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1 Introduction Under suitable conditions on g, p, k, ug, and uy,
In recent years, many researchers, in the different using some known theorems in the mathematical
cases of the values of the memory kernel, literature, the global existence in time, blow up in
specifically when g = 0 or g > 0, a nonlinear wave finite time, the asymptotic behavior, and a lower
equation with a memory, damping, and source terms bound for the blow-up time of the unique weak

associated with the Laplace operator with Dirichlet solution have been (.1iscusse':d. . '
type condition has been considered From the physical point of view, this type of

t problem arises usually in viscoelasticity. It has been

U — Au — yAu; + f gt —s)Au(x, s)ds considered first by, [12], in 1970, where the general

0 decay was discussed. Related problems to (1.1) have

+r|ut|k"2ut(x, t) attracted a great deal of attention in the last two

= |ulP~2u(x,t) in O X Ry, decades, and many results have appeared on the

u=0onT x (0,+), existence and long-time behavior of solutions. Look

u(x, 0) = ug(x), us(x,0) =uy(x),x €Q, at this area, in, [6], [12], [17], [11], [18], [16], [19],
(1.1) and references therein.

where T>0,p, k=2, 1 vy are  positive
constants, A stands for the Laplacian with respect to 5
the spatial variables, Q is a bounded domain of R" p(.), k(.) On Q satisfying:
(n = 1) with a smooth boundary d). The relaxation

function g is a positive and uniformly decaying

function, ug, and u, are given functions belonging

to suitable spaces.

In this work given positive measurable functions
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2< py =essinf p(x) < p, = esssup p(x) <o,

2<k = es)iiélfk(x) <k(x)
<k, =esssupk(x) <o,

xeQ

(1.2)
we consider the following semilinear generalized
hyperbolic boundary value problem governed by
partial differential equations that describe the
evolution  of  viscoelastic = materials  with
nonlinearities of variable exponent type under
Dirichlet type condition:

U — Au — yAu, + fot g(t — s)Au(x,s)ds
+7lu K09 2u, (x, 1)
= |u[P@~2y(x,t) in @ X R,, (1.3)
u=0onT x (0, 4+), (1.4
u(x,0) = ug(x), ue(x,0) =uq(x),x € Q. (1.5)

Problems with variable exponents of nonlinearity
arise from many important mathematical models in
engineering and physical sciences. For example,
modeling of physical phenomena such as flows of
electro-rheological fluids or fluids with temperature-
dependent viscosity, thermoelasticity, nonlinear
viscoelasticity, filtration processes through porous
media, image processing, nuclear science, chemical
reactions, heat transfer, population dynamics,
biological sciences, etc., More details on these
problems can be found in, [10], [13], [1], [2], [4],
[8], 191, [3], [18], [5], [7], [15], and references
therein.

As far as we have known, there is little
information on the bounds for blow-up time to
problem (1.3)-(1.5) when the initial energy is
positive with p(.) and k(.) are not constants. So, it
is natural to analyze the problem (1.3)-(1.5) and
give further results on the behavior of solutions.

The contents of this paper are as follows. In
Section 2 we give Preliminaries. In Section 3 we
prove the exponential growth of the energy E(t) of
a solution. In Section 4, we consider an upper bound
for the blow-up time in case 2 < k; < k, < p;. An
upper bound for the blow-up time in case k(x) = 2,
Vx, is proved in Section 5. Section 6, is devoted to
proving a lower bound for the blow-up time in case
ki > 2.

2 Preliminaries
In the following section, we introduce some
preliminaries and notations, which will be used
throughout this paper.
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Given a function p:Q - [py, p,] € (2,), p, =
const, we define the set
LPOQ)
v:Q > R: v measurablefunctionson(),

d@=%d@=fW@Wmm<m.
Q

The variable-exponent space LP® (Q) equipped with
the Luxemburg norm

. u )
”u”p() = inf{A > 0,f |z| dx <1 X
Q

becomes a Banach space. In general, variable-
exponent Lebesgue spaces are similar to classical
Lebesgue spaces in many aspects, see the first
discussed the LP®) spaces and W*P™) spaces by
Kovacik and Réakosnik in [15].

We also assume that p(x), k(.) satisfies the
following Zhikov—Fan uniform local continuity
condition:

|k(x) = k| + |p(x) —pW) <

M
[loglx — yI|

1
forall x,y in Q with |[x — y| < E'M > 0.
@2.1)

Let us list some properties of the spaces LP)(Q)
which will be used in the study of the problem (1.3)-
(1.5).

* If p(x) is measurable and

1<p; <pkx)<p, <o, in Q,
then LPO(Q) is a reflexive and separable Banach
space, and CS°(Q) is dense in LPO) (Q).

* If condition (2.1) is fulfilled, and Q) has a finite
measure and p, q are variable exponents so that
p(x) < q(x) almost everywhere in £, the inclusion

L10Q) c LPO(Q)
is continuous and
v € L1O(Q) llullyg) < Cliullge, € = C(121,py2)
(2.2)
« It follows directly from the definition of the norm
that

min (Ilull?), 1ull2,) < gy ()

< max (Jlull%), %2, ),

23)
and
1 1
min 0p) (W71, 090y @7 ) < 1ullpgy <
1 1
max (Qp(.) (WP, 0p() (u)”2>- (2.4)
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« If p:Q-[p, plc[l,+0) is a
measurable function and p, > esssupp(x) with
{xeq}

P < Z—nz, then the embedding H (Q) & LPO(Q) is

e
continuous and compact.

2.1 Mathematical Hypotheses

We begin this section by introducing some
hypotheses and our main result. Throughout this
paper, we use standard functional spaces, and
denote that (.,.),||. || the inner products, and norms
in L2(Q) and H}(Q) represented and they are given
by:

() = fﬂu(x)v(x)dx and [[ul% g, = llull
=f u?dx;
Q

Il = lull? = [ VuPd.
Q

Next, we state the assumptions for the problem

(1.3)(1.5).

Let k(.) and p(.) are given measurable functions
on Q satisfying the following conditions

2<p1$p(x)3p2S 2n2,n>2
n_

and2<p, <p, <woifn=2,
b =p; 2.5)

2 <k <k(x)<k, < 2”2,n>2

n—
and 2<k <k, <o if n=2.
g:R, >R, is
function satisfying
1- [ g(s)ds=1>0, vt eR* . (2.6)
By Corollary 3.3.4 in [13], we know LPz(Q) &
LPO(Q). So, it is a consequence of the embedding
H}(Q) © LP2(Q) and Poincaré
inequality that ||ull,y < Bl|Vull,, (2.7)
where B is the best constant of the embedding
HE(Q) & LPO(Q) determined by

B~ = inf{|Vul:u € HJ(Q), lull,¢, = 1}.
The following constants play a crucial role in the
proof of our results. Let B;, @4, ay, E; be constants
satisfying

a nonincreasing differentiable

1

l P12
B; =max(1,B),a; = E ,

1 1
PRTE

ap = |[Vuell,, 27
1

(2.8)
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3 Exponential Growth
In this section, will prove that the energy grows
exponentially, and thus so the LP* and LP2 norms to
the problem (1.3)-(1.5) if the variable exponents
p(.), and k(.) satisfy some conditions and the initial
data are large enough (in the energy viewpoint).
Firstly, we start with a local existence result for the
problem (1.3)-(1.5), which can be obtained by the
combination of the Faedo-Galerkin argument and
the compactness method together with the Banach
fixed point theorem. Hereafter, for simplicity, we
take a = 1, and we have
Lemma 3.1 Let 2<p, <p(x)<p,<q and
max (2’a+1q—p2) <k <k(x)<k,<q. Then
given (Ug,uy) € HY () X L?(N) there exists T > 0
and a unique solution u of the problem (1.3)-(1.5)
on (0,T) such that
ue ¢ (0,7 H}@) n €*(0,T;12(D)),

u, € 12 (0,T; HE(@)) n L¥O((0,T) x ).
The first main result of this paper reads as follows
Theorem 3.2 Let k, < py < p(x) < p, where 2 <
p1 < p(x) < p, < q. Assume the initial value uy is
chosen to ensure that E(0) <E; and B! >
[|Vugll, > a;  hold. Then under the above
conditions, the solution of problem (1.3)-(1.5) will
grow exponentially in the LP1 and LP2 norms.
For this purpose, we start with the following lemma
defining the energy of the solution

Lemma 3.3 The corresponding energy to the
problem (1.3)-(1.5) is given by

1 1
E@®) = 5(g° V) +5 e}

1 t
#3(1- [ 901w
0
_J L|u|p(x)dx,
ap()

3.1)

furthermore, by easily verified formula

4E®) _ 10 gy - L 2 _
L0 _ (g o Vu) — g IVul3

v Sy VuelPdx =7 [u ¥ @ dx < 0,
the inequality E (t) < E(0) is obtained, where

1 2 1 2
E0) =3 lluallz + 5 lIVuoll2

— | ——|uy|P@dx,
P () °

(3.3)

and
(g e Vu)(©)
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t
= f gt —s) Il Vu(t) — Vu(s) I3 ds = 0.
0
We conclude from (2.3) and (3.1) that

E(t)>1( oVu)+l 1—ft (s)ds ) [|[Vull3
=5 g 2 . g 2

1
= max ([l el )
1

1 t
25<1_ [ g(s)dS> 17ull3

1

o max((By [[Vull2)P2, (By [[Vull2)P*)
1

1

=
2

1
la® ~ - max((B1a)?, (B;@)): = h(a)Va
1

€ [0, +c0),
(3.4)
where a = [|Vul|,.
Lemma 3.4 Let f: [0, +00) = R be defined by

fla) =3la? - pil(Bla)pl. (3.5)
Then the following claims hold under the
hypotheses of Theorem 3.2:  f is increasing for
0 < a < a; and decreasing for a = ay,
Jim (@) = —o0 and f(ay) = E.
Proof. By the assumption that B; > 1 and p; > 2,
one can see that f(a) = h(a), for 0 < a < B
Furthermore, f(«) is differentiable and continuous
in [0, +00).
f'(a) =al—Bf*aPr™!, 0<a<Bi.

Then (i) follows. Since p; —2 >0, we have

liIP f(a) = —c0. A wusual computation yields
a—+0o

f(a1) = E;. Then (ii) holds valid.
Lemma 3.5 Under the assumptions of Theorem 3.2,
there exists a positive constant &, > a1 such that
[|Vull, = a,,t =0, (3.6)
Jq lulx, £)[PXdx > (Bya,)P:. (3.7)
Proof. Since E(0) < Ej, it follows from Lemma 3.4
that there exists a positive constant a, > a4, such
that E(0) = f(a;). By (3.4), we have f(ay) =
h(ag) < E(0) = f(ay), it follows from Lemma
3.4(i) that ¢y = a,, so (3.6) holds for t = 0. Now
we prove (3.6) by contradiction. Suppose that
[[Vu(t®)||], <a, for some t*>0. By the
continuity of ||Vu(., t)||, and a, > a;, we may take
t* such that a, > |[Vu(t*)|l, > a4, then it results
from (3.4) that

E0) = f(az) < f(IVul)ll2) < E(tY),
which contradicts Lemma 3.3, and (3.6) holds.
By (3.1) and (3.2), we obtain
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1 1
—J |u(x,t)|p(x)dx2J—Iu(x,t)lp(x)dx
P1Jg . ap(x)

= EIIIVUIlﬁ — E(0)

=

N =

2 1 2 1 p
lay — E(0) = Elaz —f(az) = E(Bﬂlz) L

(3.9)
and (3.7) follows.
Let H(t) = E; — E(t) for t = 0, we have
the following lemma.
Lemma 3.6 Under the assumptions of Theorem 3.2,
the functional H(t) illustrated above provides the
following estimates:

1
0<H() <H(t) < L@ lu(x, )|P®dx

1
< —o(u), t=>0.
p1

(3.9)
Proof. By Lemma 3.3, H(t) is nondecreasing in t.
Thus
H(t)>H(0)=E,—E(0)>0, t=0.
(3.10)

Combining (3.1), (2.8), (3.6) and a, > a;, we have

H(t) — fmﬁm(x, O|P@dx

1
< By — 21lvul)
1_1\ 2_ 1,2
sz(2 p)al Llaf < 0,620,

1

and (3.9) follows from (3.10) and (3.11).

Based on the above three lemmas, we can give
proof of Theorem 3.2.

Proof of Theorem 3.2. For € > 0 small to be chosen
later, we then define the auxiliary function

1
L(t) =H() + sf usudx +Esyj |Vu|?dx.
Q

Q
(3.12)
Let us observe that L is a small perturbation of the
energy. By taking the time derivative of (3.12),
we obtain:

(3.11)

dL(t)
4 VIIVuel3 + ellull3
1, 1 ,
—5(9 o Vu)(t) + Eg(t)”Vu“z
+e [, ugeudx +ey [, VuVu,dx. (3.13)

Using problem (1.3)-(1.5), the equation (3.13)
becomes:

dL(t
L = VJ [Vu,|?dx + Tf |ut|k(x)dx + ellugll3

—e||vull - erf [ue ¥ u,udx
Q

+e [ [u(®) PP dx (3.14)
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+£J9Vu(t) fotg(t — s)Vu(s)dsdx.

To estimate the last term on the right-hand side of
the previous equality, let § > 0 be determined later.
Young’s inequality drives to:

[ue ¥y udx
Q

< ij SOy | dx
kiJq

k2 = 8 k-1 |y, |y,
ki Jo
This yields by substitution in (3.14):

de(tt) >y [, [Vue|?dx +7 [, lu | @ dx +

ellucll3 + & [, lu(@®P@dx
1
_sf |Vu|2dx — gr_f Sk(x)lulk(x)dx
Q kilg

k(x)

+

_ k)
J 8 k-1 |y, ¥ dy
Q

t

TellvullZ f g(s)ds

, 0
+£f gt — s)f Vu(t)(Vu(s) — Vu(t))dxds
0 Q

(3.15)
and for some positive number 7 to be determined
later,

J.QVu(t)J-;g(t —S)Vu (s)dsdx
= _'[;g(t—s)IQVu (1) (Vu(t)—Vu (s))dxds
vl [ g (s)ds

21 ol [ 5) s w)0)

We want now to estimate the term involving
Jo lul*®)dx in (3.15), we have

llulle, = Nulli; *Null, < CllullcsIvulls,

and [|ully, = lulli*lulli, < Cllull,cs Ivulls,

which operates for:

2n n n
>k, >2k;>2and0

n—2
<s<l1,
Thus, we have the following inequality:
k k
Jo ¥ @ dx < flully? + llully?
kl(l s) k1(1 s)

k
<CmaX<Qp()(U—) P1 ,Qp()(u) P2 )”VU” 1

) [IVull52®

kp(1-5s) ka(1-s)

+CmaX<Qp(.)(u) P1Lop0W) P2
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2 2 . .
If s<min (k k—), using again  Young’s
2

inequality, we get:
ki1(1-s) k1(1-s)

L= k
maX(Qp(.)(u) P1,ep0(w) P2 >||Vu|| v

k1(1-s)u

k1(1-s)p
SCmaX(%o(U) o) P )

kst
+ C(IVullz) 2,

(3.16)
and
kz(l s) kz(l s) ks
max | opy(W) P ,0p (W) Pz ||[Vull;?
ka(1-s)p ka(1-s)u
< Cmax(gp(_)(u) PrL0p(w) P2 )
oy K2s®
+ C(lIVull2) 2z,
(3.17)

for 1/u+1/6 =1. Here we choose (6,u) =

2 _2 2 .
(kls Tk S) and (6, 1) = (k o )m (3.16) and
(3.17), respectively. Therefore the
inequality becomes

previous

2(1—S)k1

2(1-5)kq
f [ul¥®dx < Cmax <Q(u)v1(2—k15)’ Q(u)pz(z—kls)>
Q

2(1—5)](2 2(1—S)k2
+Cmax <Q(u)1’1(2"‘25), Q(u)Pz(Z—k25)> + ClIVull3.
(3.18)
Now, picking s such that:
2(p1 — k1) 2(pz — k2)
. ki(p1 —2) ka(py — 2)
0 <s <min <1
2(pp — k) 2(py — k)
"ki(p2 —2) ky(py — 2)
we get
2(1-s)k; 2(1-s)k,
p1(2—k15)’ p2(2—kys)’
0 < max 2(1-9)ks  2(1-5)k, <L (3.19)

p2(2=k15)’ p1(2—k,5)
When the inequality (3.19) is satisfied, we apply the
classical algebraic inequality

d<(z+1)<(1+ )(z+a))\7’z>0

0<d<lw=0,
to get the following estimate:
2(1—S)k1 2(1—S)k1
max | o(u)r1@-kis), o(u)P22-k1s)

2(1—S)k2 Z(I—S)kz

+max <Q(u)P1(2—k25), o(u)P2(2—k29)

<CA+HO)™(ew) + H(0))
<Cloew)+H()) vt=0.
(3.20)
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Injecting the estimate (3.20) into (3.18) we obtain
the following inequality

f ul*®dx < C(o(w) + 2H () + 1| Vull2),
Q

(3.21)
which yields finally:

_ 2
fQ O dx < ¢ (Q(u) + 2E; ”ut”2>

N P 1169
+fQ o) [u|P®)dx

< C<2E1 gl + (1 +—)J |u|v<x>dx>.
P/ Ja

(3.22)
Therefore by injecting the inequality (3.22) into the
inequality (3.15), we obtain:

O > y1Vuli3 + e(l +

%max(&kz,(?kl)) lluells — 2C max(6k2 6k1)E1

—&||Vull3 + ¢ (1

C
— r—max(6k2, 5k1) (1
ky

+31)) L [u(O)P@dx
+r (1

3 e(k, — 1)

k2
kl (6 k116 kzl

> [ug ¥ dx

1 t
+e(1- ) Ivul3 f 9(s)ds — eng o Vu),
4n 0

(3.23)
for some positive number 7 to be determined later.
From the inequality

2H(t) = - <I|utll% —2E; + (g > Vu)

t
+<1— f g(s)ds) Vull2
0
2
N (x)
an(x) |ulP dx),

t
- (1 - g(s)ds) 17ull2
0
= 2H(t) + llull5 + (g o Vu)

2
—2E; — | — u|P™dx
ap()

we have

—1|Vull} =
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> 2H(t) — 2E1 + llucll5 + (g o Vu)

|u|p(x)dx

b1Jg
(3.24)

Thus injecting it in (3.23), we get the following
inequality:

dL(t) rC
3 2 YIVulls + ¢ <+k—max(5k2,5k1)> lluell
1

2 C
(1 - r—max(6k2,6k1) (1
ky

P1
2
+ —) j luP®dx
P1 Q

+e (2H(t) -2 (1 + kleaX(6k2,6k1)C) El)

+r<1—

_ __k2 k1
E(kk;ll)max (6 k1—1’6 k2—1>> fﬂ |ut|k(X)dx
1 t
+e(1- ) Il [ g(sras
4n 0

+(1—en)(goVu) (3.25)
Using the definition of @, and E; (see equation (2.8)
and the lemma 3.5), we have

—2E; — 4kllmax(6k2, §k1)CE,
—p1 b1
—2E,(Bfa;) 2 (Bfa,)?
r -p 4
—4 T max (%2, 6¥1)CE, (B2a,) 2 (B2ay)?

~Pa1
> (—ZEl(B%az) :

—4Ck max(8*2, 6%1)E, (B2ay) = 2 f [P dx
1
Finally, we obtain
dL(t )
r¢ ky sk 2
+e| 24 - max(8%2,8%) llucll3
2 —P1
1———2E,(B?a,) 2 \‘
P1

rC

+&
k— ™ max(6k2 §ka )

1

2
(1+5)
P1
Py
+4E,(Ba,) 2

< Jq [u|P@ dx

+2¢ (H(t) + kL max( 5%z, 6"1)CE1)
1

+e(1 ——) 17213 f g(s)ds
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+(1 —en)(g °Vu)

+r|1
— k
_Mmax<6 k121 6 kz 1 >J‘ |u Ik(-X)dx
kq
(3.26)
we have

2 —p1
1———2E;(Biay)z >0
P1
2pa1

since a, > B; Pi-z,
We choose now § small enough such that

2 —p1
/1 ~ -~ 2, (Blay) - \

1
2
(1+5)
D1

A
+4E;(Bfay) 2
and taking n > %. Once § and ) are fixed, we choose

|>0

1

\— ;—Cmax(dkz, §1)

¢ small enough such that:
ek, — 1) _ ke _ Kk
1-en>0,11- k—max (6 k1-1,§ kz—l)
1

> 0andL(0) >0
Therefore, the inequality (3.26) becomes

dL(t
o . H(E) + llugll? + f [uP@dx + El]
Q
(3.27)

de

for some k > 0.
Next, it is clear that, by Young’s inequality and
Poincaré’s inequality, we get

2
+Vullz
for some 1 > 0. (3.28)
From (3.11), we have
2
IVul|3 < E1 +—J lu(x, t)|P™)dx, t = 0.

Thus, the 1nequahty (3.28) becomes:
1O < ¢ + el + [ [ulPdx
Q

+ E; | for some ¢ > 0.

(3.29)
From the two inequalities (3.27) and (3.29), we
finally obtain the differential inequality:

dL(t)
4 2 > uL(t) for some u > 0.
(3.30)
Integrating the previous differential inequality

(3.30) on (0,t) gives the following estimate for the
function L:

L(t) = L(0)ekt. (3.31)

E-ISSN: 2224-2880

457

Soufiane Benkouider, Abita Rahmoune

On the other hand, from the definition of the
function L (and for small values of the parameter &),
it results:

1
L(0)e* <L(t) < —f Iulp(")dx
p1/q

1
S—max(f |u|p2dx,f |u|p1dx>
P1 Q Q

(3.32)
From the two inequalities (3.31) and (3.32) we
deduce the exponential growth of the solution in the
LPz and LPt-norms.
Now, we state the blow-up results as follows.

4 An Upper Bound for the Blow-
Up Time: The Case 2 < k; < k, < p,

In this section, we prove the blow-up result under
the condition of 2 < k; <k, <p; with positive
initial energy and use C to denote a generic positive
constant.
Theorem 4.1 For any fixed § < 1, assume that u,
Uy satisfy

1(0) <0, E(0) < 6E;.
4.1
and (2.6) holds. Suppose that
J g(s)ds
° 2
< _ P — —
p1—2+[(1-8)2(py —2) +2(1 - 8)]

4.2)

where 6 = max{0,5}. Under the condition of
Lemma 3.1, if
2n
ZSkl Sk(x)SkZ <p1§p(x)Sp2 Sm;
the solution of problem (1.3)-(1.5) blows up in a
finite time Tj, in the sense that

Jim (e (OI3+1 Vu(e) 13) = +oo. (4.3)

Furthermore, the upper bound for T; can be
estimated from above by
1-a)
hs———-—,
xea(L(0))1-a

(4.4)
where the positive constants a, C, y, and € to be
determined later.

Before the proof, we want to introduce some
materials and lemmas firstly we provide the
following functions:
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1 1
E@® =5(g° )+ Il

1 t
5<1 - [ gtspas ) wa

p(x)
e )|u| dx,
4.5
t
I(u(t) = <1 —fo g(s)ds)
I Vu(t) 15+ (g ° Vu)(t)
|u|p(")dx,
Q
(4.6)

J(u®) = % [(1 —~ fo t g(s)ds)

HVu@)H%+(goVu)@ﬁ

1
_f —— |u|P@dx,
ap()

(4.7)

1
E() = E(u(®),u, () =J() + E”ut(t)”%
(4.8)
Secondly, we need the following two lemmas.
Lemma 4.2 Under the same conditions as

in Theorem 4.1, one has
It) <0

t
py—2 <1—f g(s)ds) |V 12
0

2
P +(g o Vu)

and

E, <

forallt € 0,T). 4.9)
Proof. By (3.2) and (4.1), we have E(t) < 6E;, for
all t € 0,T). Besides, we can get I(t) < 0 for all
t € 0,T). If it is not true, then there exists some t* €
0,T) such that I(t*) = 0. So I(t) <0 for all 0 <
t <thie

< g(S)O‘S) I Vu(t) I3+ (g o Vu)(t)

< j [P < flull%,

0<st<t*

(4.10)
By the proof of Lemma 3.4, we have
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_ p _ 2 2
2p, P 2p1 Ilu”p()

(1-J; goras) 1wz
+(g o Vu)(t) |
2 2z
P <(1 — fot g(s)ds) Il Vu(t) ||%>p1)
+(g o Vu)(t)
i t
_Ppi—2 <1 _f 9(5)d5> Il Vu(t) 15
0

+(g o Vu)(0)
o<ste<t

)

(4.11)
Joined with (4. 10) and (4.11), we obtain

f [ulP@dx > 2Py E, >0,
pL—2

0<st<t"

By the continuity of t — fQ [u(®)|P@dx, we get
u(t*) = 0. By (4.7), we get

g <P ? j () PO dx < J(u(E))
Q

which contradicts ](u(t*)) <E(t") <E,. By
repeating the previous step, we obtain (4.9). This
completes the proof.

We set

H(t) = 8E; — E(t),

(4.12)
then under the condition of theorem 4.1, we obtain

1
H(0)=7] Jvuf a1 (gova)

t)”Vu”i + rjg|ut|k(x) dx>r 5 D=0

(4.13)
and

. 1
0<H( SHt<5E+f———uM@m
(0) ) 1 Qp@)ll

p1—2 1
< <6p1 +—)J [u|P@ dx.
2py p/ g

(4.14)
It’s easy to examine the following lemma
Lemma 4.3 Under the assumptions of Theorem 4.1,
we have

lu@®llp, = C <—H(t) = llucll = (g » Vw)(©)

+ f |u|p(x)dx>
Q

foranyu € H}(Q) and2 <s < p,

(4.15)
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Proof of Theorem 4.1. Assume by contradiction that
(4.3) does not hold true. Then for all T* < 4+oc0 and
allt € 0,T*], we have

llue (ON1Z+1 Vu(t) 15< ¢4, (4.16)
with C; is a positive constant. Motivated by [19], we
set the function

L(t) = H%(t) + sf

utudx+szf |Vu|?dx, t
Q 2J)q

=0,

(4.17)
where € > 0 is a positive constant to be chosen
later, and

. (P12 pi—k
< [ S o S S
0<a< mm( 2, (kz_l)) <1, (4.18)

derivative the Eq (4.17) and using Eq. (1.3)-(1.5) we
obtain

L(©) = (1— QHS(OH'(®) + ellu DI
te j [ulP® dx — ey |Vu(O)ll2
N

—erf [u ¥ 2 yudx
Q

+£f Vu(t).jtg (t — s)Vu(s)dsdx.
0 0

(4.19)
Applying the relation

piH(®) = pi8E =2 lue ()l
~B(1- f; g(s)ds) Il Vu(®) 13
1
—2 g2 VW®) +p1 fy 5 [ulPPdx

and Young's inequality, we get from (4.19)
that
L'(®)=0Q-aH*®)H'(t)

1% a
+e (145) (Ol — ep18E; + ep, HD)

+¢ l% <1 — fo g (s)ds> - 1] IVu(®)|I3

—erj [ue|¥2 yudx + s% (g o Vu)(t)
0

1
+¢ J. u|P™ dx — f —u pmdx)
( nl | pl 0 p(x)l |

te ] g (t — )[IVu(©)|3ds

+£ftg (t—1s) f Vu(t). (Vu(s) — Vu(t))dxds
0 0
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>r(l-— a)H‘a(t)f lu, @ dx
Q
p1 a
+e (145) (O = ep18E, + epyH (D)

-(3-1+%) ftg(s)ds IO
0

+& (& - r]) (g o Vu)(t) — erf [ue ¥ 29, udx
2 Q
(4.20)
By (4.9), estimate (4.20) becomes
'tz r(1- a)H_a(t)f [u, ¥ dx
Q
+e (1+2) I (OI13 + epy O
&y (P1
+e{(1-6) (7 1)
-85 E-1)|)
- 1
™ > 1l Vu(t) 113
t
J g(s)ds
0
& (P1 1
+e (1-4) (7 B 1) (g o Vu)(t)
+(1—mn)
_ k(x)-2 d
srj;l |1 | uudx
(4.21)

Now, by using Young’s inequality, we estimate the
last term in (4.21) as follows

f [ue |2y, udx
Q

slf S [y £
ki Jg
ky—1
k>
V6 >0

_ k@)
J 8 k@-1|y, |*®)dyx,
Q

(4.22)

Therefore by taking § so that
__k®)
6 ko-1 = MH™%(t)
for a large constant M to be specified later, and
substituted in (4.22)
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[ el

Q

< lf Ml—k(x)|u|k(x)Ha(k(x)—1)(t)dx
kiJa

k,—1
L

MH™4(t) f [ug [¥®) dx
Q

Then estimate (4.21) takes the form

ky—1

L’(t)Zr[(l—a)—e M

2

H©) [l @+ & (14 2) I o)1
Q 2

1-k,

+e (le(t) —
+e{( -8 (% ~1)

_ [(1 ~ &) (% _ 1) + %] fo g(s)ds} Il Ve 113

re[a-6H (G -1)+a-n]@evwe©

Helk2=1) (1) f |u|k(x>dx>
Q

Applying (4.2) and picking
n < (1—8)(%—1)“,

we can get
L't)=r[1-a)

ky—1
—e( 2 )M] H—a(t)f I, [F e
k> Q
b1 2
e (145) @l

1-k,

M
+e <p1H(t)— He®k2=D(¢) f |u|k<x>dx>
1 Q

+eMy || Vu(t) 154+ eMy(g o Vu)(b),
(4.23)
where

M2=[(1—S)(%—1)+(1—77)]>0.
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Using
Ha(kz_l)(t)f |u|k(x)dx
Q
p1—2 1
<C (6 e —)
kZPl kp1
" ’U.(t) ” 2+p1a( 2_1)

pQ)
hence (4.23) yields
Lt)y=r [(1 —a)—¢

a(kz—1)

ky—1
k

O [l @dx + +e (14 2) I 01
Q 2

M

¥ ( H(®) Ml_klc(8p1‘2+ l)a(kz_l)
g — —

P1 k1 2py P1
I u(t) "I;i')"pla(kz_l))

+eMy |l Vu(t) 15+ eM,(g o Vu)(t).

(4.24)
We then use Lemma 4.3 and (4.18), for s =k, +
pra(k, — 1) < pq, to deduce from (4.24)

(1-a)
L' =r l_gkzk_:lM
+e (1+5) I (013
+eMy || Vu(t) I3+ eMy(g o Vu)(t)
+e[p H(E) — CoMY
y (—H(t) — I3 - (g o Vu)(t)>]

+o(w)
1-a)
= r[

H™¢ f |ug ¥ dx
Q

ko, —1 -a k(x)
g2 M H™4(t) fﬂ [ug | dx

ka
re (1450 + GMIR) Ilu (013

M
2 2
+eMy || Vu(t) 5+ ¢ (+C2M1_k1) (g e Vu)(t)

+e(py + CMY)H(E) — eC,M*1p(w)
(4.25)

. By (3.1) and

_C(ap1—2 , 1 a(kz—1)
where C, = " (6 2m1 +p1)
(4.12), we obtain

HO) = — 0(w) — = e O = = [IVu (D113
()—pZQ(u) zut()z 2 u ()13

! \%
- (g Vw(®),

writing p; = 2M3 + (p; — 2M3), where M5 =

min{M;, M,}, the estimate (4.25) yields
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1-a)
L't)=>r _ (kz - 1) _af |ue ¥ dx
k, a
ve (14504 MR - M) Il (D13
+e(My — M3) |l Vu(t) 113

+e(My + CoMY%1 — M3)(g o Vu)(t)
+e(py — 2M5 + MY )H(t)

2M
+£( > CZMl‘kl) o(w).

b1
(4.26)

We choose M large enough, (4.26) becomes
(1-a)-
! k,—1
L(t)y= r s( 2 )M H
ks
e (1O F IOl +000)
+(g o Vu)(¢)

~a(p) f g ) dx
Q

4.27)

for some positive constant y. Once M is fixed, we
choose € small enough such that

(1—a)—s< 2 )M>O,

2
and

L(0) = H'7%(0) + sf ugu,dx + 7 ||Vu0||2 >0
Q
Hence, we have
2

+(g o Vu)(t)
On the other hand, we have
1

H179(¢) \E
LTla(t) = +£fﬂut(t)u(t)dx |

\ el V(o) I3 /

l/H(t) + J u: (Hu(t)dx ﬁ\|

+l Vu(t) 152
(4.29)

By Hoélder’s and Young’s inequalities, (4.16), and
Lemma 4.3, we get

|, ue (Du(®)dx| < c<||u<t>||z||ut<t>||z)ﬁ
||ut(t>||1 @
(nu(t)nl +||ut(t>||2)

< C(H® + llu (D3 + o) + (g - V)(®),
(4.30)

< Cllu(t)||1
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And

2 1
I Vu(t) I13°< ¢

By Poincaré’s inequality and (4.16), we have
r1

Il u(t) ||p()S Bfl I Vu(t) ||§1S BlplCl2
(4.32)
By virtue of (4.14) and (4.32), we get H(t) is
bounded. There exists a positive constant C53 such
that

(4.31)

H(t) + Cf%‘ < C3H(t)
(4.33)
Therefore, we obtain
T H(®) + llu (D115 + o(w)
Lra(t) < C( +(g Z Vu)z(t) )

By joining (4.28) and (4.34), we reach that
& 1
L'(t) = %Lﬁ(t)

(4.34)

(4.35)
A simple integration of (4.35) over [0, t], yields that
a 1

, Vt=0

L 1-a(0) — t
C(1-a)
This shows that L(t) blows up in a finite time T,

where
1-a)C

xea[L(0)]1-a
L)Ca, then we obtain T} <

xea[L(0)]1-a
T*, which contradicts our

completes the proof.

T, <

If we choose T* >

assumption. This

S An Upper Bound for the Blow-
Up Time: The Case k(x) =
2,Vx

In this section, we prove a finite time blow-up
result. We need the following lemma.

Lemma 5.1 (/14], Lemmal.l and, [16],
Logarithmic convexity methods) Assume that @ €

C2([0,T)) satisfying:

o—1+a)(pH? =0, a>0
and
p(0)>0, ¢'(0)>0,
then
»(0)
t ti<t)y=———m.
(p — 00ast — 1510 a(p’(o)

Theorem 5.2 For any fixed § <1, suppose that
(2.6) holds and uy, u, satisfy

1(0) < 0, E(0) < SE,. (5.1)
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Assume that

f g(s)ds
0

p1—2
pr—2+[A—-8)2p +28(1-8)]

(5.2)
where § = max{0,5}, and suppose further that
Jo wourdx >0 for 0<E(0) <E;. Under the
assumption of Lemma 3.1, if

<

2n
2=k =k(x)=k; <p, <p(x) <p; Sm:
the solution of problem (1.3)-(1.5) blows up in a
finite time T, in the sense that

t
|[|| u(t) II%+J Il Vu(s) 113 ds]|
0

lim | ¢ | = +oo
t-T, 2
[ +f Il u(s) Iz ds J
0

Further, the upper bound for T, can be estimated by
2(p1 = 2) Il ug 13+ 8(ylIVuqlI3 + rlluoll3)?
(pr—2)3 fQ U updx

with some t > 0 and ¢ is defined in (5.1).
Proof. Assume by contradiction that the solution u

is global. Then for any T >0, we define the
functional ¢ as follows

t
@) =Nl u(t) 15+ )/J Il Vu(s) I3 ds
0

T, <

)

t
+rf Il u(s) I3 ds
0

+(To — O) [y 1IVuoll3 + rlluoll3]
+(t + ty)?, t<T,
(5.3)

where t,, T, and [ are positive constants to be

chosen later. Then using equation (1.3) and
integration by parts, to get

0'(1)=2] u, (1)u(1)dx

+27/J‘;.J‘QVuS (s) Vu(s)dxds

J‘;J'Qus (s)u(s)dxds+2(1+1,).
(5.4)

And
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9" (1) = 2llue Ol + 2 [, uer(Ou(®)dx

—2(1- f; g(s)ds) Il Vu(®) 13
+2y [, Vue (9. Vu(t)dx
+2r [ u (Ou(t)dx + 2.
(5.5)

Furthermore
@"(t) = 2|lu (D)||2
t
i <1 _ f g(s)ds> V() 112
0

1 t
— | 9 @dslvu@ - eg o v (©) + 2
0
+p1(g o Vi) + pyllucll3
t
91 (1- [ 9 s vl - 2,50
0

> (p1 + DlluOII

+ ((m -2 (p-2+5) | E (s)ds) I7ull

+(p1 — €)(g o Vu)(t) — 2p,E(0) + 2,
(5.6)

where t,, Ty are constants to be determined later.
Case 1: If § < 0, then E(0) < 0, we choose € = p;
in (5.6). Then, by (5.3), (5.4), (5.5), (5.2), and (5.6),
we have

0(0)=[ w3 (x)dr+ T, [ [Vitg|[ + [ [

+1, >0

)

p'(0) = 2f U ugdx + 2ty > 0;
Q

\p''(t) = 2 —2p,E(0) > 0Vt = 0.

Therefore ¢ and ¢’ are both positive. Thus, from
(5.3)-(5.6) and (5.8), the following inequality,
inferred for all ({,n) € R%, which implies that

2
p(D)e" (t) — pl: (¢'(®)* = 0.

(5.7)
Case2: If 0 < 6 < 1, then
0 <E(0) <dE; <Ej,
we choose € = (1 — §)p; + 26 in (5.6), using (5.2)
Then, we have
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w (0,
{22 st

+(p,=2)0(goVu)(t)-2pE(0)+2

= (D) o) 3 -2) [1- g o) v (g ¥) 1))

¢'(1)2(p +2)

2p,E(0)+2
> (p,+2)|u, () +2p, (5E ~ E(0))+2> 0,
(5.8)
Then, by (5.3), (5.4), (5.5), (5.2), and (5.6), we have
(0 = [ wgdx + 53
Q

+TolyIVuoll3 + rllugll3] > 0
@' (0) = 2] u updx + 2ty > 0;
Q

\p"'(t) =2 —2p,E(0) > 0Vt = 0.
Therefore ¢ and ¢’ are both positive.

Then using Lemma5.1, to infer
@(t) > oo
as t > T*, where,

2 1l ug 13+ 2To [y [IVuoll3 + rlluoll3] + 2t§
(p1 — Z)UQ uuedx + to) .

*

Now we go to choose appropriate t, and Ty. Let ¢,
be any number that depends only on p;, Ey—
E(0) and [lugll2q) as
2(rIVuolIZ + 7lluollD)
to =
(p1—2)
Fix ty, then T, can be picked as
2 Il ug I3+ 2To[yIVuoll3 + rlluoli3] + 2t§

DL — 2)(fQ U updx + to)

0=

so that
Ty
2 llug 15+ 2t2

- Y”Vuo”%
(p1 — 2)ty + (p1 — 2) uudx—2<
P1 ot (P fQ 1Ug SNTE

Therefore the lifespan of the solution u(x,t) is
bounded by
2 1l up 15+ 2¢2

t>t0 (p1 —2)t+ (py — Z)f U updx —
27 IVuoll3 + rlluoll3)

T"<i

Z(Pl —2)% ll up 5+ 8(ylIVuoll5 + 7’”“0”2)2
(p1—2)3 fQ Uy updx

E-ISSN: 2224-2880

Soufiane Benkouider, Abita Rahmoune

6 A Lower Bound for the Blow-Up
Time: The Case k; > 2.

In this section, by using a first-order differential
inequality technique for a suitably defined auxiliary
function and some Sobolev-type inequalities, we
give a lower bound for the blow-up time T for the
solution u(x, t) of the problem (1.3)-(1.5) if

2<ki <k(x) <k, <p:
2n
<p() <p, <, (6.1)

n-2'
holds.
Theorem 6.1 Under the condition of Lemma3.l,
assume that (6.1) holds, then the solution of
problem (1.3)-(1.5) will blow up in finite time T.
Moreover, the blow-up time T can be estimated
from above by T, where

T

o |27 P iz 41 Vg 13)*772

pr—2

DL — 2 272-p5 |
oln 2 2 [Pz (||u1||2+|lvuo I1z)="P2
+|Q|
, —2

= max

(6.2)
and |Q] = [, dx.
Proof. We assume that u(x, t) blows up at time T
and define the auxiliary functional

1 , 1 ‘
o) = E”“t(t)”z +§<1 —J;) g(s)ds)

I Vu(e) 15+ (g ° Vu)(t)
(6.3)
Taking a derivative of ¢(t), and using (1.3), we get

9'() = f e (Due (£)dx

Q
t
+<1 —f g(s)ds)f Vu(t). Vu,(t)dx
0 Q
—g(®) 11 Vu(t) I3+ (g" e Vu) ()
+f Vut(t)f gt —s)(Vu(t) — Vu(s))dsdx
Q 0
= —ylIVu (Ol — gt Il Vu(®) I3+ (g'Vu)(t)
+J weu|uP@2dx —r | |u | dx
Q
sJQutu|u|p(x>-2dx

(6.4)
Using Young’s inequality, we have

Volume 22, 2023



WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2023.22.51

UQ [u|PCI~2yu, dx|

< %fﬂ ufdx + %fﬂ |u|?P)=2dx

< %fﬂ uZdx

max{ [, |u|?P2"%dx, [, |u|*P+~*dx}
~Jq ufdx

+%max{61 IV 15772, ¢, 1 Vu 157272

N+
|_ N

1 1 c 4 C -1
Sg(p+5max{lm—1_1(pp1 ,m—z_l(ppz }
(6.5)

where
P12
2

_

C1 =——

2
By (2.6), (6.4), and (6.5), we can obtain that

, 11 G o, G
w(t)S§<p+§maX{lpl_1<p”1 1 P }

(6.6)
Integrating inequality (6.6), we have
@ (t)
c 1\ i
2-p 1] -a-2)at\ 1
| (0027 + |23
Gy
< max (Pt 1
(p(0))2 P2 + 2] o= (a-23t\ 7+
¢ [P2—1
) B Cz
[p2—1
Let
(o
0 < T,:= max In (p(0))=7P1
p1— 2 Gy
] 2 [lpz—l 5
+ 1}, In (p(0))“7P2
P2 — 2 G, )
+1 ) < oo,
6.7

then @(t) blows up at time T*. Hence, u(x,t)

discontinues at some finite time T < T, that is to

means, u(x,t) blows up at a finite time T.

Next, we estimate T. By the values of Cy, C,, we

have

p1-1
Cy

(p(0)*Pr+1<

3p1—4 p1-2
2~ 2 P (flug I3 +1Vuoli3)?"P2 4|0 2
p1-2 ’
1l 2
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lpz—l )
@O 1
3py—4 p2-2
275 P2 (flug I3+ Vug 12)27P2 + 1) 2
< 72
101"

The above pair inequalities coupling (6.7) give T <
T* < T, where T is fixed in (6.2).

7 General Comments and Issues

This paper is devoted to studying a model of a
nonlinear viscoelastic wave equation with damping
and source terms involving variable-exponent
nonlinearities (1.3)-(1.5).

1. We prove that the energy grows exponentially,
and thus so the LPz and LPi-norms. For the case
2<k(.)<p(.), we reach the exponential growth result
in a blow-up in finite time with positive initial
energy and get the upper bound for the blow-up
time.

2. For the case k(.)=2, we use the concavity method
to show a finite time blow-up result and get the
upper bound for the blow-up time of the solutions.

3. Furthermore, for the case k(.)>2, under some
conditions on the data, we give a lower bound for
the blow-up time when the blow-up occurs.

-The natural question that we can ask is whether the
obtained decay rate (3.32) is optimal.

-The second question is the extension of our results
to the case of other boundary conditions than (1,4),
especially the proof of the lack of exponential
stability.

-The last interesting question we note here is
proving the stability of (1.3)-(1.5) in the whole
space R™ (n > 1) (instead of Q).

Acknowledgments:
The authors would like to sincerely thank the
anonymous referees and the handling editor for their
reading and relevant remarks/suggestions on several
points of the paper.

References:

[1] R. Aboulaich, D. Meskine and A. Souissi.
New diffusion models in image processing.
Comput. Math. Appl., 56.4,2008, 874—882.

Volume 22, 2023



(2]

[9]

[10]

[14]

WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2023.22.51

R. Abita. Existence and asymptotic stability
for the semilincar wave equation with
variable-exponent nonlinearities. J. Math.
Phys. 60, 122701 (2019).

R. Abita. Lower and upper bounds for the
blow-up time to a viscoelastic Petrovsky wave
equation with variable sources and memory
term. Applicable Analysis 2022.

R. Abita. Blow-up phenomenon for a
semilinear pseudo-parabolic equation
involving variable source. Applicable Analysis
2021.

E, Acerbi, G, Mingione. Regularity results
for stationary eletrorheological fluids. Arch.
Ration. Mech. Anal, 164, 2002, 213-259.

O. Claudianor, O. Alves and M. M.
Cavalcanti. On existence, uniform decay rates
and blow up for solutions of the 2-d wave
equation with exponential source. Calculus
of Variations and Partial Differential
Equations, 34, 03, 2009.

S.N. Antonsev. Blow up of solutions to
parabolic equations with nonstandard growth
conditions.  J. Comput. Appl. Math, 234,
2010, 2633-2645.

S.N. Antontsev and S. I. Shmarev. FElliptic
equations with anisotropic nonlinearity and
nonstandard growth conditions, HandBook of
Differential Equations, Stationary Partial
Differential Equations, volume 3. 2006.

S.N. Antontsev and S. I. Shmarev. Blow-up
of solutions to parabolic equations with
nonstandard growth conditions. J. Comput.
Appl. Math., 234(9), 2010, 2633-2645.

S.N. Antontsev and V. Zhikov.  Higher
integrability for parabolic equations of
p(x,t)-laplacian type. Adv. Differential
Equations, 10(9), 2009, 1053—-1080.

Y. Chen, S. Levine and M. Rao. Variable
exponent, linear growth functionals in image
restoration. SIAM J. Appl. Math., 66, 2006,
1383-1406.

C.M. Dafermos. Asymptotic stability in
viscoelasticity. Arch. Rational Mech. Anal.,
37,1970, 297-308.

L. Diening, P. Héisto, P. Harjulehto and M.
Ruzicka. Lebesgue and Sobolev Spaces with
Variable Exponents, volume 2017. in:
Springer Lecture Notes, Springer-Verlag,
Berlin, 2011.

V. Kalantarov and O.A Ladyzhenskaya. The
occurence of collapse for quasilinear equation
of paprabolic and hyperbolic types. J. Sov.
Math., 10, 1978, 53-70.

E-ISSN: 2224-2880

465

Soufiane Benkouider, Abita Rahmoune

[15] O. Kovacik and J. Rakosnik.  On spaces
LPX (), and WP (), volume 41. 1991.
L.E. Payne. Improperly posed problems in
partial  differential equations.  Regional
Conference Series in Applied Mathematics.,
1975, pages 1-61.

H. Song and C. Zhong. Blow-up of solutions
of a nonlinear viscoelastic wave equation.
Nonlinear Analysis: Real World Applications,
11,2010, 3877-3883.

G. Todorova. Cauchy problem for a nonlinear
wave equation with nonlinear damping and
source terms. C.R. Acad. Sci. Paris Sér. 1
Math., 326, 1998, 191-196.

Y. Wang. A global nonexistence theorem for
viscoelastic equations with arbitrary positive
initial energy. Applied Mathematics Letters,
22 (2009) 1394-1400.

[16]

[17]

Contribution of Individual Authors to the
Creation of a Scientific Article (Ghostwriting
Policy)

Soufiane Benkouider and Abita Rahmoune wrote
the main manuscript text. All authors reviewed the
manuscript.

Sources of Funding for Research Presented in a
Scientific Article or Scientific Article Itself
No funding was received for conducting this study.

Conflict of Interest
The authors have no conflict of interest to declare.

Creative Commons Attribution License 4.0

(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the

Creative Commons Attribution License 4.0

https://creativecommons.org/licenses/by/4.0/deed.en
US

Volume 22, 2023





