𝑡)‖∇𝑢‖ −

𝛾 ∫ |∇𝑢 | d𝑥 − 𝑟 ∫ |𝑢 | ( )d𝑥 ≤ 0,        (3.2) 

the inequality 𝐸(𝑡) ≤ 𝐸(0) is obtained, where  

𝐸(0) =
1

2
‖𝑢 ‖ +

1

2
‖∇𝑢 ‖

−
1

𝑝(𝑥)
|𝑢 | ( )d𝑥, 

                                                                   (3.3) 
and   

(𝑔 ∘ ∇𝑢)(𝑡) 
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= 𝑔(𝑡 − 𝑠) ∥ ∇𝑢(𝑡) − ∇𝑢(𝑠) ∥ d𝑠 ≥ 0. 

We conclude from (2.3) and (3.1) that  

𝐸(𝑡) ≥
1

2
(𝑔 ∘ ∇𝑢) +

1

2
1 − 𝑔(𝑠)d𝑠 ‖∇𝑢‖

−
1

𝑝
max ‖𝑢‖ (.), ‖𝑢‖ (.)  

≥
1

2
1 − 𝑔(𝑠)d𝑠 ‖∇𝑢‖

−
1

𝑝
max((𝐵 ‖∇𝑢‖ ) , (𝐵 ‖∇𝑢‖ ) ) 

≥
1

2
𝑙𝛼 −

1

𝑝
max((𝐵 𝛼) , (𝐵 𝛼) ): = ℎ(𝛼)∀𝛼

∈ [0, +∞), 
                                                                            (3.4) 
where 𝛼 = ‖∇𝑢‖ . 
Lemma 3.4 Let 𝑓: [0, +∞) → ℝ be defined by  

𝑓(𝛼) = 𝑙𝛼 − (𝐵 𝛼) .                               (3.5) 

Then the following claims hold under the 
hypotheses of Theorem 3.2:    𝑓 is increasing for 
0 < 𝛼 ≤ 𝛼  and decreasing for 𝛼 ≥ 𝛼 , 
    lim

→
𝑓(𝛼) = −∞ and 𝑓(𝛼 ) = 𝐸 .  

Proof. By the assumption that 𝐵 > 1 and 𝑝 > 2, 
one can see that 𝑓(𝛼) = ℎ(𝛼), for 0 < 𝛼 ≤ 𝐵 . 
Furthermore, 𝑓(𝛼) is differentiable and continuous 
in [0, +∞). 

𝑓 (𝛼) = 𝛼𝑙 − 𝐵 𝛼 , 0 ≤ 𝛼 < 𝐵 . 
Then (i) follows. Since 𝑝 − 2 > 0, we have 

lim
→

𝑓(𝛼) = −∞. A usual computation yields 

𝑓(𝛼 ) = 𝐸 . Then (ii) holds valid.  
Lemma 3.5 Under the assumptions of Theorem 3.2, 
there exists a positive constant 𝛼 > 𝛼  such that 
‖∇𝑢‖ ≥ 𝛼 , 𝑡 ≥ 0,                                           (3.6) 
∫ |𝑢(𝑥, 𝑡)| ( )d𝑥 ≥ (𝐵 𝛼 ) .                        (3.7) 
Proof. Since 𝐸(0) < 𝐸 , it follows from Lemma 3.4 
that there exists a positive constant 𝛼 > 𝛼 , such 
that 𝐸(0) = 𝑓(𝛼 ). By (3.4), we have 𝑓(𝛼 ) =
ℎ(𝛼 ) ≤ 𝐸(0) = 𝑓(𝛼 ), it follows from Lemma 
3.4(i) that 𝛼 ≥ 𝛼 , so (3.6) holds for 𝑡 = 0. Now 
we prove (3.6) by contradiction. Suppose that 
‖∇𝑢(𝑡∗)‖   < 𝛼  for some 𝑡∗ > 0. By the 
continuity of ‖∇𝑢(. , 𝑡)‖  and 𝛼 > 𝛼 , we may take 
𝑡∗ such that 𝛼 > ‖∇𝑢(𝑡∗)‖ > 𝛼 , then it results 
from (3.4) that 

𝐸(0) = 𝑓(𝛼 ) < 𝑓(‖∇𝑢(𝑡∗)‖ ) ≤ 𝐸(𝑡∗), 
which contradicts Lemma 3.3, and (3.6) holds. 
By (3.1) and (3.2), we obtain 

  
1

𝑝
|𝑢(𝑥, 𝑡)| ( )d𝑥 ≥

1

𝑝(𝑥)
|𝑢(𝑥, 𝑡)| ( )d𝑥

≥
1

2
𝑙‖∇𝑢‖ − 𝐸(0) 

≥
1

2
𝑙𝛼 − 𝐸(0) =

1

2
𝑙𝛼 − 𝑓(𝛼 ) =

1

𝑝
(𝐵 𝛼 ) , 

                                                                     (3.8) 
and (3.7) follows.  

 Let 𝐻(𝑡) = 𝐸 − 𝐸(𝑡) for 𝑡 ≥ 0, we have 
the following lemma. 
Lemma 3.6 Under the assumptions of Theorem 3.2, 
the functional 𝐻(𝑡) illustrated above provides the 
following estimates: 

0 < 𝐻(0) ≤ 𝐻(𝑡) ≤
1

𝑝(𝑥)
|𝑢(𝑥, 𝑡)| ( )d𝑥

≤
1

𝑝
𝜚(𝑢), 𝑡 ≥ 0. 

                                                                    (3.9) 
Proof. By Lemma 3.3, 𝐻(𝑡) is nondecreasing in 𝑡. 

Thus  
𝐻(𝑡) ≥ 𝐻(0) = 𝐸 − 𝐸(0) > 0, 𝑡 ≥ 0. 
                                                                   (3.10) 

Combining (3.1), (2.8), (3.6) and 𝛼 > 𝛼 , we have  

𝐻(𝑡) −
1

𝑝(𝑥)
|𝑢(𝑥, 𝑡)| ( )d𝑥 

≤ 𝐸 − 𝑙‖∇𝑢‖   

≤ 𝑙 − 𝛼 − 𝑙𝛼 < 0, 𝑡 ≥ 0.                  (3.11) 

and (3.9) follows from (3.10) and (3.11).  
 Based on the above three lemmas, we can give 
proof of Theorem 3.2. 
Proof of Theorem 3.2. For 𝜀 > 0 small to be chosen 

later, we then define the auxiliary function  

𝐿(𝑡) = 𝐻(𝑡) + 𝜀 𝑢 𝑢d𝑥 +
1

2
𝜀𝛾 |∇𝑢| d𝑥. 

                                                                   (3.12) 
Let us observe that 𝐿 is a small perturbation of the 
energy. By taking the time derivative of (3.12), 
we obtain:  

d𝐿(𝑡)

d𝑡
= 𝛾‖∇𝑢 ‖ + 𝜀‖𝑢 ‖  

−
1

2
(𝑔 ∘ ∇𝑢)(𝑡) +

1

2
𝑔(𝑡)‖∇𝑢‖  

+𝜀 ∫ 𝑢 𝑢d𝑥 +𝜀𝛾 ∫ ∇𝑢∇𝑢 d𝑥.                     (3.13) 
Using problem (1.3)-(1.5), the equation (3.13) 
becomes:  
d𝐿(𝑡)

d𝑡
= 𝛾 |∇𝑢 | d𝑥 + 𝑟 |𝑢 | ( )d𝑥 + 𝜀‖𝑢 ‖  

  

−𝜀‖∇𝑢‖ − 𝜀𝑟 |𝑢 | ( )𝑢 𝑢d𝑥 

             +𝜀 ∫ |𝑢(𝑡)| ( )d𝑥                               (3.14) 
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+𝜀 ∇𝑢(𝑡) 𝑔(𝑡 − 𝑠)∇𝑢(𝑠)d𝑠d𝑥. 

To estimate the last term on the right-hand side of 
the previous equality, let 𝛿 > 0 be determined later. 
Young’s inequality drives to:  

|𝑢 | ( )𝑢 𝑢d𝑥

≤
1

𝑘
𝛿 ( )|𝑢| ( )d𝑥

+
𝑘 − 1

𝑘
𝛿

( )

( ) |𝑢 | ( )d𝑥. 

This yields by substitution in (3.14): 
( )

≥ 𝛾 ∫ |∇𝑢 | d𝑥 + 𝑟 ∫ |𝑢 | ( )d𝑥 +

𝜀‖𝑢 ‖ + 𝜀 ∫ |𝑢(𝑡)| ( )d𝑥  

−𝜀 |∇𝑢| d𝑥 − 𝜀𝑟
1

𝑘
𝛿 ( )|𝑢| ( )d𝑥

− 𝜀𝑟
𝑘 − 1

𝑘
𝛿

( )

( ) |𝑢 | ( )d𝑥 

+𝜀‖∇𝑢‖ 𝑔(𝑠)d𝑠 

+𝜀 𝑔(𝑡 − 𝑠) ∇𝑢(𝑡) ∇𝑢(𝑠) − ∇𝑢(𝑡) d𝑥d𝑠 

(3.15) 
and for some positive number 𝜂 to be determined 
later,  

     

        
 

    

Ω 0

0 Ω

2

2 0

2

2 0

 

  . d d

ds

1
1  

4

t

t

t

t

u t g t s u s dsdx

g t s u t u t u s x s

u g s

u g s ds g u t


  

     

 

 
     
 

 
 



 

 

 We want now to estimate the term involving 
∫ |𝑢| ( )d𝑥 in (3.15), we have 

  
‖𝑢‖ = ‖𝑢‖ ‖𝑢‖ ≤ 𝐶‖𝑢‖ (.) ‖∇𝑢‖ , 

 
and ‖𝑢‖ = ‖𝑢‖ ‖𝑢‖ ≤ 𝐶‖𝑢‖ (.) ‖∇𝑢‖ , 

which operates for:  
2𝑛

𝑛 − 2
≥ 𝑘 ≥ 𝑘 > 2 𝑎𝑛𝑑 0 <

𝑛

2
−

𝑛

𝑘
≤

𝑛

2
−

𝑛

𝑘
≤ 𝑠 < 1, 

 Thus, we have the following inequality:  

∫ |𝑢| ( )d𝑥 ≤ ‖𝑢‖ + ‖𝑢‖   

≤ 𝐶max 𝜚 (.)(𝑢)
( )

, 𝜚 (.)(𝑢)
( )

‖∇𝑢‖   

+𝐶max 𝜚 (.)(𝑢)
( )

, 𝜚 (.)(𝑢)
( )

‖∇𝑢‖  

 If 𝑠 < 𝑚𝑖𝑛 , , using again Young’s 

inequality, we get: 

max 𝜚 (.)(𝑢)
( )

, 𝜚 (.)(𝑢)
( )

‖∇𝑢‖  

≤ 𝐶max 𝜚 (.)(𝑢)
( )

, 𝜚 (.)(𝑢)
( )

+ 𝐶(‖∇𝑢‖ ) , 
 (3.16) 
and 

max 𝜚 (.)(𝑢)
( )

, 𝜚 (.)(𝑢)
( )

‖∇𝑢‖  

  

≤ 𝐶max 𝜚 (.)(𝑢)
( )

, 𝜚 (.)(𝑢)
( )

+ 𝐶(‖∇𝑢‖ ) , 
 (3.17) 
for 1/𝜇 + 1/𝜃 = 1. Here we choose (𝜃, 𝜇) =

, , and (𝜃, 𝜇) = ,  in (3.16) and 

(3.17), respectively. Therefore the previous 
inequality becomes  

|𝑢| ( )d𝑥 ≤ 𝐶max 𝜚(𝑢)
( )

( ), 𝜚(𝑢)
( )

( )  

+𝐶max 𝜚(𝑢)
( )

( ), 𝜚(𝑢)
( )

( ) + 𝐶‖∇𝑢‖ .  

(3.18) 
 Now, picking 𝑠 such that:  

0 < 𝑠 ≤ min

⎝

⎜
⎛

2(𝑝 − 𝑘 )

𝑘 (𝑝 − 2)
,
2(𝑝 − 𝑘 )

𝑘 (𝑝 − 2)

,
2(𝑝 − 𝑘 )

𝑘 (𝑝 − 2)
,
2(𝑝 − 𝑘 )

𝑘 (𝑝 − 2)⎠

⎟
⎞

< 1 

we get  

0 < 𝑚𝑎𝑥

( )

( )
,

( )

( )
,

( )

( )
,

( )

( )

≤ 1.             (3.19) 

When the inequality (3.19) is satisfied, we apply the 
classical algebraic inequality:  

𝑧 ≤ (𝑧 + 1) ≤ 1 +
1

𝜔
(𝑧 + 𝜔), ∀𝑧 ≥ 0, 

0 < 𝑑 ≤ 1, 𝜔 ≥ 0, 
to get the following estimate:  

max 𝜚(𝑢)
( )

( ), 𝜚(𝑢)
( )

( )  

+max 𝜚(𝑢)
( )

( ), 𝜚(𝑢)
( )

( )   

≤ 𝐶(1 + 𝐻(0) ) 𝜚(𝑢) + 𝐻(0)   
≤ 𝐶 𝜚(𝑢) + 𝐻(𝑡)     ∀𝑡 ≥ 0. 

                                                                   (3.20) 
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Injecting the estimate (3.20) into (3.18) we obtain 
the following inequality  

|𝑢| ( )d𝑥 ≤ 𝐶(𝜚(𝑢) + 2𝐻(𝑡) + 𝑙‖∇𝑢‖ ), 

                                                                          (3.21) 
which yields finally:  

∫ |𝑢| ( )d𝑥 ≤ 𝐶
𝜚(𝑢) + 2𝐸 − ‖𝑢 ‖

+ ∫
( )

|𝑢| ( )d𝑥
  

≤ 𝐶 2𝐸 − ‖𝑢 ‖ + 1 +
2

𝑝
|𝑢| ( )d𝑥 . 

                                                                          (3.22) 
Therefore by injecting the inequality (3.22) into the 
inequality (3.15), we obtain: 

( )
≥ 𝛾‖∇𝑢 ‖ + 𝜀 1 +

max 𝛿 , 𝛿 ‖𝑢 ‖ − 2𝐶 max 𝛿 , 𝛿 𝐸   

−𝜀‖∇𝑢‖ + 𝜀 1

−
𝑟𝐶

𝑘
max 𝛿 , 𝛿 1

+
2

𝑝
|𝑢(𝑡)| ( )d𝑥 

  

+𝑟 1

−
𝜀(𝑘 − 1)

𝑘
max 𝛿 , 𝛿 |𝑢 | ( )dx 

  

+𝜀 1 −
1

4𝜂
‖∇𝑢‖ 𝑔(𝑠)d𝑠 − 𝜀𝜂(𝑔 ∘ ∇𝑢), 

                                                              (3.23) 
for some positive number 𝜂 to be determined later. 
From the inequality 

2𝐻(𝑡) = − ‖𝑢 ‖ − 2𝐸 + (𝑔 ∘ ∇𝑢)

+ 1 − 𝑔(𝑠)d𝑠 ‖∇𝑢‖

−
2

𝑝(𝑥)
|𝑢| ( )d𝑥 , 

we have  

−𝑙‖∇𝑢‖ ≥ − 1 − 𝑔(𝑠)d𝑠 ‖∇𝑢‖

= 2𝐻(𝑡) + ‖𝑢 ‖ + (𝑔 ∘ ∇𝑢)

− 2𝐸 −
2

𝑝(𝑥)
|𝑢| ( )d𝑥 

≥ 2𝐻(𝑡) − 2𝐸 + ‖𝑢 ‖ + (𝑔 ∘ ∇𝑢)

−
2

𝑝
|𝑢| ( )d𝑥 

                                                                          (3.24) 
Thus injecting it in (3.23), we get the following 
inequality: 
d𝐿(𝑡)

d𝑡
≥ 𝛾‖∇𝑢 ‖ + 𝜀 +

𝑟𝐶

𝑘
max 𝛿 , 𝛿 ‖𝑢 ‖  

  

+𝜀 1 −
2

𝑝
−

𝑟𝐶

𝑘
max 𝛿 , 𝛿 1

+
2

𝑝
|𝑢| ( )d𝑥 

+𝜀 2𝐻(𝑡) − 2 1 + max 𝛿 , 𝛿 𝐶 𝐸   

+𝑟 1 −

( )
max 𝛿 , 𝛿 ∫ |𝑢 | ( )d𝑥  

+𝜀 1 −
1

4𝜂
‖∇𝑢‖ 𝑔(𝑠)d𝑠 

+(1 − 𝜀𝜂)(𝑔 ∘ ∇𝑢)                                           (3.25) 
Using the definition of 𝛼  and 𝐸  (see equation (2.8) 
and the lemma 3.5), we have 

−2𝐸 − 4 max 𝛿 , 𝛿 𝐶𝐸   

               −2𝐸 (𝐵 𝛼 ) (𝐵 𝛼 )   

      −4
𝑟

𝑘
max 𝛿 , 𝛿 𝐶𝐸 (𝐵 𝛼 ) (𝐵 𝛼 )  

  

≥ −2𝐸 (𝐵 𝛼 )

− 4𝐶
𝑟

𝑘
max 𝛿 , 𝛿 𝐸 (𝐵 𝛼 ) |𝑢| ( )d𝑥 

Finally, we obtain 
 
d𝐿(𝑡)

d𝑡
≥ 𝛾‖∇𝑢 ‖

+ 𝜀 2 +
𝑟𝐶

𝑘
max 𝛿 , 𝛿 ‖𝑢 ‖  

+𝜀

⎝

⎜
⎜
⎛

1 −
2

𝑝
− 2𝐸 (𝐵 𝛼 )

−
𝑟𝐶

𝑘
max 𝛿 , 𝛿

1 +
2

𝑝

+4𝐸 (𝐵 𝛼 ) ⎠

⎟
⎟
⎞

 

 ∫ |𝑢| ( )d𝑥  

+2𝜀 𝐻(𝑡) + max 𝛿 , 𝛿 𝐶𝐸   

+𝜀 1 −
1

4𝜂
‖∇𝑢‖ 𝑔(𝑠)d𝑠 
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+(1 − 𝜀𝜂)(𝑔 ∘ ∇𝑢)  

+𝑟 1

−
𝜀(𝑘 − 1)

𝑘
max 𝛿 , 𝛿 |𝑢 | ( )d𝑥, 

(3.26) 
we have   

1 −
2

𝑝
− 2𝐸 (𝐵 𝛼 ) > 0 

 since 𝛼 > 𝐵 . 
We choose now 𝛿 small enough such that  

⎝

⎜
⎜
⎛

1 −
2

𝑝
− 2𝐸 (𝐵 𝛼 )

−
𝑟𝐶

𝑘
max 𝛿 , 𝛿

1 +
2

𝑝

+4𝐸 (𝐵 𝛼 ) ⎠

⎟
⎟
⎞

> 0 

and taking 𝜂 > . Once 𝛿 and 𝜂 are fixed, we choose 

𝜀 small enough such that:  

1 − 𝜀𝜂 > 0, 1 −
𝜀(𝑘 − 1)

𝑘
max 𝛿 , 𝛿

> 0𝑎𝑛𝑑𝐿(0) > 0 
Therefore, the inequality (3.26) becomes 

d𝐿(𝑡)

d𝑡
≥ 𝜀𝜅 𝐻(𝑡) + ‖𝑢 ‖ + |𝑢| ( )d𝑥 + 𝐸  

                                                                          (3.27) 
for some 𝜅 > 0. 
Next, it is clear that, by Young’s inequality and 
Poincaré’s inequality, we get 

𝐿(𝑡) ≤ 𝜆
𝐻(𝑡) + ‖𝑢 ‖

+‖∇𝑢‖
  

for some 𝜆 > 0.                                   (3.28) 
From (3.11), we have  

‖∇𝑢‖ ≤
2

𝑙
𝐸 +

2

𝑙𝑝
|𝑢(𝑥, 𝑡)| ( )d𝑥, 𝑡 ≥ 0. 

Thus, the inequality (3.28) becomes:    

𝐿(𝑡) ≤ 𝜁 𝐻(𝑡) + ‖𝑢 ‖ + |𝑢| ( )d𝑥

+ 𝐸  for some 𝜁 > 0. 

                                                                          (3.29) 
From the two inequalities (3.27) and (3.29), we 
finally obtain the differential inequality:  

d𝐿(𝑡)

d𝑡
≥ 𝜇𝐿(𝑡) for some 𝜇 > 0. 

                                                                   (3.30) 
Integrating the previous differential inequality 
(3.30) on (0, 𝑡) gives the following estimate for the 
function 𝐿: 
𝐿(𝑡) ≥ 𝐿(0)𝑒 .                                               (3.31) 

On the other hand, from the definition of the 
function 𝐿 (and for small values of the parameter 𝜀), 
it results:  

𝐿(0)𝑒 ≤ 𝐿(𝑡) ≤
1

𝑝
|𝑢| ( )d𝑥

≤
1

𝑝
max |𝑢| d𝑥, |𝑢| d𝑥  

 (3.32) 
From the two inequalities (3.31) and (3.32) we 
deduce the exponential growth of the solution in the 
𝐿  and 𝐿 -norms.  
Now, we state the blow-up results as follows. 
 
 

4 An Upper Bound for the Blow-
Up Time: The Case 𝟐 ≤ 𝒌𝟏 ≤ 𝒌𝟐 < 𝒑𝟏   
In this section, we prove the blow-up result under 
the condition of 2 ≤ 𝑘 ≤ 𝑘 < 𝑝  with positive 
initial energy and use 𝐶 to denote a generic positive 
constant. 
Theorem 4.1 For any fixed 𝛿 < 1, assume that 𝑢 , 
𝑢  satisfy   

𝐼(0) < 0, 𝐸(0) < 𝛿𝐸 . 
 (4.1) 
and (2.6) holds. Suppose that  

𝑔(𝑠)d𝑠

≤
𝑝 − 2

𝑝 − 2 + (1 − 𝛿) (𝑝 − 2) + 2(1 − 𝛿)
 

 (4.2) 
where 𝛿 = max{0, 𝛿}. Under the condition of 
Lemma 3.1, if  

2 ≤ 𝑘 ≤ 𝑘(𝑥) ≤ 𝑘 < 𝑝 ≤ 𝑝(𝑥) ≤ 𝑝 ≤
2𝑛

𝑛 − 2
, 

the solution of problem (1.3)-(1.5) blows up in a 
finite time 𝑇 , in the sense that 
 lim

→
(‖𝑢 (𝑡)‖ +∥ ∇𝑢(𝑡) ∥ ) = +∞.         (4.3) 

Furthermore, the upper bound for 𝑇  can be 
estimated from above by  

𝑇 ≤
(1 − 𝑎)𝐶

𝜒𝜀𝑎(𝐿(0))
, 

                                                                 (4.4) 
where the positive constants 𝑎, 𝐶, 𝜒, and 𝜀 to be 
determined later.  
Before the proof, we want to introduce some 
materials and lemmas firstly we provide the 
following functions: 
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𝐸(𝑡) =
1

2
(𝑔 ∘ ∇𝑢) +

1

2
‖𝑢 ‖

+
1

2
1 − 𝑔(𝑠)d𝑠 ‖∇𝑢‖

−
1

𝑝(𝑥)
|𝑢| ( )d𝑥, 

 
(4.5) 

𝐼(𝑢(𝑡) = 1 − 𝑔(𝑠)d𝑠

∥ ∇𝑢(𝑡) ∥ + (𝑔 ∘ ∇𝑢)(𝑡)

− |𝑢| ( )d𝑥, 

                                             (4.6) 

𝐽 𝑢(𝑡) =
1

2
1 − 𝑔(𝑠)d𝑠

∥ ∇𝑢(𝑡) ∥ + (𝑔 ∘ ∇𝑢)(𝑡)

−
1

𝑝(𝑥)
|𝑢| ( )d𝑥, 

         
(4.7) 

𝐸(𝑡) = 𝐸(𝑢(𝑡), 𝑢 (𝑡)) = 𝐽(𝑡) +
1

2
‖𝑢 (𝑡)‖  

                                                            (4.8) 
 Secondly, we need the following two lemmas. 
Lemma 4.2 Under the same conditions as 
in Theorem 4.1, one has 

𝐼(𝑡) < 0 
and 

𝐸 <
𝑝 − 2

2𝑝

1 − 𝑔(𝑠)d𝑠 ∥ ∇𝑢 ∥

+(𝑔 ∘ ∇𝑢)

<
𝑝 − 2

2𝑝
|𝑢| ( )d𝑥 

for all 𝑡 ∈ 0, 𝑇).                                           (4.9) 
Proof. By (3.2) and (4.1), we have 𝐸(𝑡) ≤ 𝛿𝐸 , for 
all 𝑡 ∈ 0, 𝑇). Besides, we can get 𝐼(𝑡) < 0 for all 
𝑡 ∈ 0, 𝑇). If it is not true, then there exists some 𝑡∗ ∈
0, 𝑇) such that 𝐼(𝑡∗) = 0. So 𝐼(𝑡) < 0 for all 0 ≤
𝑡 < 𝑡∗, i.e. 

1 − 𝑔(𝑠)d𝑠 ∥ ∇𝑢(𝑡) ∥ + (𝑔 ∘ ∇𝑢)(𝑡)

< |𝑢| ( )d𝑥 < ‖𝑢‖ (.),

0 ≤ 𝑡 < 𝑡∗ 
 

(4.10) 
By the proof of Lemma 3.4, we have 

𝐸 =
𝑝 − 2

2𝑝
𝑙

1

𝐵

≤
𝑝 − 2

2𝑝

𝑙 ∥ ∇𝑢 ∥

‖𝑢‖ (.)

 

<
𝑝 − 2

2𝑝

⎝

⎜
⎜
⎜
⎛

1 − ∫ 𝑔(𝑠)d𝑠 ∥ ∇𝑢 ∥

+(𝑔 ∘ ∇𝑢)(𝑡)

1 − ∫ 𝑔(𝑠)d𝑠 ∥ ∇𝑢(𝑡) ∥

+(𝑔 ∘ ∇𝑢)(𝑡) ⎠

⎟
⎟
⎟
⎞

 

=
𝑝 − 2

2𝑝

1 − 𝑔(𝑠)d𝑠 ∥ ∇𝑢(𝑡) ∥

+(𝑔 ∘ ∇𝑢)(𝑡)

,   

0 ≤ 𝑡 < 𝑡∗  
 

(4.11)                                        
Joined with (4.10) and (4.11), we obtain  

|𝑢| ( )d𝑥 >
2𝑝

𝑝 − 2
𝐸 > 0, 0 ≤ 𝑡 < 𝑡∗ 

By the continuity of 𝑡 ↦ ∫ |𝑢(𝑡)| ( )d𝑥, we get 
𝑢(𝑡∗) ≠ 0. By (4.7), we get 

𝐸 ≤
𝑝 − 2

2𝑝
|𝑢(𝑡∗)| ( )d𝑥 ≤ 𝐽 𝑢(𝑡∗)  

which contradicts 𝐽 𝑢(𝑡∗) ≤ 𝐸(𝑡∗) < 𝐸 . By 
repeating the previous step, we obtain (4.9). This 
completes the proof.  
 We set   
𝐻(𝑡) = 𝛿𝐸 − 𝐸(𝑡), 
                                                                         (4.12) 
then under the condition of theorem 4.1, we obtain  

   

     

2

Ω

2

2 Ω Ω

1
d

2
1

d d 0
2

t

k x k x

t t

H t u x g u

g t u r u x r u x

   

 







 



 



                                                                                  (4.13) 
and   

0 < 𝐻(0) ≤ 𝐻(𝑡) < 𝛿𝐸 +
1

𝑝(𝑥)
|𝑢| ( )d𝑥

< 𝛿
𝑝 − 2

2𝑝
+

1

𝑝
|𝑢| ( )d𝑥. 

 (4.14) 
It’s easy to examine the following lemma 
Lemma 4.3 Under the assumptions of Theorem 4.1, 
we have 

‖𝑢(𝑡)‖ ≤ 𝐶 −𝐻(𝑡) − ‖𝑢 ‖ − (𝑔 ∘ ∇𝑢)(𝑡)

+ |𝑢| ( )d𝑥  

 (4.15) 
for any 𝑢 ∈ 𝐻 (Ω) and 2 ≤ 𝑠 ≤ 𝑝   
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Proof of Theorem 4.1. Assume by contradiction that 
(4.3) does not hold true. Then for all 𝑇∗ < +∞ and 
all 𝑡 ∈ 0, 𝑇∗], we have 

‖𝑢 (𝑡)‖ +∥ ∇𝑢(𝑡) ∥ ≤ 𝐶 ,                 (4.16) 
with 𝐶  is a positive constant. Motivated by [19], we 
set the function  

𝐿(𝑡) = 𝐻 (𝑡) + 𝜀 𝑢 𝑢d𝑥 + 𝜀
𝛾

2
|∇𝑢| d𝑥, 𝑡

≥ 0, 
 

                                                             (4.17) 
where 𝜀 > 0 is a positive constant to be chosen 
later, and   

0 < 𝑎 ≤ min ,
( )

< 1,                (4.18) 

derivative the Eq (4.17) and using Eq. (1.3)-(1.5) we 
obtain  

𝐿 (𝑡) = (1 − 𝑎)𝐻 (𝑡)𝐻 (𝑡) + 𝜀‖𝑢 (𝑡)‖

+𝜀 |𝑢| ( ) d𝑥 − 𝜀𝛾‖∇𝑢(𝑡)‖

−𝜀𝑟 |𝑢 | ( ) 𝑢 𝑢d𝑥

+𝜀 ∇ 𝑢(𝑡). 𝑔 (𝑡 − 𝑠)∇𝑢(𝑠)d𝑠d𝑥.

 

 
                                                                          (4.19) 
Applying the relation 
𝑝 𝐻(𝑡) = 𝑝 𝛿𝐸 − ‖𝑢 (𝑡)‖

− 1 − ∫ 𝑔(𝑠)d𝑠 ∥ ∇𝑢(𝑡) ∥

− (𝑔 ∘ ∇𝑢)(𝑡) + 𝑝 ∫
( )

|𝑢| ( )d𝑥

  

and Young’s inequality, we get from (4.19)               
that   

𝐿 (𝑡) = (1 − 𝑎)𝐻 (𝑡)𝐻 (𝑡)

+𝜀 1 +
𝑝

2
‖𝑢 (𝑡)‖ − 𝜀𝑝 𝛿𝐸 + 𝜀𝑝 𝐻(𝑡)

+𝜀
𝑝

2
1 − 𝑔 (𝑠)d𝑠 − 1 ‖∇𝑢(𝑡)‖

−𝜀𝑟 |𝑢 | ( ) 𝑢 𝑢d𝑥 + 𝜀
𝑝

2
(𝑔 ∘ ∇𝑢)(𝑡)

+𝜀 |𝑢| ( ) d𝑥 − 𝑝
1

𝑝(𝑥)
|𝑢| ( )d𝑥

+𝜀 𝑔 (𝑡 − 𝑠)‖∇𝑢(𝑡)‖ d𝑠

+𝜀 𝑔 (𝑡 − 𝑠) ∇ 𝑢(𝑡). ∇𝑢(𝑠) − ∇𝑢(𝑡) d𝑥d𝑠

 

≥ 𝑟(1 − 𝑎)𝐻 (𝑡) |𝑢 | ( )d𝑥

+𝜀 1 +
𝑝

2
‖𝑢 (𝑡)‖ − 𝜀𝑝 𝛿𝐸 + 𝜀𝑝 𝐻(𝑡)

+𝜀

⎣
⎢
⎢
⎡

𝑝

2
− 1

−
𝑝

2
− 1 +

1

4𝜂
𝑔(𝑠)d𝑠

⎦
⎥
⎥
⎤

∥ ∇𝑢(𝑡) ∥

+𝜀
𝑝

2
− 𝜂 (𝑔 ∘ ∇𝑢)(𝑡) − 𝜀𝑟 |𝑢 | ( ) 𝑢 𝑢d𝑥

 

                                                             (4.20)                                                                           
By (4.9), estimate (4.20) becomes 

𝐿 (𝑡) ≥ 𝑟(1 − 𝑎)𝐻 (𝑡) |𝑢 | ( )d𝑥

+𝜀 1 +
𝑝

2
‖𝑢 (𝑡)‖ + 𝜀𝑝 𝐻(𝑡)

+𝜀 (1 − 𝛿)
𝑝

2
− 1

−

1 − 𝛿
𝑝

2
− 1

+
1

4𝜂

𝑔(𝑠)d𝑠
⎭
⎪⎪
⎬

⎪⎪
⎫

∥ ∇𝑢(𝑡) ∥

+𝜀
1 − 𝛿

𝑝

2
− 1

+(1 − 𝜂)
(𝑔 ∘ ∇𝑢)(𝑡)

−𝜀𝑟 |𝑢 | ( ) 𝑢 𝑢d𝑥

 

     (4.21) 
Now, by using Young’s inequality, we estimate the 
last term in (4.21) as follows  

|𝑢 | ( ) 𝑢 𝑢d𝑥

≤
1

𝑘
𝛿 ( )|𝑢| ( )d𝑥

+
𝑘 − 1

𝑘
𝛿

( )

( ) |𝑢 | ( )d𝑥,

∀𝛿 > 0 
                                                                          (4.22) 
Therefore by taking 𝛿 so that  

𝛿
( )

( ) = 𝑀𝐻 (𝑡) 
for a large constant 𝑀 to be specified later, and 
substituted in (4.22)  
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|𝑢 | ( ) |𝑢|d𝑥

≤
1

𝑘
𝑀 ( )|𝑢| ( )𝐻 ( ( ) )(𝑡)d𝑥

+
𝑘 − 1

𝑘
𝑀𝐻 (𝑡) |𝑢 | ( )d𝑥 

Then estimate (4.21) takes the form 

𝐿 (𝑡) ≥ 𝑟 (1 − 𝑎) − 𝜀
𝑘 − 1

𝑘
𝑀

𝐻 (𝑡)] |𝑢 | ( )d𝑥 + 𝜀 1 +
𝑝

2
‖𝑢 (𝑡)‖

+𝜀 𝑝 𝐻(𝑡) −
𝑀

𝑘
𝐻 ( )(𝑡) |𝑢| ( )d𝑥

+𝜀 (1 − 𝛿)
𝑝

2
− 1

− (1 − 𝛿)
𝑝

2
− 1 +

1

4𝜂
𝑔(𝑠)d𝑠 ∥ ∇𝑢 ∥

+𝜀 (1 − 𝛿)
𝑝

2
− 1 + (1 − 𝜂) (𝑔 ∘ ∇𝑢)(𝑡)

 

Applying (4.2) and picking 

𝜂 < (1 − 𝛿)
𝑝

2
− 1 + 1, 

we can get 
𝐿 (𝑡) ≥ 𝑟[(1 − 𝑎)

−𝜀
𝑘 − 1

𝑘
𝑀 𝐻 (𝑡) |𝑢 | ( )d𝑥

+𝜀 1 +
𝑝

2
‖𝑢 (𝑡)‖                           

+𝜀 𝑝 𝐻(𝑡) −
𝑀

𝑘
𝐻 ( )(𝑡) |𝑢| ( )d𝑥

+𝜀𝑀 ∥ ∇𝑢(𝑡) ∥ + 𝜀𝑀 (𝑔 ∘ ∇𝑢)(𝑡),

 

(4.23) 
where   

𝑀 = (1 − 𝛿)
𝑝

2
− 1

− (1 − 𝛿)
𝑝

2
− 1

+
1

4𝜂
𝑔(𝑠)d𝑠 > 0, 

  

𝑀 = (1 − 𝛿)
𝑝

2
− 1 + (1 − 𝜂) > 0. 

Using   

𝐻 ( )(𝑡) |𝑢| ( )d𝑥

≤ 𝐶 𝛿
𝑝 − 2

2𝑝
+

1

𝑝

( )

∥ 𝑢(𝑡) ∥ (.)
( ) 

hence (4.23) yields 

𝐿 (𝑡) ≥ 𝑟 (1 − 𝑎) − 𝜀
𝑘 − 1

𝑘
𝑀

𝐻 (𝑡)] |𝑢 | ( )d𝑥 + +𝜀 1 +
𝑝

2
‖𝑢 (𝑡)‖

+𝜀 𝑝 𝐻(𝑡) −
𝑀

𝑘
𝐶 𝛿

𝑝 − 2

2𝑝
+

1

𝑝

( )

∥ 𝑢(𝑡) ∥ (.)
( )

+𝜀𝑀 ∥ ∇𝑢(𝑡) ∥ + 𝜀𝑀 (𝑔 ∘ ∇𝑢)(𝑡).  

 

     (4.24) 
 We then use Lemma 4.3 and (4.18),  for 𝑠 = 𝑘 +
𝑝 𝑎(𝑘 − 1) ≤ 𝑝 , to deduce from (4.24) 
 

𝐿 (𝑡) ≥ 𝑟

(1 − 𝑎)

−𝜀
𝑘 − 1

𝑘
𝑀

𝐻 |𝑢 | ( )d𝑥

+𝜀 1 +
𝑝

2
‖𝑢 (𝑡)‖

+𝜀𝑀 ∥ ∇𝑢(𝑡) ∥ + 𝜀𝑀 (𝑔 ∘ ∇𝑢)(𝑡)

+𝜀[𝑝 𝐻(𝑡) − 𝐶 𝑀

×
−𝐻(𝑡) − ‖𝑢 (𝑡)‖ − (𝑔 ∘ ∇𝑢)(𝑡)

+𝜚(𝑢)

≥ 𝑟

(1 − 𝑎)

−𝜀
𝑘 − 1

𝑘
𝑀

𝐻 (𝑡) |𝑢 | ( )d𝑥

+𝜀 1 +
𝑝

2
+ 𝐶 𝑀 ‖𝑢 (𝑡)‖

+𝜀𝑀 ∥ ∇𝑢(𝑡) ∥ + 𝜀
𝑀

+𝐶 𝑀
(𝑔 ∘ ∇𝑢)(𝑡)

+𝜀 𝑝 + 𝐶 𝑀 𝐻(𝑡) − 𝜀𝐶 𝑀 𝜚(𝑢)

 

                                                                          (4.25) 

where 𝐶 = 𝛿 +
( )

. By (3.1) and 

(4.12), we obtain  

𝐻(𝑡) ≥
1

𝑝
𝜚(𝑢) −

1

2
‖𝑢 (𝑡)‖ −

1

2
‖∇𝑢 (𝑡)‖

−
1

2
(𝑔 ∘ ∇𝑢)(𝑡), 

writing 𝑝 = 2𝑀 + (𝑝 − 2𝑀 ), where 𝑀 =
min{𝑀 , 𝑀 }, the estimate (4.25) yields 
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𝐿 (𝑡) ≥ 𝑟

(1 − 𝑎)

−𝜀
𝑘 − 1

𝑘
𝑀

𝐻 |𝑢 | ( )d𝑥

+𝜀 1 +
𝑝

2
+ 𝐶 𝑀 − 𝑀 ‖𝑢 (𝑡)‖

+𝜀(𝑀 − 𝑀 ) ∥ ∇𝑢(𝑡) ∥   

+𝜀 𝑀 + 𝐶 𝑀 − 𝑀 (𝑔 ∘ ∇𝑢)(𝑡)

+𝜀 𝑝 − 2𝑀 + 𝐶 𝑀 𝐻(𝑡)

+𝜀
2𝑀

𝑝
− 𝐶 𝑀 𝜚(𝑢).

 

                                                                          (4.26) 
We choose 𝑀 large enough, (4.26) becomes   

𝐿 (𝑡) ≥ 𝑟

(1 − 𝑎) −

𝜀
𝑘 − 1

𝑘
𝑀

𝐻 (𝑡) |𝑢 | ( )d𝑥

+𝜒𝜀
𝐻(𝑡) + ‖𝑢 (𝑡)‖ + 𝜚(𝑢)

+(𝑔 ∘ ∇𝑢)(𝑡)
,

 

 (4.27) 
for some positive constant 𝜒. Once 𝑀 is fixed, we 
choose 𝜀 small enough such that   

(1 − 𝑎) − 𝜀
𝑘 − 1

𝑘
𝑀 > 0, 

and   

𝐿(0) = 𝐻 (0) + 𝜀 𝑢 𝑢 d𝑥 +
𝜀𝛾

2
‖∇𝑢 ‖ > 0 

Hence, we have  

𝐿 (𝑡) ≥ 𝜒𝜀
𝐻(𝑡) + ‖𝑢 (𝑡)‖ + 𝜚(𝑢)

+(𝑔 ∘ ∇𝑢)(𝑡)
      (4.28) 

On the other hand, we have  

𝐿 (𝑡) =

⎝

⎜
⎛

𝐻 (𝑡)

+𝜀 𝑢 (𝑡)𝑢(𝑡)d𝑥

+𝜀
𝛾

2
∥ ∇𝑢(𝑡) ∥

⎠

⎟
⎞

≤ 𝐶

⎝

⎜
⎛𝐻(𝑡) + 𝑢 (𝑡)𝑢(𝑡)d𝑥

+∥ ∇𝑢(𝑡) ∥ ⎠

⎟
⎞

.

 

                                                                          (4.29) 

By Hölder’s and Young’s inequalities, (4.16), and 
Lemma 4.3, we get 

∫ 𝑢 (𝑡)𝑢(𝑡)d𝑥 ≤ 𝐶(‖𝑢(𝑡)‖ ‖𝑢 (𝑡)‖ )

≤ 𝐶‖𝑢(𝑡)‖ (.)
‖𝑢 (𝑡)‖

≤ ‖𝑢(𝑡)‖ (.)
+ ‖𝑢 (𝑡)‖

≤ 𝐶 𝐻(𝑡) + ‖𝑢 (𝑡)‖ + ϱ(𝑢) + (𝑔 ∘ ∇𝑢)(𝑡) ,
(4.30) 

And 

∥ ∇𝑢(𝑡) ∥ ≤ 𝐶 .                           (4.31) 
By Poincaré’s inequality and (4.16), we have   

∥ 𝑢(𝑡) ∥ (.)≤ 𝐵 ∥ ∇𝑢(𝑡) ∥ ≤ 𝐵 𝐶  

                                                                          (4.32) 
By virtue of (4.14) and (4.32), we get 𝐻(𝑡) is 
bounded. There exists a positive constant 𝐶  such 
that   

𝐻(𝑡) + 𝐶 ≤ 𝐶 𝐻(𝑡) 
                                                                          (4.33) 
Therefore, we obtain   

𝐿 (𝑡) ≤ 𝐶
𝐻(𝑡) + ‖𝑢 (𝑡)‖ + 𝜚(𝑢)

+(𝑔 ∘ ∇𝑢)(𝑡)
 

                                                                          (4.34) 
By joining (4.28) and (4.34), we reach that   

𝐿 (𝑡) ≥
𝜀𝜒

𝐶
𝐿 (𝑡) 

 
 (4.35) 

A simple integration of (4.35) over [0, 𝑡], yields that  

𝐿 (𝑡) ≥
1

𝐿 (0) −
( )

𝑡
,    ∀𝑡 ≥ 0 

This shows that 𝐿(𝑡) blows up in a finite time 𝑇 , 
where   

𝑇 ≤
(1 − 𝑎)𝐶

𝜒𝜀𝑎[𝐿(0)]
 

If we choose 𝑇∗ ≥
( )

[ ( )]
, then we obtain 𝑇 ≤

𝑇∗, which contradicts our assumption. This 
completes the proof.  
 
 

5 An Upper Bound for the Blow-
Up Time: The Case 𝒌(𝒙) =
𝟐, ∀𝒙 

In this section, we prove a finite time blow-up 
result. We need the following lemma. 
Lemma 5.1 ([14], Lemma1.1 and, [16], 
Logarithmic convexity methods) Assume that 𝜑 ∈
𝐶 ([0, 𝑇)) satisfying:  

𝜑 𝜑 − (1 + 𝛼)(𝜑 ) ≥ 0, 𝛼 > 0 
and   

𝜑(0) > 0, 𝜑 (0) > 0, 
then  

𝜑 → ∞as𝑡 → 𝑡 ≤ 𝑡 =
𝜑(0)

𝛼𝜑 (0)
. 

Theorem 5.2 For any fixed 𝛿 < 1, suppose that 
(2.6) holds and 𝑢 , 𝑢  satisfy   
𝐼(0) < 0, 𝐸(0) < 𝛿𝐸 .                                      (5.1) 
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Assume that   

𝑔(𝑠)d𝑠

≤
𝑝 − 2

𝑝 − 2 + (1 − 𝛿) 𝑝 + 2𝛿(1 − 𝛿)
 

                                                                     (5.2) 
where 𝛿 = max{0, 𝛿}, and suppose further that 
∫ 𝑢 𝑢 d𝑥 > 0 for 0 ≤ 𝐸(0) < 𝐸 . Under the 
assumption of Lemma 3.1, if   

2 = 𝑘 = 𝑘(𝑥) = 𝑘 < 𝑝 ≤ 𝑝(𝑥) ≤ 𝑝 ≤
2𝑛

𝑛 − 2
, 

the solution of problem (1.3)-(1.5) blows up in a 
finite time 𝑇 , in the sense that   

lim
→

⎣
⎢
⎢
⎢
⎡∥ 𝑢(𝑡) ∥ + ∥ ∇𝑢(𝑠) ∥ d𝑠

+ ∥ 𝑢(𝑠) ∥ d𝑠
⎦
⎥
⎥
⎥
⎤

= +∞ 

Further, the upper bound for 𝑇  can be estimated by  

𝑇 ≤
2(𝑝 − 2) ∥ 𝑢 ∥ + 8(𝛾‖∇𝑢 ‖ + 𝑟‖𝑢 ‖ )

(𝑝 − 2) ∫ 𝑢 𝑢 d𝑥
, 

with some 𝑡 > 0 and 𝜑 is defined in (5.1).  
Proof. Assume by contradiction that the solution 𝑢 
is global. Then for any 𝑇 > 0, we define the 
functional 𝜑 as follows 

𝜑(𝑡) =∥ 𝑢(𝑡) ∥ + 𝛾 ∥ ∇𝑢(𝑠) ∥ ds 

+𝑟 ∥ 𝑢(𝑠) ∥ d𝑠

+(𝑇 − 𝑡)[𝛾‖∇𝑢 ‖ + 𝑟‖𝑢 ‖ ]

 

+(𝑡 + 𝑡 ) , 𝑡 < 𝑇  
                      (5.3) 

 
where 𝑡 , 𝑇  and 𝛽 are positive constants to be 
chosen later. Then using equation (1.3) and 
integration by parts, to get 

 

     

   

     

Ω
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2 d
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d d 2 .

t
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t

s

t u t u t x

u s u s x s

u s u s x s t t





 

  

 


 

 

 

                                                                       (5.4) 

And 

𝜑 (𝑡) = 2‖𝑢 (𝑡)‖ + 2 ∫ 𝑢 (𝑡)𝑢(𝑡)d𝑥

−2 1 − ∫ 𝑔(𝑠)d𝑠 ∥ ∇𝑢(𝑡) ∥

+2𝛾 ∫ ∇𝑢 (t). ∇𝑢(𝑡)d𝑥

+2𝑟 ∫ 𝑢 (𝑡)𝑢(𝑡)d𝑥 + 2.

         

  (5.5) 

Furthermore  

𝜑 (𝑡) ≥ 2‖𝑢 (𝑡)‖

−2 1 − 𝑔 (𝑠)d𝑠 ‖∇𝑢(𝑡)‖

−
1

𝜀
𝑔 (𝑠)d𝑠‖∇𝑢(𝑡)‖ − 𝜀(𝑔 ∘ ∇𝑢)(𝑡) + 2

+𝑝 (𝑔 ∘ ∇𝑢) + 𝑝 ‖𝑢 ‖

+𝑝 1 − 𝑔 (𝑠)d𝑠 ‖∇𝑢‖ − 2𝑝 𝐸(𝑡)

≥ (𝑝 + 2)‖𝑢 (𝑡)‖

+ (𝑝 − 2) − 𝑝 − 2 +
1

𝜀
𝑔 (𝑠)d𝑠 ‖∇𝑢‖

+(𝑝 − 𝜀)(𝑔 ∘ ∇𝑢)(𝑡) − 2𝑝 𝐸(0) + 2,

 

                                                                              (5.6)  

 where 𝑡 , 𝑇  are constants to be determined later. 
Case 1: If 𝛿 < 0, then 𝐸(0) < 0, we choose 𝜀 = 𝑝  
in (5.6). Then, by (5.3), (5.4), (5.5), (5.2), and (5.6), 
we have  

⎩
⎪⎪
⎨

⎪⎪
⎧     2 22

0 0 0 02 2Ω

2
0

0 d

0

u x x T u r u

t

      
 

 ;

𝜑 (0) = 2 𝑢 𝑢 d𝑥 + 2𝑡 > 0;

𝜑 (𝑡) ≥ 2 − 2𝑝 𝐸(0) > 0∀𝑡 ≥ 0.

 

Therefore 𝜑 and 𝜑  are both positive. Thus, from 
(5.3)-(5.6) and (5.8), the following inequality,  
inferred for all (𝜁, 𝜂) ∈ ℝ , which implies that  

𝜑(𝑡)𝜑 (𝑡) −
𝑝 + 2

4
𝜑 (𝑡) ≥ 0. 

                                                                            (5.7) 
Case2: If 0 ≤ 𝛿 < 1, then 

0 ≤ 𝐸(0) < 𝛿𝐸 < 𝐸 , 
we choose 𝜀 = (1 − 𝛿)𝑝 + 2𝛿 in (5.6), using (5.2) 
Then, we have 
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(5.8) 
Then, by (5.3), (5.4), (5.5), (5.2), and (5.6), we have  

⎩
⎪⎪
⎨

⎪⎪
⎧𝜑(0) = 𝑢 (𝑥)d𝑥 + 𝑡

+𝑇 [𝛾‖∇𝑢 ‖ + 𝑟‖𝑢 ‖ ] > 0;

𝜑 (0) = 2 𝑢 𝑢 d𝑥 + 2𝑡 > 0;

𝜑 (𝑡) ≥ 2 − 2𝑝 𝐸(0) > 0∀𝑡 ≥ 0.

 

Therefore 𝜑 and 𝜑  are both positive. 
  
Then using Lemma5.1, to infer 

𝜑(𝑡) → ∞ 
as   𝑡 → 𝑇∗, where,  
  

𝑇∗ ≤
2 ∥ 𝑢 ∥ + 2𝑇 [𝛾‖∇𝑢 ‖ + 𝑟‖𝑢 ‖ ] + 2𝑡

(𝑝 − 2) ∫ 𝑢 𝑢 d𝑥 + 𝑡
. 

 
Now we go to choose appropriate 𝑡  and 𝑇 . Let 𝑡  
be any number that depends only on 𝑝 , 𝐸 −
𝐸(0)  and ‖𝑢 ‖ ( ) as   

𝑡 ≥
2(𝛾‖∇𝑢 ‖ + 𝑟‖𝑢 ‖ )

(𝑝 − 2)
 

Fix 𝑡 , then 𝑇  can be picked as  

𝑇 =
2 ∥ 𝑢 ∥ + 2𝑇 [𝛾‖∇𝑢 ‖ + 𝑟‖𝑢 ‖ ] + 2𝑡

(𝑝 − 2) ∫ 𝑢 𝑢 d𝑥 + 𝑡
 

so that  
𝑇

=
2 ∥ 𝑢 ∥ + 2𝑡

(𝑝 − 2)𝑡 + (𝑝 − 2) ∫ 𝑢 𝑢 d𝑥 − 2
𝛾‖∇𝑢 ‖

+𝑟‖𝑢 ‖

 

Therefore the lifespan of the solution 𝑢(𝑥, 𝑡) is 
bounded by  

𝑇∗ ≤ inf
2 ∥ 𝑢 ∥ + 2𝑡

(𝑝 − 2)𝑡 + (𝑝 − 2) ∫ 𝑢 𝑢 d𝑥 −

2(𝛾‖∇𝑢 ‖ + 𝑟‖𝑢 ‖ )

 

  

=
2(𝑝 − 2) ∥ 𝑢 ∥ + 8(𝛾‖∇𝑢 ‖ + 𝑟‖𝑢 ‖ )

(𝑝 − 2) ∫ 𝑢 𝑢 d𝑥
. 

 
 

6 A Lower Bound for the Blow-Up 
Time: The Case 𝒌𝟏 ≥ 𝟐. 

In this section, by using a first-order differential 
inequality technique for a suitably defined auxiliary 
function and some Sobolev-type inequalities, we 
give a lower bound for the blow-up time 𝑇 for the 
solution 𝑢(𝑥, 𝑡) of the problem (1.3)-(1.5) if 

  
2 ≤ 𝑘 ≤ 𝑘(𝑥) ≤ 𝑘 < 𝑝  

                    ≤ 𝑝(𝑥) ≤ 𝑝 ≤ , (6.1) 

holds. 
Theorem 6.1 Under the condition of Lemma3.1, 
assume that (6.1) holds, then the solution of 
problem (1.3)-(1.5) will blow up in finite time 𝑇. 
Moreover, the blow-up time 𝑇 can be estimated 
from above by 𝑇, where 
𝑇

= max

⎝

⎜
⎜
⎜
⎜
⎜
⎛

2ln
2 𝑙 (‖𝑢 ‖ +∥ ∇𝑢 ∥ )

+|Ω|

𝑝 − 2
,

2ln
2 𝑙 (‖𝑢 ‖ +∥ ∇𝑢 ∥ )

+|Ω|

𝑝 − 2 ⎠

⎟
⎟
⎟
⎟
⎟
⎞

 

                                                                 
(6.2) 

 and |Ω| = ∫ d𝑥.  
   Proof. We assume that 𝑢(𝑥, 𝑡) blows up at time 𝑇 
and define the auxiliary functional   

𝜑(𝑡) =
1

2
‖𝑢 (𝑡)‖ +

1

2
1 − 𝑔(𝑠)d𝑠

∥ ∇𝑢(𝑡) ∥ + (𝑔 ∘ ∇𝑢)(𝑡) 
                                                                     (6.3) 
Taking a derivative of 𝜑(𝑡), and using (1.3), we get  

𝜑 (𝑡) =  𝑢 (𝑡)𝑢 (𝑡)d𝑥 

+ 1 − 𝑔(𝑠)d𝑠 ∇𝑢(𝑡). ∇𝑢 (𝑡)d𝑥 

−𝑔(𝑡) ∥ ∇𝑢(𝑡) ∥ + (𝑔 ∘ ∇𝑢)(𝑡) 

+ ∇𝑢 (𝑡) 𝑔(𝑡 − 𝑠)(∇𝑢(𝑡) − ∇𝑢(𝑠))d𝑠d𝑥 

= −𝛾‖∇𝑢 (𝑡)‖ − 𝑔(𝑡 ∥ ∇𝑢(𝑡) ∥ + (𝑔 ∇𝑢)(𝑡)  

+ 𝑢 𝑢|𝑢| ( ) d𝑥 − 𝑟 |𝑢 | ( )d𝑥

≤ 𝑢 𝑢|𝑢| ( ) d𝑥 

                                                                  (6.4) 
Using Young’s inequality, we have 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2023.22.51 Soufiane Benkouider, Abita Rahmoune

E-ISSN: 2224-2880 463 Volume 22, 2023



∫ |𝑢| ( ) 𝑢𝑢 d𝑥

≤ ∫ 𝑢 d𝑥 + ∫ |𝑢| ( ) d𝑥

≤ ∫ 𝑢 d𝑥

+ max ∫ |𝑢| d𝑥, ∫ |𝑢| d𝑥

≤ ∫ 𝑢 d𝑥

+ max 𝐶 ∥ ∇𝑢 ∥ , 𝐶 ∥ ∇𝑢 ∥

≤ 𝜑 + max 𝜑 , 𝜑

  

(6.5) 
where  

𝐶 =
|Ω|

2
, 𝐶 =

|Ω|

2
. 

By (2.6), (6.4), and (6.5), we can obtain that   

𝜑 (𝑡) ≤
1

2
𝜑 +

1

2
max

𝐶

𝑙
𝜑 ,

𝐶

𝑙
𝜑  

                                                                (6.6) 
Integrating inequality (6.6), we have  
  
𝜑(𝑡)

≤ max

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛

(𝜑(0)) +
𝐶

𝑙
𝑒

( )

−
𝐶

𝑙

,
(𝜑(0)) +

𝐶

𝑙
𝑒

( )

−
𝐶

𝑙 ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

Let  

0 < 𝑇∗: = max
2

𝑝 − 2
ln

𝑙

𝐶
(𝜑(0))

+ 1 ,
2

𝑝 − 2
ln

𝑙

𝐶
(𝜑(0))

+ 1 < ∞. 

 (6.7) 
then 𝜑(𝑡) blows up at time 𝑇∗. Hence, 𝑢(𝑥, 𝑡) 
discontinues at some finite time 𝑇 ≤ 𝑇∗, that is to 
means, 𝑢(𝑥, 𝑡) blows up at a finite time 𝑇. 
Next, we estimate 𝑇. By the values of 𝐶 , 𝐶 , we 
have  

(𝜑(0)) + 1 ≤

(‖ ‖ ∥∇ ∥ ) | |

| |
,  

𝑙

𝐶
(𝜑(0)) + 1

≤
2 𝑙 (‖𝑢 ‖ +∥ ∇𝑢 ∥ ) + |Ω|

|Ω|
. 

The above pair inequalities coupling (6.7) give 𝑇 ≤
𝑇∗ ≤ 𝑇, where 𝑇 is fixed in (6.2).  
 
 

7 General Comments and Issues 
This paper is devoted to studying a model of a 
nonlinear viscoelastic wave equation with damping 
and source terms involving variable-exponent 
nonlinearities (1.3)-(1.5). 
 
1. We prove that the energy grows exponentially, 
and thus so the 𝐿  and 𝐿 -norms. For the case 
2≤k(.)<p(.), we reach the exponential growth result 
in a blow-up in finite time with positive initial 
energy and get the upper bound for the blow-up 
time. 
 
2. For the case k(.)=2, we use the concavity method 
to show a finite time blow-up result and get the 
upper bound for the blow-up time of the solutions. 
 
3. Furthermore, for the case k(.)≥2, under some 
conditions on the data, we give a lower bound for 
the blow-up time when the blow-up occurs. 
 
-The natural question that we can ask is whether the 
obtained decay rate (3.32) is optimal. 
 
-The second question is the extension of our results 
to the case of other boundary conditions than (1,4), 
especially the proof of the lack of exponential 
stability. 
 
-The last interesting question we note here is 
proving the stability of (1.3)-(1.5) in the whole 
space ℝ  (𝑛 ≥ 1)  (instead of Ω). 
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