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1 Introduction and Preliminaries 
Iwaniec and Sbordone generalized the concept of 
Lebesgue spaces and introduced a new space of 
measurable, almost everywhere equal integrable 
function classes, which they called grand Lebesgue 
spaces. Now, let X  be a locally compact Hausdorff 
space and suppose that  , ,X   is a finite measure 

space. According to [10], grand Lebesgue spaces are 
the collection of equivalence classes of functions 
obtained according to almost everywhere relation of 
all  measurable functions defined on  , ,X   

and denoted by )pL  for1 p  . For any )pv L , 

the functional 
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defines a norm on )pL  and makes them Banach 
function spaces with rearrangement invariant norm. 
Also )p p pL L L    if 0 1p   . New results on 
grand Lebesgue spaces can be observed in current 
studies, [3], [6], [7], [9], [11], [12], [15]. Presented 
in terms of the Jacobian integrability problem, these 
works have proven useful in various applications of 
partial differential equations and variational 

problems, where they are used in the study of 
maximum functions, extrapolation theory, etc. The 
harmonic analysis of these spaces, and the related 
small Lebesgue spaces, has been intensively 
developed in recent years and continues to attract 
the attention of researchers due to various 
applications. 

There have been several generalizations of 
the grand Lebesgue spaces in recent years. One such 
generalization denoted by  ),pL X  is defined as 

the set all functions belong to 
0 1

p

p

L 





  
  in [8]. 

According to [1], [8],  ),pL X  is a rearrangement-

invariant space, i.e. Banach function space 
generated with the rearrangement-invariant norm 

 
1

),
0 1

0 1

sup

sup

ppp

p
p X

p

p
p

v d

v

v x
 










 





  




  

 
  

 




 

for all  ),pv L X  where 1 p   and 0  . 

 ),pL X  reduces to classical Lebesgue spaces 

 pL X  when 0   and reduces to grand Lebesgue 
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spaces  )pL X  when 1  , [3], [8]. Also, we have 

     ),p p pL X L X L X    for 0 1p    and 

     1 2), ),p ppL X L X L X    for 1 20    , [1], 

[8]. It is important to remember that the subspaces 
of simple functions S  and the subspace of test 
functions  0C X  is not dense in  ),pL X . If we 

call the closure of  0C X  in  ),pL X  as  ),pE X , 
then 

   ), ),

0
: lim 0p p p

p
E X v L X v


  









     
  

 

and    1 2), ),p pL X E X   for 1 20    , [8]. The 

Marcinkiewicz class, denoted by weak  pL X  or

 ,pL X , consists of all measurable functions 

 such that  
0

sup p
fD


 


   where the 

distribution function of f  is 

    : ,   0fD x X f x       . 

 
Then    , ),p pL X L X  . It is commonly known 

that in the sense of [2], the grand and small 
Lebesgue spaces are Banach Function Spaces. An 
explicit proof of these facts seemed to be missing in 
the literature. In [1], the author provided such a 
proof, which can serve as a reference for the next 
studies and literature and as a fundamental reference 
for subsequent results. The proofs in [1], show that 
the grand Lebesgue spaces content all the axioms 
which are necessary to be Banach Function Spaces, 
including the Fatou property. These results are 
important because they establish the grand Lebesgue 
spaces as a well-behaved class of function spaces 
that can be used to study various problems in 
analysis and partial differential equations. Overall, 
the results in [1], fill an important gap in the 
literature and provide a solid foundation for further 
research in this area. 

Throughout this paper  , ,X X    will 

show a   finite measure space, and the collection 
of all extended scalar-valued (real or complex)  
measurable functions on X  will be shown by M . 
Also, 0M  will stand for the class of functions in M  

which are finite-valued   a.e. The function U  
will be employed for the characteristic function of 
any subset U . 

The distribution function of a complex-
valued, measurable function f defined on the 
measure space X  is 

    : ,  0f y x X f x y y     . 

The nonnegative rearrangement function  *f   of 

f  is given by 

    
  

* inf 0 :  

sup 0 :  ,  0

f

f

f t y y t

y y t t





  

   
 

where we assume that inf     and sup 0  . 

Likewise, the (average) maximal function  **f   of 

f  which is defined on  0,  is given by 

   ** *

0

1
.

t
f t f s ds

t
   

Note that  ꞏ ,f   * ꞏf  and  ** ꞏf  are right 

continuous and non-increasing functions.  

The generalization of ordinary Lebesgue 
spaces are Lorentz spaces  ,L p q  which are the 

collection of all classes of the functions f  such that

,p q
f

   , where 
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In general, however, 
,

ꞏ
p q


 is not a norm if not 

1 q p     or p q    since the Minkowski 

inequality may fail. But by replacing  *f   with 

 **f   in (1), we get that  ,L p q  is a normed 

space, with the functional 
,

ꞏ
p q

 defined by 
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  (2) 

This functional defined in (2) is sub-additive and 
equivalent to (1) if 1 p   and1 q   , that is 
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, , ,1p q p q p q

p
f f f

p
  


. 

Here the (left) first inequality is coming from the 
fact that    * **f f    and the second (right) is an 

immediate consequence of Hardy inequality. For 
detailed knowledge of Lorentz spaces, we can refer 
to [3], [4], [5], [13], [14], and references therein. 
 
 

2 Main Results 
In [14], the grand Lorentz space , )p qL  is defined as 

the collection of all the complex-valued, measurable 
functions which are defined on  0,1  such that the 

quasi-norm 
*

, )p q
f    where 
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for any , )p qf L .  

 
Using the maximal function  ** ꞏf , instead of 

the nonnegative rearrangement  *f   used in the 

definition of grand Lorentz space defined in [14], 
we generalized the grand Lorentz spaces as follows. 
 
Definition 1 The grand Lorentz space , )p qL  is 

classes of all the complex-valued, measurable 
functions which are defined on the measure space 

  0, X  such that 
, )p q

f
    where 
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for any , )p qf L . In particular, if 1 p    and

1 q   ; 1p q   or p q   , then the normed 

space  , )

, )
,p q

p q
L


   is a Banach space. 

Proposition 1 For any , )p qf L , the inequality 
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exists, i.e. the quasi-norm 
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, )p q
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 are 

equivalent. 
Proof. Since    * **f f   , for any , )p qf L , we 

have 
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On the other side, if one uses, [3], then 
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can be found. 
 
Definition 2 Let X  be a measure space and M  

be the cone of M . A mapping  : 0,   M  is 

named as Banach function norm if, for all 

 , , ,    1,2,3,... ,nu v u n  in M , for all constants

0  , and for all  measurable subsets U  of X , 

the following properties hold: 
(P1)   0u   

(P2)   0 0u u    a.e. in X  
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(P3)    u u    

(P4)      u v u v      

(P5) if v u  a.e. in X , then    v u   

(P6) if 0 nu u   in X , then    nu u   

(P7) if  U  , then  U    

(P8) if  U  , then  U

U

v d C v   

for some constant 
UC  depending on U and   but 

independent of v , [2]. 

Lemma 1 If , 0x y  , 1r   and  0,1  are real 

numbers, then 

   11 1
r rr r rx y x y      . 

The equality holds if and only if
1

x y

 



. 

Proof. If 1r  , then   rx x   is strictly convex. 

Therefore ( (1 ) ) (1 )r r ra b a b        . Setting 

x a  and  1y b  , we get the result 

immediately. 
Theorem 1 If 1 p   and 1 q   ; 1p q   or 

p q   , then the normed space  , )

, )
,p q

p q
L


   is a 

rearrangement-invariant Banach function space. 
Proof. The first three (P1-P3) properties of being 
Banach function norm come from the identical 
properties true for Lorentz spaces. 
Proof of P4.  
For any , ), p qf Lg  , we have 
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by the property of maximal function, [3]. If we use 
Lemma 1, then we get 
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can be written. If we take the supremum of  

1 1

,(1 )
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   over 0 1q   , then we get 

that 

, ) , ) , )p q p q p q
f g f g

    . 

Proof of P5. 
Let g f  a.e. in X . By [3], it is known that 

   * *g t f t  if g f . Then 

       ** * * **

0 0

1 1t t

g t g s ds f s ds f t
t t

     

and so the result comes from the definition of the 
norm in (4). 
 
Proof of P6. 
Let 0 nf f   in X . Then    * *

nf t f t  for 

1, 2,3,n    by [3]. At the same time, if 

     liminf
n

nu u xx


  for all x X   a.e., then 
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    liminf
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D D 


  for any 0  , where 

 n n
u


 is a sequence of measurable functions in 

M  and so    * *
nf t f t  for 0t  . Since

   ** **
nf t f t , we get    ** **

nf t f t  for all 

0t   by Monotone Convergence Theorem. 
Therefore 
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Proof of P7. 
Let E  be a measurable subset of X  with 
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can be found if q   . Otherwise 
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when q   . As a result, 
, )E p q

  is finite. 

Proof of P8. 
Let E   be a measurable subset of X  with 

  .E   By using Hardy-Littlewood inequality, 

one can write that 
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Now fix 0 1q   . If one uses Hölder’s 
inequality in the preceding inequality, then 
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is found. 
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