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Abstract: - The paper considers two forms of models: seasonal and non-seasonal analogues of oscillations.  The 

paper analyzes the basic adaptive models: Brown, Holt, and autoregression. The parameters of adaptation and 

layout are considered by the method of numerical estimation of parameters. The mechanism of reflection of 

oscillatory (seasonal or cyclic) development of the studied process through a reproduction of the scheme of 

moving average and the scheme of autoregression is analyzed. The paper determines the optimal value of the 

smoothing coefficient through adaptive polynomial models of the first and second order. Prediction using the 

Winters model (exponential smoothing with multiplicative seasonality and linear growth) is proposed. The 

paper proves that the additive model allows building a model with multiplicative seasonality and exponential 

tendency. The paper proves statements that allow to choose the right method for better modeling and 

forecasting of data. 
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1 Introduction 
Effective analysis, modeling, and forecasting of 

financial and economic processes form the 

foundation for making informed management 

decisions across all levels of the economic 

hierarchy. However, this task is inherently complex 

and ambiguous, necessitating the use of advanced 

models and methods to accurately capture the 

nuances of modern financial and economic 

processes, [1]. 

Most often, in the practical construction of 

forecasts of economic indicators, their seasonality 

and cyclicality are taken into account. Different 

mathematical apparatus is used to predict non-

seasonal and seasonal processes. The dynamics of 

many financial and economic indicators have a 

stable fluctuating component. The study of monthly 

and quarterly data is often observed within the 

annual seasonal fluctuations, respectively, in the 

period of 12 and 4 months. When using daily 

observations, fluctuations with a weekly (five-day) 

cycle are often observed. In this case, to obtain more 

accurate forecast estimates, it is necessary to 

correctly reflect not only the trend but also the 

oscillating component. The solution to this problem 

is possible only with the use of a special class of 

methods and models, [1], [2], [3], [4], [5]. 

Seasonal models are based on their non-seasonal 

counterparts, which are supplemented by means of 

displaying seasonal fluctuations. Seasonal models 

can reflect both a relatively constant seasonal wave 

and a wave that changes dynamically depending on 

the trend. The first form belongs to the class of 

additive, and the second - to the class of 

multiplicative models, [2]. Most models have both 

of these shapes. The most widely used in practice 

are Holt-Winters models, [6], and autoregressions, 

[7]. 

In short-term forecasting, the dynamics of the 

development of the studied indicator at the end of 

the observation period is usually more important 

than the trend of its development, which has 

developed on average throughout the prehistory 

period. The property of dynamic development of 

financial and economic processes often prevails 

over the property of inertia, so adaptive methods 

that take into account information inequality of data 

are more effective, [8]. 

Adaptive models and methods have a mechanism 

of automatic adjustment to change the studied 

indicator. The forecasting tool is a model, the initial 

assessment of the parameters of which is carried out 

on the first few observations. Based on it, a forecast 

is made, which is compared with actual 

observations. Next, the model is adjusted according 
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to the magnitude of the forecast error and is used 

again to predict the next level, until all observations 

are exhausted. Thus, it constantly "absorbs" new 

information, adapts to it, and by the end of the 

observation period reflects the current trend, [9], 

[10]. The forecast is obtained as an extrapolation of 

the latest trend. In different forecasting methods, the 

process of setting up (adapting) the model is carried 

out in different ways. Basic adaptive models are: 

 Brown model, [11]; 

 Holt-Winters model, [6]; 

 autoregression model, [7]. 

The first two models belong to the average mean 

scheme, the latter to the autoregression scheme, 

[12]. Numerous adaptive methods based on these 

models differ in the way of numerical estimation of 

parameters, determination of adaptation parameters, 

and layout. 

Under the moving average approach, the current 

level estimation is a weighted average of prior 

levels, with decreasing weights assigned to 

observations as they become further removed from 

the most recent level. In essence, observations 

closer to the end of the observation period hold 

greater informational value, [13]. 

According to the autoregression scheme, the 

estimate of the current level is the weighted sum of 

the orders of the models "p" of the previous levels. 

The information value of observations is determined 

not by their proximity to the simulated level, but by 

the closeness of the relationship between them, [14], 

[15], [16]. Both of these schemes have a mechanism 

for reflecting the oscillating (seasonal or cyclical) 

development of the studied process. 

Autoregressive Integrated Moving Average 

(ARIMA) is a popular method for forecasting time 

series data using a single variable, [17]. The 

problem with ARIMA is that it doesn't support 

seasonal data. This is a time series with a repeating 

cycle. ARIMA expects data that is not seasonal or 

has a seasonal component removed, for example 

seasonally adjusted using techniques such as 

seasonal variance. This method supports direct 

modeling of the seasonal component of the series 

called Seasonal Autoregressive Integrated Moving 

Average SARIMA, [14]. 

SARIMA, an extension of ARIMA, is 

specifically designed to handle univariate time 

series data that exhibit seasonal patterns. The model 

incorporates seasonal terms that closely resemble 

the non-seasonal components but account for 

reversed shifts in the seasonal period. 

Prophet is a technique for predicting time series 

data through an additive model that captures non-

linear trends using yearly, weekly, and daily 

seasonality, along with holiday effects. The method 

is particularly effective for time series with 

significant seasonal patterns and a considerable 

historical data set. Prophet is highly resistant to data 

gaps and trend shifts, and can typically handle 

outlier values with ease, [18]. 

The purpose of the paper is to develop the 

adaptive methods of modeling and forecasting the 

time series based on a combination of the adaptive 

methods of predictive modeling: 

 Holt-Winters model, [19], 

 moving average model, [20]. 

Time series analysis is predominantly concerned 

with predicting real values, which can be 

characterized as regression problems. As a result, 

the evaluation metrics described in the paper will 

concentrate on techniques for assessing the accuracy 

of predictions for continuous variables. 

The main contribution consists of the following: 

 the adaptive polynomial models used 

sequentially allow to increase in the prediction 

accuracy, 

 the data interpretation algorithm for 

adaptive methods of modeling and forecasting time 

series is developed, 

 the comparison between the Winters model 

and the Tayle-Wage model shows the good quality 

of the proposed predictive model. 

This paper consists of several sections. In the 

Methods and Means section, the data interpretation 

algorithm for adaptive methods of modeling and 

forecasting time series is given. The next section 

presents the result of the calculation and data 

interpretation. The last section concludes this paper 

by containing the probable decision of appraisal 

technique. 

 

 

2 Methods and Means 
The time series in adaptive models are presented in 

the form (Formula 1):  

ut = f(a1t, a2t, … , apt, t) + et, (1) 

where t – time indicator; a1t, a2t, … , apt – 

coefficients of the adaptive model at the moment of 

time t.  

Depending on the shape of the trend and the 

presence or absence of a periodic component, a 

certain type of adaptive forecasting should be 

chosen. To do this, you need to find the optimal 

value of the smoothing parameters β1, β2, β3. They 

should be used to calculate the coefficients 

a1t, a2t, … , apt. 

if the smoothing parameters change, the prediction 

error increases. However, this approach will not 
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bring the quality of forecasting. The research 

proposes an algorithm for determining the optimal 

values of smoothing parameters. 

Also, it is important to analyze the effectiveness of 

the adaptive approach in other methods. Therefore, 

it is proposed to develop an algorithm that allows 

you to take into account the accuracy of the forecast, 

the complexity of the model, and its adequacy and 

compliance with the object under study. 

There are two groups of adaptive models: linear 

and seasonal. 

According to Formula 2, the forecast of linear 

growth models is shown, [31]: 

ut+τ = a1t + a2tτ, (2) 

where a - the number of steps of the forecast; 

a1t, a2t - the coefficients of the adaptive model at a 

moment of time t 

Adaptive models of linear growth include the Holt 

model, the Braun model, and the Box-Jenkins 

model. The difference between linear growth 

models lies in finding the parameters a1t, a2t, [31]. 

The parameters of the Holt model are found in 

Formula 3: 

{
a1,t = β1ut + (1 − β1)(a1,t−1 + a2,t−1)

a2,t = β2(a1,t − a1,t−1) + (1 − β2)a2,t−1
 

 

(3) 

Formula 4 presents the calculation of parameters 

according to the Tayle-Vage model, [31]: 

{

a1,t = β1ut−1 + (1 − β1)ut̂
a2,t = a2,t−1 + β1β2et

et = ut − ut̂

, 

 

(4) 

where β1, β2, β3 are the smoothing coefficients that 

take values from 0 to 1, ut - the real value of the 

series level at the t-th step, ût − the predictive value 

at the t-th step, et - the error at the t-th step. 

Characterizing the calculation of the parameters of 

Formulas 3-4, it is possible to highlight a certain 

feature of adaptive models. It is necessary to 

calculate a1t, a2t at each step. For the model to give 

better results, it is necessary to find β1, β2, β3, which 

will most closely correspond to the time series. 

The adaptive monoparameter Braun model is used 

for stationary time series based on simple 

exponential smoothing: 

ŷt+1 = St, St = αyt + (1 − α)St−1, t
= 1,2,3,… 

(5) 

where yt+1 is the prognostic value of time series 

level in time (t+1), Stis exponential mean, αis 

adaptation coefficient, yt is the current time series 

value. 

In this context, the model's value is a weighted 

average of both the current true value and past 

model values. The weight, referred to as the 

smoothing factor or alpha (α), dictates the rate at 

which the model "forgets" the most recent actual 

observation. A smaller α places more emphasis on 

earlier model values, resulting in a smoother series.  

Taking the adaptation coefficient α and the 

warning period τ, it is necessary to approximate the 

series using an adaptive polynomial model. 

The Data Interpretation Algorithm for Adaptive 

Methods of Modeling and Forecasting Time Series 

(DIAAMMFTS) is developed in the paper. 

DIAAMMFTS consists of the following steps: 

Procedure 1:Zero order (р = 0); 

Procedure 2:First order (р = 1); 

Procedure 3:Second order (р = 2); 

Procedure 4:Assess the accuracy and quality 

of forecasts; 

Procedure 5:Make a forecast. 

All procedures of DIAAMMFTS are presented 

below. 

 

Procedure 1. 
Procedure 1 developed as a sequence of the 

following steps: 

1. Let ŷ0 = y0. 

2. Append arrayŷusing the following formula: 

ŷt =  α ∗ yt + (1 − α) ∗  ŷt − 1, where yt is an 

actual value and ŷt−1 is the previous number from 

the prediction array. 

3. Repeat step 2 for all values in a dataset. 

 

Procedure 2. 
So far, we have been able to get from our 

methods at best a forecast only one point ahead (and 

still nicely smooth the series), this is great, but not 

enough, so we move to the expansion of exponential 

smoothing, which will build the forecast two points 

forward (and also nice to smooth out a number). 

This will help us to divide the series into two 

components - ℓ (level, intercept) and b(trend, slope). 

The level, or expected value of the series, we 

predicted using previous methods, and now the 

same exponential smoothing can be applied to the 

trend, naively or not very much believing that the 

future direction of change of the series depends on 

weighted previous changes. 

ℓx =  αyx + (1 − α)(ℓx−1 + bx−1),  
     (6) 

bx = β(ℓx − ℓx−1) + (1 − β)bx−1, 
ŷx+1 = ℓx + bx. 

The algorithm is the following: 

1. Let x = 1, ŷ0 = y0, ℓ0 = y0 and . b0 =
 y1 − y0, where y is our initial dataset. 

2. Define new level value using the formula: 

ℓx =  αyx + (1 − α)(ℓx−1 + bx−1). 
3. Define new trend value using the 

formula:bx = β(ℓx − ℓx−1) + (1 − β)bx−1. 
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4. Defineour prediction ŷx+1 = ℓx + bx. 
5. Definex = x + 1 and repeat steps 2-5 until 

x < 𝑛. 

 

Procedure 3. 
This technique involves introducing a third 

component - seasonality - to the model. Thus, it can 

only be applied when a specific seasonal pattern is 

present, which is the case in our scenario. The 

seasonal component accounts for cyclic fluctuations 

around the trend and level, and is determined by the 

length of the seasonal pattern, indicating the 

duration after which the fluctuations repeat. For 

each observation in the season, a corresponding 

component is generated. For instance, if the 

seasonal pattern is weekly (with a length of 7), 

seven seasonal components are derived, each 

representing a specific day of the week. 

Therefore, a new system is defined: 

ℓx =  α(yx − sx−L) + (1 − α)(ℓx−1 + bx−1), 

(7) 
bx = β(ℓx − ℓx−1) + (1 − β)bx−1, 

sx =  γ(yx − ℓx) + (1 − γ)sx−L, 

ŷx+m = ℓx +mbx + sx−L+1+(m−1)modL. 

 

The algorithm is the following: 

1. Let x = 1, L = 24*7  ŷ0 = y0, ℓ0 = y0 and 

.b0 = 
∑ (yi+L−yi)/L
L
i=0

L
, s_num =

y.length

L
, where y is 

the initial dataset, and L is the length of the season 

in our case we set it to count weeks and snum is the 

number of seasons. 

2. Defineavrg using this formula 
∑ yi∗n
L
i=0

L
 

3. Count n = n+1. Repeat step 2 until 

n<s_num. 

4. Defines0using formula 

∑ ∑ yL∗J+i − avrgj
s_num
j=0

L
i=0 . 

5. Define new level using the formula ℓx =
 α(yx − sx−L) + (1 − α)(ℓx−1 + bx−1) 

6. Define new trend using the formula bx =
β(ℓx − ℓx−1) + (1 − β)bx−1 

7. Define new s using the formula sx =
 γ(yx − ℓx) + (1 − γ)sx−L 

8. Define new result using the formula ŷx =
(ℓx + bx + sx) 

9. Count x = x+1. Repeat steps 5-8 until 

x<y.length. 

10. Make a prediction using the formula 

ŷx+m = ℓx +mbx + sx−L+1+(m−1)modL, where m is 

the number that indicates how many steps forward 

we want to predict. 

The current level is now determined by 

subtracting the corresponding seasonal component 

from the current series value, while the trend 

remains constant. Additionally, the seasonal 

component is calculated based on the current series 

value minus the level and the preceding component 

value. With the inclusion of the seasonal 

component, we can now make predictions for any 

desired number of steps (m) into the future. 

 

 

3 Results 
The dataset consists of the dynamics of shares of a 

company for 25 days, [21]. 

The time series xt of some economic indicators 

consisting of n observations will be analyzed.  

In Pandas, [22], there is a ready implementation 

- DataFrame.rolling (window) .mean (). The more 

we set the width of the interval - the smoother the 

trend will be. If the data is very noisy, which is 

especially common, for example, in financial terms, 

such a procedure can help us see common patterns. 

 

3.1 Adaptive Zero-Order Polynomial Model 
The exponential mean has the form, [23]: 

St = αxt + βSt−1, (8) 
β = 1 − α. 

 

Taking the adaptation coefficient α = 0.5 and the 

warning period τ = 1, it is necessary to approximate 

the series using an adaptive polynomial model, [7], 

[8], [9], [10].  

The initial condition for (5) is given as follows: 

S0 = â1,0, whereâ1,0is an average value, for 

example, the first five observations: 

â1,0 =
1

5
∑xt = 511

5

t=1

. 

The forecast model value with the warning period τ 

will be determined from the relation 

x̂t
∗ = St−τ = 511. 

The error is determined by the formula 9: 

E =
(xt − xi

∗)2

xt
 (9) 

Using the Formula 8 first formula and the accepted 

value of α = 0.5, calculate (Table 1). 

For t = 1 

S1 = αxi + (1 − α)S0 = 0.5 ∗ 520 + 0.5 ∗ 511
= 515.5 

x̂1
∗ = S0 = 511 

t = 2 

S2 = 0.5 ∗ 497 + 0.5 ∗ 515.5 = 506.25 

x̂2
∗ = S1 = 515.5 
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t = 3 

S3 = 0.5 ∗ 504 + 0.5 ∗ 506.25 = 505.125 

x̂3
∗ = S2 = 506.25 

 

Table 1. Predicting the time series xt one step 

further (adaptive polynomial model of zero (p = 0) 

order) 

 t xt 
P=0 

St 𝒙𝒊̂
∗ Error 

1 0  511   

1 1 520 515.5 511 0.16 

1 2 497 506.25 515.5 0.68 

1 3 504 505.125 506.25 0.01 

1 4 525 515.063 505.12

5 

0.75 

...      

1 24 545 534.38 523.76

9 

0.83 

1 25 529 531.99 534.38 0.05 

1 26   531.99  

 0.5     

 0.5     

 

We have made a forecast for one step forward, but it 

cannot be considered optimal. To obtain an adequate 

forecast, it is necessary to choose such a value of α 

that the sum of the squares of the deviations and the 

error of the forecast was minimal. To determine the 

optimal value of α, tabulate it from 0.1 to 0.9 in 

steps of 0.1. Then each time we substitute it in the 

calculation model to obtain the forecast and the 

magnitude of the error. Thus, the value of α is 

selected at which the error will also be minimal.  

The distribution of the prediction error with 

respect to the parameter α is shown in Figure 1. 

 

 
Fig. 1: Dependence of forecasting error on α. 

 

Figure 1 shows that the optimal value for the 

zero-order model is α = 0.4, which is determined 

based on the minimum total error E = 8.85. The 

results of the forecast are shown in Figure 2. 

Fig. 2: Forecasting results based on a zero-order 

polynomial model (p = 0) 

 

Numerical forecasting values are shown in 

Table 2. 

 

Table 2. The results of the forecast at α = 0.4 

 t xt 

P=0 

St 𝒙𝒊̂
∗
 Error 

1 0  511.00   

1 1 520 412.4 511.00 0.16 

1 2 497 363.76 412.4 14.4 

1 3 504 347.1 363.76 39.02 

1 4 525 348.84 347.1 60.28 

….      

1 24 560 433.26 523.159 2.46 

1 25 529 384.9 433.26 17.33 

1 26   384.9  

 0.4     

 0.6     

 

In Table 2 the results of the forecast are given. 

They are not much different from our original 

series. 

 

3.2 Adaptive First-Order Polynomial Model 
First, according to the time series xt, we find the 

LSM (Least Squares Method), [24], estimate of the 

linear trend: 

x̂t = â1 + â2t. 
Suppose, â1,0 = â1andâ2,0 = â2. 

 

To find the coefficients â1,0andâ2,0on the graph of 

the time series xt, the trend line is added (Figure 3). 

In our case, the trend equation has the form: 

 

x̂t = 498 + 1.2t, 
 

where â1,0 = â1 = 498 andâ2,0 = â2 = 1.2. 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2023.22.43 Nataliya Boyko

E-ISSN: 2224-2880 363 Volume 22, 2023



 
Fig. 3: Estimation of LSM regression line 

 

Exponential averages of the 1st and 2nd order 

are defined as 

St = αxt + βSt−1, St
[2]
= αSt + βSt−1

[2]
, 

 

whereβ=1-α. 

 

Hence the initial conditions are the following: 

S0 = â1,0 −
β

α
â2,0, S0

[2]
= â1,0 −

2β

α
â2,0. 

 

The estimation of the model (predicted) value 

of the series with the warning period τ is equal to 

x̂t
∗ = (2 +

α

β
τ) St−τ − (1 +

α

β
τ) St−τ

[2]
, 

S0 = â1,0 −
β

α
â2,0 = 498 −

0.5

0.5
∗ 1.2 = 496.8, 

S0
[2]
= â1,0 −

2β

α
â2,0 = 498 − 2 ∗ 1.2 = 495.6. 

 

Using this formula, the times series is given below: 

x̂t
∗ = (2 +

α

β
τ) St−τ − (1 +

α

β
τ) St−τ

[2]

= (2 +
0.5

0.5
∗ 1) ∗ 496.8

− (1 +
0.5

0.5
∗ 1) ∗ 495.6 = 499.2. 

 

The result of the calculation is given in Table 3. The 

error value is lower than for the parameters 

presented in Table 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. The results of calculations of the 

predicted model at α = 0.5 

 t xt 
P=1 

St St
[2] 𝒙𝒕̂

∗
 Error 

1 0  496.80 495.60 496.80 495.60 

1 1 520 508.40 502.00 508.40 502.00 

1 2 497 502.70 502.35 502.70 502.35 

1 3 504 503.35 502.85 503.35 502.85 

1 4 525 514.18 508.81 514.18 508.81 

...       

1 24 560 541.88 532.37 541.88 532.37 

1 25 529 535.44 533.90 535.44 533.90 

1 26      

 0.5      

 0.5      

 

At t = 1 exponential mean levels are the following: 

S1 = αx1 + βS0 = 0.5 ∗ 520 + 0.5 ∗ 496.8
= 508.4, 

S1
[2]
= αS1 + βS0

[2]
= 0.5 ∗ 508.4 + 0.5 ∗ 495.6

= 502.0. 

Based on this, the time series is given as: 

x̂t
∗ = (2 +

α

β
τ) St−τ − (1 +

α

β
τ) St−τ

[2]

= (2 +
0.5

0.5
∗ 1)508.4

− (1 +
0.5

0.5
∗ 1) 502.0 = 521.2. 

 

The results of the calculations are shown in Table 3. 

For the analyzed dataset, the predicted values are 

first calculated at α = 0.5 and τ = 1.  

Next, it is necessary to determine the optimal value 

of α, based on the consideration of the minimum 

total error. To do this, as in the first model, a value 

of α with the minimum total error is selected. 

Figure 4 shows the results of determining the 

optimal smoothing parameter. 

 
 

Fig. 4: Determination of the optimal value of α 
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Figure 4 shows that the minimum error of the 

predicted model will be at α = 0.1. 

 

The results of forecasting at the selected optimal 

value of α are shown in Figure 5. 

 

 
Fig. 5: Forecasting results based on a first-order 

polynomial model (p = 1) 

 

Thanks to this method, we obtained a smoother 

series, based on which we were able to calculate 

predictions for 1 step forward. 

 

3.3 Adaptive Second-Order Polynomial 

Model 
According to the time series xt, we find the LSM 

estimate of the parabolic trend, [25], [26]: 

 

x̂t = â1 + â2t + â3t
2. 

 

For the second-order model, the equation of the 

parabolic trend has the form (see Figure 6): 

 

x̂t = 515.96 − 2.79t + 0.15t
2, 

â1,0 = â1 = 515.96;    â2,0 = â2 =
−2,79;     â3,0 = â3 = 0.15. 

 

 
Fig. 6: Finding the LSM estimate of the parabolic 

trend according to the time series xt 

 

Exponential averages of the 1st, 2nd and 3rd order 

are the following: 

St = αxt + βSt−1, 

St
[2]
= αSt + βSt−1

[2]
, 

St
[3]
= αSt

[2]
+ βSt−1

[3]
. 

 
Fig. 7: Determination of the optimal α 

 

From the graph, it is seen that the optimal α is 0.25, 

as at this value we get the smallest error. 

 

The initial conditions are determined by the 

following formulas: 

S0 = â1,0 −
β

α
â2,0 +

β(2 − α)

2α2
â3,0; 

S0
[2]
= â1,0 −

2β

α
â2,0 +

β(3 − 2α)

α2
â3,0; 

S0
[3]
= â1,0 −

3β

α
â2,0 +

3β(4 − 3α)

2α2
â3,0. 

 

The estimate of the model (prediction) with the 

warning period τ is found in the expression 

x̂t
∗ = [6β2 + (6 − 5α)α ∗ τ + α2τ2]

St−τ
2β2

− [
6β2 + (5 − 4α)ατ +

2α2τ2
]
St−τ
[2]

2β2
+ 

+[2β2 + (4 − 3α)ατ + α2τ2]
St−τ
[3]

2β2
. 

 

Next, we determine the optimal value of the 

smoothing coefficient (see Figure 7). Taking into 

account the optimally obtained value α = 0.25 (E = 

9.06) the forecast is given (see Figure 8). 

 

 
Fig. 8: Forecasting results based on a second-order 

polynomial model (p = 2) 

 

Next, the proposed model will be compared with 

existing adaptive models. The Winters model and 

Tayle-Vage are analyzed. 
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3.4. Forecasting using the Winters Model 

(Exponential Smoothing with Multiplicative 

Seasonality and Linear Growth) 
This model is convenient to use with a small amount 

of initial data. The seasonal model of Winters with 

linear growth has the form 

 

xt = a1,tfvtkt + εt, 

 

wherext - original time series t = 1, 2, ..., n; a1,t - the 

parameter characterizes the linear trend of the 

process, ie the average values of the level of the 

studied time series xt at time t;fvtkt - seasonality 

factor for vt phase of the kt-th cycle; vt  =  1,2, . . . , l 
, wherevt  =  t −  l(kt − 1); l - the number of 

phases in the full cycle (in monthly time series l = 

12, in quarterly l = 4, etc.);εt - random error. It is 

usually assumed that the vectorε =
Nn(0, σ

2In)whereε = (ε1, … , εt, … , εn)
T; In – unit 

matrix with a size of (n × n). 

The adaptive parameters of the model are 

estimated using a recurrent exponential scheme 

according to the time series xt, consisting of n 

observations 

{
  
 

  
 â1,t = α1

xt

f̂vt,kt−1
+ (1 − α)(α̂1,t−1 + α̂2,t−1)

f̂vtkt = α2
xt
â1,t

+ (1 − α2)f̂vtkt−1

â2,t = α3(â1,t − â1,t−1) + (1 − α3)â2,t−1

x̂t
∗ = (â1,t−τ + τâ2,t−τ)f̂vtkt−1,

 

 

Where a2,t - the increase of the average level of the 

series from the moment t - 1 to the moment t; x̂t
∗ =

xτ(t) - the calculated value of the time series, which 

is determined for the time t with the warning period 

τ, ie according to the moment (t -τ); α1, α2,α3, - 

parameters of adaptation of exponential smoothing, 

and (0 <α1, α2, α3<1). 

The increase in αj(j = 1,2,3) leads to an 

increase in the weight of later observations, and a 

decrease in αj leads to an improvement in the 

smoothing of random deviations. These two 

requirements are in conflict, and the search for a 

compromise combination of values is the task of 

optimizing the model. 

Exponential alignment always requires a 

preliminary estimate of the smoothed value. When 

the adaptation process is just beginning, there 

should be initial values prior to the first observation. 

In our task it is necessary to define the initial 

conditions:â1,0;â2,0;f̂vt,0, wherevt = 1,2, l. Thus, the 

calculated values ofx̂t
∗are a function of all past 

values of the original time series xt, parameters α1, 

α2 and α3 and initial conditions. The influence of 

the initial conditions on the calculated value 

depends on the value of the weights αj and the 

length of the series preceding the moment t. Impacts 

ofâ1,0;â2,0usually decrease faster thanf̂vt,0, 

â1,tandf̂2,tare reviewed at each step, butf̂vi,kionly 

once per cycle. 

First, by n = 8 observations of the time series 

xt, we find the LSM estimate of the linear trend 

x̂t = a0 + att. As a result of the calculation we have 

x̂t = 492.46 − 8.5476 ∗ t. 
Next, the initial conditions are defined: 

â1,0 = â0 = 492.46;    â2,0 = â1 = −8.5476. 
Multiplicative zero-cycle seasonality 

coefficients, [27]. F̂vt,0 define as the arithmetic mean 

of seasonality indicesxt x̂t⁄ forvt-th phase in the 

original time series (Figure 9): 

f̂1,0 =
1.031 + 1.070

2
= 1.050;    f̂2,0

=
0.999 + 1.059

2
= 1.029; 

f̂3,0 =
0.968 + 0.996

2
= 0.982;    f̂4,0

=
0.906 + 0.972

2
= 0.939. 

 
Fig. 9: LSM assessment of a linear trend 

 

We will perform calculations with adaptation 

parameters a1 =  0.2; a2 = 0.3; a3 =  0.4 and the 

warning period τ = 1. Estimated values for the 1st 

cycle (kt = 1, vt = t). 
 

According to the formula for t = 1, we have 

x̂1
∗ = (â1,0 + â2,0) ∗ f̂1,0

= (492.46 − 8.5476) ∗ 1.050
= 508.28 

â1,1 = α1 ∗
x1

f̂1,0
+ (1 − α1)(â1,0 + â2,0)

= 0.2
499

1.050
+ (1 − 0.2)(492.46 − 8.5478)
= 482.14 
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f̂1,1 = α2
x1
â1,1

+ (1 − α2) ∗ f̂1,0

= 0.3
499

482.14
+ (1 − 0.3) ∗ 1.050

= 1.046 

â2,1 = α3(â1,1 − a1,0) + (1 − α3) ∗ â2,0
= 0.4(482.14 − 492.46)
+ 0.6(−8.5476) = −9.255 

t = 2 

x̂2
∗ = (â1,1 + â2,1) ∗ f̂2,0

= (482.14 − 9.255) ∗ 1.029
= 486.55 

â1,2 = α1 ∗
x2

f̂2,0
+ (1 − α1)(â1,1 + â2,1)

= 0.2
475

1.029
+ 0.8(482.14 − 9.255) = 470.64 

f̂2,1 = α2
x2
â1,2

+ (1 − α2) ∗ f̂2,0

= 0.3
475

470.64
+ 0.7 ∗ 1.029

= 1.023 

â2,2 = α3(â1,2 − a1,1) + (1 − α3) ∗ â2,1
= 0.4(470.64 − 482.14)
+ 0.6(−9.255) = −10.153 

t = 3 

x̂3
∗ = (470.64 − 10.153) ∗ 0.982 = 452.32 

â1,3 = 0.2
452

0.982
+ 0.8(470.64 − 10.153)

= 460.43 

f̂3,1 = 0.3
452

460.43
+ 0.7 ∗ 0.982 = 0.982 

â2,3 = 0.4(460.43 − 470.64) + 0.6 ∗ (−10.153)

= −10.179 
t = 4 

x̂4
∗ = (460.43 − 10.179) ∗ 0.939 = 422.58 

â1,4 = 0.2
415

0.939
+ 0.8(460.43 − 10.179)

= 448.63 

f̂4,1 = 0.3
415

448.63
+ 0.7 ∗ 0.939 = 0.934 

â2,4 = 0.4(448.63 − 460.43) + 0.6 ∗ (−10.179)

= −10.825 

Estimated values for the 2nd cycle (kt = 2, vt = 

t-4). Here we need the seasonality coefficients found 

for the 1st cycle 

f̂1,1 = 1.046;    f̂2,1 = 1.023;    f̂3,1 = 0.982;    f̂4,1
= 0.934 

t = 5 

x̂5
∗ = (â1,4 + â2,4) ∗ f̂1,1

= (448.63 − 10.825) ∗ 1.046
= 457.84 

Since x̂5
∗refers to the 2nd cycle (kt = 2) when 

choosingf̂vt,kt−1based on the fact that vt = 5-4 = 1 

â1,5 = 0.2
481

1.046
+ 0.8(448.63 − 10.825)

= 442.24 

f̂1,2 = 0.3
481

442.24
+ 0.7 ∗ 1.046 = 1.058 

â2,5 = 0.4(442.24 − 448.63) + 0.6 ∗ (−10.825)

= −9.053 
t = 6 

x̂6
∗ = (442.24 − 9.053) ∗ 1.023 = 443.15 

â1,6 = 0.2
467

1.023
+ 0.8(442.24 − 9.053) = 437.85 

f̂2,2 = 0.3
467

437.85
+ 0.7 ∗ 1.023 = 1.036 

â2,6 = 0.4(437.85 − 442.24) + 0.6 ∗ (−9.053)

= −7.187 
t = 7 

x̂7
∗ = (437.85 − 7.187) ∗ 0.982 = 422.95 

â1,7 = 0.2
431

0.982
+ 0.8(437.85 − 7.187) = 432.30 

f̂3,2 = 0.3
431

432.30
+ 0.7 ∗ 0.982 = 0.987 

â2,7 = 0.4(432.30 − 437.85) + 0.6 ∗ (−7.187)

= −6.531. 
t = 8 

x̂8
∗ = (432.30 − 6.531) ∗ 0.934 = 397.88 

â1,8 = 0.2
412

0.934
+ 0.8(432.30 − 6.531) = 428.79 

f̂4,2 = 0.3
412

428.79
+ 0.7 ∗ 0.934 = 0.942 

â2,8 = 0.4(428.79 − 432.30) + 0.6 ∗ (−6.531)

= −5.323 
t = 9 (forecast) 

x̂9
∗ = (â1,8 + â2,8) ∗ f̂1,8

= (428.79 − 5.323) ∗ 1.058
= 448.16 

 

The calculated values and the forecast tx̂t
∗, obtained 

from the time series xt are presented in Figure 10.  

 

Fig. 10: Forecasting results based on a third-order 

polynomial model (p = 3) 
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From the presented graph we can conclude that the 

model of exponential smoothing with multiplicative 

seasonality of Winters is better than the regression 

model but worse than the proposed adaptive model. 

The forecast results of Winters can be improved by 

selecting the optimal values of α. 

 

3.5  Production Forecast based on the Tayle-

Wage Model 
Additive modeling is an approach of interest in 

economic research, as it enables the construction of 

a model featuring exponential trends and 

multiplicative seasonality. This can be achieved by 

converting the initial time series values into their 

logarithmic equivalents, transforming the 

exponential trend into a linear one, and the 

multiplicative seasonality into an additive one. 

Suppose the observation xt refer to the vt-th phase 

of the kt-th cycle, where vt = t – l (kt – l), l is the 

number of phases in the cycle (for the quarterly time 

series l = 4, and the monthly l = 12). 

The model with additive seasonality and linear 

growth can be represented as 

 

xt = a1,t + gvtkt + εt 

a1,t = a1,t−1 + a2,t, 
 

Where xt- the average value of the level of the time 

series at time t after excluding seasonal fluctuations; 

a2,t- additive growth rate from time t-1 to time 

t; gvtkt– additive seasonality factor for the vt-th 

phase of the kt-th cycle; εt – white noise. 

Estimates of model parameters will be sought at 

smoothing coefficients α1, α2, α3, where (0 <α1, α2, 

α3<1) on the following adaptation procedures: 

 

â1,t = α1(xt − ĝvt,kt−1) + (1 − α1)(â1,t−1 + â2,t−1) 

ĝvtkt = α2(xt − â1,t) + (1 − α2) ĝvt,kt−1 

â2,t = α3(â1,t − â1,t−1) + (1 − α3)â2,t−1 

x̂t
∗ = â1,t−τ + τ ∗ a2,t−τ + ĝvt,kt−1 . 

 

The initial conditions of exponential smoothing are 

determined by the original time series xt  (t = 1,2, …, 

n). 

First, on the time series xt, which contains n = 8 

observations, we find the LSM - an estimate of the 

linear regression equation 

 

x̂t = θ̂ + θ̂1t = 7.0071 − 0.1905t 
â1,0 = θ̂0 = 7.0071;    â2,0 = θ̂1 = −0.1905. 

 

The calculated values of xt and deviations ∆t= xt −
x̂t are given below. Then the initial values of 

additive seasonality coefficients are equal 

ĝ1,0 =
0.38 − 0.15

2
= 0.1144 

ĝ2,0 =
−0.13 − 0.16

2
= −0.1451 

ĝ3,0 =
−0.34 + 0.33

2
= −0.0046 

ĝ4,0 =
0.05 + 0.02

2
= 0.0359. 

 

We will perform calculations for adaptation 

parameters α1 = 0.1; α2 = 0.4; α3 = 0.3 and the 

warning period τ = 1. 

First loop: vt = t; kt = 1; τ = 1,initial data for 

calculation: 

ĝ1,0 = 0.1144    ĝ2,0 = −0.1451    ĝ3,0 =
−0.0046ĝ4,0 = 0.0359. 

According to the formula for t = 1, we have 

x̂1
∗ = â1,0 + â2,0 + ĝ1,0

= 7.0071 − 0.1905 + 0.1144
= 6.93 

â1,1 = 0.1 ∗ (7.2 + 0.1144) + (1 − 0.1)
∗ (7.0071 − 0.1905) = 6.844 

ĝ1,1 = 0.4 ∗ (7.2 − 6.844) + 0.6 ∗ 0.1144

= −0.211 

â2,1 = 0.3 ∗ (6.844 − 7.0071) + 0.7 ∗ (−0.1905)

= −0.182 
t = 2 

x̂2
∗ = 6.844 − 0.182 − 0.1451 = 6.52 

â1,2 = 0.1 ∗ (6.5 + 0.1451) + 0.9

∗ (6.844 − 0.182) = 6.6595 

ĝ2,1 = 0.4 ∗ (6.5 − 6.6595) + 0.6 ∗ (−0.1451)

= −0.1508 

â2,2 = 0.3 ∗ (6.6595 − 6.844) + 0.7 ∗ (−0.182)

= −0.183 
t = 3 

x̂3
∗ = 6.6595 − 0.183 − 0.0046 = 6.472 

â1,3 = 0.1 ∗ (6.1 + 0.0046) + 0.9

∗ (6.6595 − 0.183) = 6.4394 

ĝ3,1 = 0.4 ∗ (6.1 − 6.4394) + 0.6 ∗ (−0.0046)

= −0.1385 

â2,3 = 0.3 ∗ (6.4394 − 6.6595) + 0.7 ∗ (−0.183)

= −0.194 
t = 4 

x̂4
∗ = 6.4394 − 0.194 + 0.0359 = 6.281 

â1,4 = 0.1 ∗ (6.3 − 0.0359) + 0.9

∗ (6.4394 − 0.194) = 6.2472 

ĝ4,1 = 0.4 ∗ (6.3 − 6.2472) + 0.6 ∗ 0.0359

= 0.0427 

â2,4 = 0.3 ∗ (6.2472 − 6.4394) + 0.7 ∗ (−0.194)

= −0.194 
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Second loop: vt = t-4; kt = 2). Initial data for 

calculation: 

ĝ1,1 = 0.211    ĝ2,1 = −0.1508    ĝ3,1
= −0.1385ĝ4,1 = 0.0427 

t = 5 

x̂5
∗ = 6.2472 − 0.194 + 0.211 = 6.265 

â1,5 = 0.1 ∗ (5.9 − 0.211) + 0.9
∗ (6.2472 − 0.194) = 6.0172 

ĝ1,2 = 0.4 ∗ (5.9 − 6.0172) + 0.6 ∗ 0.211

= 0.0799 

â2,5 = 0.3 ∗ (6.0172 − 6.2472) + 0.7 ∗ (−0.194)

= −0.204 
t = 6 

x̂6
∗ = 6.0172 − 0.204 − 0.1508 = 5.662 

â1,6 = 0.1 ∗ (5.8 + 0.1508) + 0.9

∗ (6.0172 − 0.204) = 5.8165 

ĝ2,2 = 0.4 ∗ (5.7 − 5.8165) + 0.6 ∗ (−0.1508)

= −0.1371 

â2,6 = 0.3 ∗ (5.8165 − 6.0172) + 0.7 ∗ (−0.204)

= −0.203 
t = 7 

x̂7
∗ = 5.8165 − 0.203 − 0.1385 = 5.475 

â1,7 = 0.1 ∗ (6 + 0.1385) + 0.9
∗ (5.8165 − 0.203) = 5.6658 

ĝ3,2 = 0.4 ∗ (6 − 5.6658) + 0.6 ∗ (−0.1385)

= 0.0352 

â2,7 = 0.3 ∗ (5.6658 − 5.8165) + 0.7 ∗ (−0.203)

= −0.188 
t = 8 

x̂8
∗ = 5.6658 − 0.188 + 0.0427 = 5.521 

â1,8 = 0.1 ∗ (5.5 + 0.0427) + 0.9

∗ (5.6658 − 0.188) = 5.4761 

ĝ4,2 = 0.4 ∗ (5.5 − 5.4761) + 0.6 ∗ 0.0427

= 0.0352 

â2,8 = 0.3 ∗ (5.4761 − 5.6658) + 0.7 ∗ (−0.188)

= −0.188 
t = 9 (forecast) 

x̂9
∗ = â1,8 + a2,8 + g1,2 = 5,4761 − 0,188 + 0,799

= 5,368 

As estimatesĝvt,0takes the average values of the 

deviations∆t= xt − x̂t, corresponding to the vt-th 

phase of the original time series, where vt  =
 1, … . . . , l. 
Calculated according to the Tayle-Wage model, the 

values of the time seriesx̂t
∗are presented in Figure 

11, where they are presented with the original time 

series x1. 

 
Fig. 11: Forecasting results using the Tayle-

Wage model 

 

The graph shows that our forecast is not that far 

from the original series and that it maintains the 

trends. 

 

The comparison of the proposed forecasting model 

DIAAMMFTS with existing models is given in 

Table 4. Mean Squared Error (MSE), [28], [29], 

[30],  is used for all the models. 

 

Table 4. The comparison of forecasting 

models. 

Model MSE 

DIAAMMFTS 0.23 

Tayle-Wage model 0.31 

Winters model 0.39 

 

The error values are expressed in squared units 

of the predicted values. A mean squared error of 

zero denotes flawless accuracy, or the absence of 

errors. 

 

 

4 Conclusion 
In this work, the different adaptive methods are 

analyzed. The Data Interpretation Algorithm for 

Adaptive Methods of Modeling and Forecasting 

Time Series (DIAAMMFTS) is developed in the 

paper. This method is based on a 5-step procedure 

and shows promising forecast skills. 

Also, we implemented a program that builds 

models using these methods. Based on the obtained 

results and the characteristics of the models 

calculated by the program, the results were analyzed 

and a comparison of the methods used in the work 

was carried out, based on which a conclusion was 

made about the most efficient models for each 

specific situation. 
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The results of this work are the following: 

 time-series research and identification of 

characteristics that affect the adequacy and 

accuracy of models; 

 characteristics of time series dynamics that 

influence the choice of forecasting model were 

determined. 

 the new data interpretation algorithm for 

adaptive methods of modeling and forecasting 

time series is developed, 

 the comparison with Winters model and the 

Tayle-Wage model shows the good quality of 

the proposed predictive model; 

 there is implemented a program that builds 

models and calculates forecasts by adaptive 

methods; 

 the adaptive polynomial models used 

sequentially allow to increase the prediction 

accuracy. 

The implemented program showed good results, 

which allows us to conclude that these adaptive 

models are effective in predicting economic or 

conventional computational processes. 

The model of exponential smoothing with 

multiplicative seasonality of Winters is better than 

the regression model but worse than the proposed 

adaptive model. The forecast results of Winters can 

be improved by selecting the optimal values of α. 
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