Determinants and Permanents of Hessenberg Matrices with Perrin's Bivariate Complex Polynomials and Its Application

JIRAWAT KANTALO
Department of Mathematics and Statistics, Sakon Nakhon Rajabhat University, Sakon Nakhon 47000, THAILAND

Abstract

In this paper, we define some $n \times n$ Hessenberg matrices and then we obtain determinants and permanents of their matrices that give the odd and even terms of bivariate complex Perrin polynomials. Moreover, we use our results to apply the application cryptology area. We discuss the Affine-Hill method over complex numbers by improving our matrix as the key matrix and present an experimental example to show that our method can work for cryptography.

Key-Words: Perrin Complex Bivariate Polynomials, Determinant, Permanent, Hessenberg Matrix, Cryptography

Received: September 19, 2022. Revised: April 9, 2023. Accepted: May 2, 2023. Published: May 17, 2023.

1 Introduction

Perrin's complex bivariate polynomials $\left\{\mathrm{P}_{n}(x, y)\right\}$ have been introduced by [1], and are defined by the recurrence relation, for $n \geq 3$,

$$
\begin{equation*}
\mathrm{P}_{n}(x, y)=i x^{2} \mathrm{P}_{n-2}(x, y)+y^{2} \mathrm{P}_{n-3}(x, y), \tag{1}
\end{equation*}
$$

where initial conditions $\mathrm{P}_{0}(x, y)=3, \mathrm{P}_{1}(x, y)=0$, $\mathrm{P}_{2}(x, y)=2$ and $i^{2}=-1$. The first terms of the above sequences are presented in Table 1.

In recent years, the determinants and permanents of one type of Hessenberg matrices representation of many sequences. For example, [2], introduced determinants and permanents of Hessenberg matrices as the generalized Fibonacci and Pell sequences. In 2014, [3], presented some determinantal and permanental representations of associated polynomials of Perrin and Cordonnier numbers. In 2020, [4], defined tridiagonal matrices whose permanent is equal to the k-Jacobsthal sequence. See more examples in [5], [6], [7], [8].

In addition, the applications of number theory have been widely studied. One of the most interesting applications is cryptography. Several authors used the methods for encryption using their obtained results as a key such as in 2017, [9], presented a coding and decoding method using the generalized Pell numbers. In 2019, [10], proposed a new coding and decoding algorithm using Padovan Q-matrices and Maxrizal, [11], showing the Hill

Cipher method can be generalized to key matrices over complex numbers.

Table 1. The first terms of Perrin's complex bivariate polynomials.

n	$\mathrm{P}_{n}(x, y)$
1	0
2	2
3	$3 y^{2}$
4	$2 i x^{2}$
5	$2 y^{2}+3 i x^{2} y^{2}$
6	$3 y^{4}-2 x^{4}$
7	$-3 x^{4} y^{2}+4 i x^{2} y^{2}$
8	$6 i x^{2} y^{4}-2 i x^{6}+2 y^{4}$
9	$-3 i x^{6} y^{2}-6 x^{4} y^{2}+3 y^{6}$
10	$-9 x^{4} y^{4}+6 i x^{2} y^{4}+2 x^{8}$

In 2021, [12], defined some third-order Bronze Fibonacci sequences and developed the obtained results in encryption theory. Moreover, the antiorthogonal and H -anti-orthogonal of type I matrices were firstly defined by [13], and they applied these matrices in cryptology.

In this paper, we consider the bivariate Perrin's complex polynomials and then define new $n \times n$ Hessenberg matrices which have determinants and permanents related to these polynomials. In addition, we consider an application in cryptology
based on the Affine-Hill chipher which was introduced by [14]. We improve and modify the public key over complex numbers by using our obtained matrix which is a non-singular matrix. Finally, a numerical example of an encryption and decryption algorithm is given.

2 Preliminaries

In this section, the following definitions and lemmas for determinants and permanents of the Hessenberg matrix are given.
Definition 2.1 [15], An $n \times n$ matrix $A_{n}=\left\lfloor a_{r, s}\right\rfloor$ is called a lower Hessenberg matrix if $a_{r, s}=0$ when

$$
\begin{align*}
& s-r>1, \text { i.e., } \\
& A_{n}=\left[\begin{array}{ccccc}
a_{1,1} & a_{1,2} & 0 & \cdots & 0 \\
a_{2,1} & a_{2,2} & a_{2,3} & \cdots & 0 \\
a_{3,1} & a_{3,2} & a_{3,3} & \cdots & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
a_{n-1,1} & a_{n-1,2} & a_{n-1,3} & \cdots & a_{n-1, n} \\
a_{n, 1} & a_{n, 2} & a_{n, 3} & \cdots & a_{n, n}
\end{array}\right] . \tag{2}
\end{align*}
$$

Lemma 2.2 [16], Let A_{n} be a lower Hessenberg matrix. The following determinant formula for A_{n} is given by
$\operatorname{det} A_{n}=a_{n, n} \operatorname{det} A_{n-1}+\sum_{t=1}^{n-1}\left((-1)^{n-t} a_{n, t}\left\lfloor\prod_{j=t}^{n-1} a_{j, j+1}\right\rfloor \operatorname{det} A_{t-1}\right)$, for $n \geq 2$, where $\operatorname{det} A_{0}=1$, and $\operatorname{det} A_{1}=a_{1,1}$.
Definition 2.3 Let A_{n} be $n \times n$ a matrix, the permanent of A_{n} is defined by

$$
\begin{equation*}
\operatorname{per} A_{n}=\sum_{\sigma \in \mathrm{S}_{n}} \prod_{i=1}^{n} a_{i, \sigma(i)}, \tag{3}
\end{equation*}
$$

where S_{n} denotes the set of permutations of $\{1,2, \ldots, n\}$.
Lemma 2.4 [17], Let A_{n} be a lower Hessenberg matrix. The following permanent formula for A_{n} is given by

$$
\operatorname{per} A_{n}=a_{n, n} \operatorname{per} A_{n-1}+\sum_{t=1}^{n-1}\left(a_{n, t}\left\lfloor\prod_{j=t}^{n-1} a_{j, j+1}\right\rfloor \operatorname{per} A_{t-1}\right),
$$

for $n \geq 2$, where $\operatorname{per} A_{0}=1$, and per $A_{1}=a_{1,1}$.

3 Main Results

In this section, we will define new $n \times n$ lower Hessenberg matrices and present the determinants and permanents of their matrices which are bivariate Perrin's complex polynomials, respectively.
Theorem 3.1 Let $B_{n}=\left\lfloor b_{r, s}\right\rfloor$ be a $n \times n$ lower Hessenberg matrix, is defined by

$$
b_{r, s}=\left\{\begin{array}{ll}
3 y^{2} & \text { if } r=s=1 \tag{4}\\
i x^{2} & \text { if } r=s \text { for } r, s \geq 2 \\
2 y^{2} & \text { if } s-r=1 \\
(-i)^{2}\left(\frac{x^{2}}{2 y^{2}}\right)^{r-2} & \text { if } r \geq 2, s=1 \\
\frac{1}{4}\left(\frac{-x^{2} i}{2 y^{2}}\right)^{r-s-2} & \text { if } r-s \geq 2 \text { for } r \geq 4, s \geq 2 \\
0 & \text { otherwise }
\end{array} .\right.
$$

Then

$$
\begin{equation*}
\operatorname{det} B_{n}=\mathrm{P}_{2 n+1}(x, y) \text {, for } n \geq 1 \text {. } \tag{5}
\end{equation*}
$$

Proof. We proved this by mathematical induction on n. By hypothesis, the result holds for all $n \leq 4$. Then, we suppose that the result is true for all positive integer k such that $k \geq 5$. We will prove it for $k+1$.

Firstly, we use elementary row operations on the matrix B_{k+1}. We multiply the $(k-1)^{\text {th }}$ row by $\frac{x^{4}}{4 y^{4}}$ then add to $(k+1)^{\text {th }}$ row. So, we get the $(k+1)^{\text {th }}$ row as

$$
\left\lfloor\begin{array}{llllll}
\begin{array}{llll}
\begin{array}{lll}
0 & 0 & \cdots
\end{array} & 0 & -\frac{i x^{2}}{8 y^{2}} & \frac{i x^{6}+y^{4}}{4 y^{4}}
\end{array} \frac{x^{4}}{2 y^{2}} \quad i x^{2}
\end{array}\right\rfloor .
$$

That is

$$
B_{k+1}=\left[\begin{array}{cccccccc}
3 y^{2} & 2 y^{2} & 0 & \cdots & & \cdots & & 0 \\
-1 & i x^{2} & \ddots & 0 & & \cdots & & 0 \\
\frac{i x^{2}}{2 y^{2}} & 0 & \ddots & \ddots & \ddots & & & \vdots \\
\frac{x^{4}}{4 y^{4}} & \frac{1}{4} & \ddots & \ddots & \ddots & \ddots & & \vdots \\
-\frac{i x^{6}}{8 y^{6}} & -\frac{i x^{2}}{8 y^{2}} & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\
\vdots & & \ddots & \ddots & \ddots & \ddots & \ddots & 0 \\
\vdots & & & \ddots & \frac{1}{4} & 0 & \ddots & 2 y^{2} \\
0 & 0 & \cdots & 0 & -\frac{i x^{2}}{8 y^{2}} & \frac{i x^{6}+y^{4}}{4 y^{4}} & \frac{x^{4}}{2 y^{2}} & i x^{2}
\end{array}\right] .
$$

Now, using Lemma 2.2, we have $\operatorname{det} B_{k+1}=i x^{2} \operatorname{det} B_{k}+\sum_{t=1}^{k}\left((-1)^{k+1-t} b_{k+1, t}\left\lfloor\prod_{j=t}^{k} b_{j, j+1}\right\rfloor \operatorname{det} B_{t-1}\right)$ $=i x^{2} \operatorname{det} B_{k}+\sum_{t=1}^{k-3}\left((-1)^{k+1-t} b_{k+1, t}\left\lfloor\prod_{j=t}^{k} b_{j, j+1}\right\rfloor \operatorname{det} B_{t-1}\right)$ $+\sum_{t=k-2}^{k}\left((-1)^{k+1-t} b_{k+1, t}\left\lfloor\prod_{j=t}^{k} b_{j, j+1}\right\rfloor \operatorname{det} B_{t-1}\right)$.
Since $b_{k+1, t}=0$ for $1 \leq t \leq k-3$, then

$$
\begin{aligned}
\operatorname{det} B_{k+1}= & i x^{2} \mathrm{P}_{2 k+1}(x, y) \\
& +\sum_{t=k-2}^{k}\left((-1)^{k+1-t} b_{k+1, t}\left\lfloor\prod_{j=t}^{k} b_{j, j+1}\right\rfloor \operatorname{det} B_{t-1}\right) \\
= & i x^{2} \mathrm{P}_{2 k+1}(x, y)+i x^{2} y^{4} \mathrm{P}_{2 k-5}(x, y) \\
& +\left(i x^{6}+y^{4}\right) \mathrm{P}_{2 k-3}(x, y)-x^{4} \mathrm{P}_{2 k-1}(x, y) \\
= & i x^{2} \mathrm{P}_{2 k+1}(x, y)+i x^{2} y^{2}\left(\mathrm{P}_{2 k-2}(x, y)-i x^{2} \mathrm{P}_{2 k-4}(x, y)\right) \\
& +i x^{6} \mathrm{P}_{2 k-3}(x, y)+y^{4} \mathrm{P}_{2 k-3}(x, y)-x^{4} \mathrm{P}_{2 k-1}(x, y) \\
= & i x^{2} \mathrm{P}_{2 k+1}(x, y)+x^{4}\left(i x^{2} \mathrm{P}_{2 k-3}(x, y)+y^{2} \mathrm{P}_{2 k-4}(x, y)\right) \\
& +y^{2}\left(i x^{2} \mathrm{P}_{2 k-2}(x, y)+y^{2} \mathrm{P}_{2 k-3}(x, y)\right)-x^{4} \mathrm{P}_{2 k-1}(x, y) \\
= & i x^{2} \mathrm{P}_{2 k+1}(x, y)+y^{2} \mathrm{P}_{2 k}(x, y) \\
= & \mathrm{P}_{2 k+3}(x, y) \\
= & \mathrm{P}_{2(k+1)+1}(x, y) .
\end{aligned}
$$

Then, $\operatorname{det} B_{n}=\mathrm{P}_{2 n+1}(x, y)$ for all $n \geq 1$.
Example 3.2 Let B_{6} is defined by (4). So, the determinant of B_{6} which is as follows:

$$
\begin{aligned}
\operatorname{det} B_{6} & =\left|\begin{array}{cccccc}
3 y^{2} & 2 y^{2} & 0 & 0 & 0 & 0 \\
-1 & i x^{2} & 2 y^{2} & 0 & 0 & 0 \\
\frac{i x^{2}}{2 y^{2}} & 0 & i x^{2} & 2 y^{2} & 0 & 0 \\
\frac{x^{4}}{4 y^{4}} & \frac{1}{4} & 0 & i x^{2} & 2 y^{2} & 0 \\
-\frac{i x^{6}}{8 y^{6}} & \frac{-i x^{2}}{8 y^{2}} & \frac{1}{4} & 0 & i x^{2} & 2 y^{2} \\
-\frac{x^{8}}{16 y^{8}} & \frac{-x^{4}}{16 y^{4}} & \frac{-i x^{2}}{8 y^{2}} & \frac{1}{4} & 0 & i x^{2}
\end{array}\right| \\
& =3 i x^{10} y^{2}+10 x^{8} y^{2}-18 x^{4} y^{6}+8 i x^{2} y^{6} \\
& =\mathrm{P}_{13}(x, y) \\
& =\mathrm{P}_{2(6)+1}(x, y) .
\end{aligned}
$$

Theorem 3.3 Let $D_{n}=\left\lfloor d_{r, s}\right\rfloor$ be a $n \times n$ lower Hessenberg matrix, is defined by $d_{1,1}=y^{2}$,
$d_{1,2}=i x^{2}, d_{2,1}=-2 i x^{2}, d_{2,2}=3 y^{2}, d_{3,1}=\frac{3 y^{2}}{2}$,
$d_{3,2}=-1$ and
$d_{r, s}= \begin{cases}i x^{2} & \text { if } r=s \text { for } r, s \geq 3 \\ 2 y^{2} & \text { if } s-r=1 \text { for } s \geq 3 \\ (-i)^{r-1}\left(\frac{x^{2}}{2 y^{2}}\right)^{r-3} & \text { if } r \geq 3, s=2 \\ \frac{1}{4}\left(\frac{-i x^{2}}{2 y^{2}}\right)^{2-s-2} & \text { if } r-s \geq 2\end{cases}$
for $r \geq 5, s \geq 3$
$\begin{array}{ll}\frac{(-i)^{r-2}}{4}\left(\frac{x^{2}}{2 y^{2}}\right)^{r-4}\left(2+3 i x^{2}\right) & \text { if } r \geq 4, s=1 \\ 0 & \text { otherwise }\end{array}$

Then

$$
\begin{equation*}
\operatorname{det} D_{n}=\mathrm{P}_{2 n+2}(x, y), \text { for } n \geq 2 \tag{7}
\end{equation*}
$$

Proof. We proved this by mathematical induction on n. By hypothesis, the result holds for all $2 \leq n \leq 5$. Then, we suppose that the result is true for all positive integer k such that $k \geq 6$. We will prove it for $k+1$.

We use elementary row operations on the matrix D_{k+1}. We multiply the $(k-1)^{\text {th }}$ row by $\frac{x^{4}}{4 y^{4}}$ then add to $(k+1)^{\text {th }}$ th row. So, we get the $(k+1)^{\text {th }}$ row as

$$
\left\lfloor\begin{array}{llllll}
\underbrace{0}_{(k-3)^{\text {lh }}} & 0 & \cdots & 0
\end{array}-\frac{i x^{2}}{8 y^{2}} \quad \frac{y^{4}+i x^{6}}{4 y^{4}} \quad \frac{x^{4}}{2 y^{2}} \quad i x^{2}\right\rfloor .
$$

That is

$$
D_{k+1}=\left[\begin{array}{cccccccc}
y^{2} & i x^{2} & 0 & \cdots & & \cdots & & 0 \\
-2 i x^{2} & 3 y^{2} & 2 y^{2} & 0 & & \cdots & & 0 \\
\frac{3 y^{2}}{2} & -1 & i x^{2} & \ddots & \ddots & & & \vdots \\
\frac{-3-3 i x^{2}}{4} & \frac{i x^{2}}{2 y^{2}} & 0 & \ddots & \ddots & \ddots & & \vdots \\
\frac{-3 x^{4}+2 x^{2}}{8 y^{2}} & \frac{x^{4}}{4 y^{4}} & \frac{1}{4} & \ddots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \vdots & & \ddots & \ddots & & \ddots & 0 \\
\vdots & \vdots & & & \frac{1}{4} & 0 & \ddots & 2 y^{2} \\
0 & 0 & \cdots & 0 & -\frac{i x^{2}}{8 y^{2}} & \frac{y^{4}+i x^{6}}{4 y^{4}} & \frac{x^{4}}{2 y^{2}} & i x^{2}
\end{array}\right]
$$

Now, using Lemma 2.2, we have

$$
\begin{aligned}
\operatorname{det} D_{k+1}= & i x^{2} \operatorname{det} D_{k}+\sum_{t=1}^{k}\left((-1)^{k+1-t} d_{k+1, t}\left\lfloor\prod_{j=t}^{k} d_{j, j+1}\right\rfloor \operatorname{det} D_{t-1}\right) \\
= & i x^{2} \operatorname{det} D_{k}+\sum_{t=1}^{k-3}\left((-1)^{k+1-t} d_{k+1, t}\left\lfloor\prod_{j=t}^{k} d_{j, j+1}\right\rfloor \operatorname{det} D_{t-1}\right) \\
& +\sum_{t=k-2}^{k}\left((- 1) ^ { k + 1 - t } d _ { k + 1 , t } \left\lfloor\prod_{j=t}^{k} d_{j, j+1}\left\lfloor\operatorname{det} D_{t-1}\right) .\right.\right.
\end{aligned}
$$

Since $d_{k+1, t}=0$ for $1 \leq t \leq k-3$, then

$$
\begin{aligned}
\operatorname{det} D_{k+1}= & i x^{2} \mathrm{P}_{2 k+2}(x, y) \\
& \quad+\sum_{t=k-2}^{k}\left((-1)^{k+1-t} d_{k+1, t}\left\lfloor\prod_{j=t}^{k} d_{j, j+1}\right\rfloor \operatorname{det} D_{t-1}\right) \\
= & i x^{2} \mathrm{P}_{2 k+2}(x, y)+i x^{2} y^{4} \mathrm{P}_{2 k-4}(x, y) \\
& +\left(i x^{6}+y^{4}\right) \mathrm{P}_{2 k-2}(x, y)-x^{4} \mathrm{P}_{2 k}(x, y) \\
= & i x^{2} \mathrm{P}_{2 k+2}(x, y)+i x^{2} y^{2}\left(\mathrm{P}_{2 k-1}(x, y)-i x^{2} \mathrm{P}_{2 k-3}(x, y)\right) \\
& +i x^{6} \mathrm{P}_{2 k-2}(x, y)+y^{4} \mathrm{P}_{2 k-2}(x, y)-x^{4} \mathrm{P}_{2 k}(x, y) \\
= & i x^{2} \mathrm{P}_{2 k+2}(x, y)+x^{4}\left(i x^{2} \mathrm{P}_{2 k-2}(x, y)+y^{2} \mathrm{P}_{2 k-3}(x, y)\right) \\
& +y^{2}\left(i x^{2} \mathrm{P}_{2 k-1}(x, y)+y^{2} \mathrm{P}_{2 k-2}(x, y)\right)-x^{4} \mathrm{P}_{2 k}(x, y) \\
= & i x^{2} \mathrm{P}_{2 k+2}(x, y)+y^{2} \mathrm{P}_{2 k+1}(x, y) \\
= & \mathrm{P}_{2 k+4}(x, y) \\
= & \mathrm{P}_{2(k+1)+2}(x, y) .
\end{aligned}
$$

Therefore, $\operatorname{det} D_{n}=\mathrm{P}_{2 n+2}(x, y)$ for all $n \geq 2$.
Example 3.4 Let D_{6} is defined by (6). So, the determinant of D_{6} which is as follows:

$$
\begin{aligned}
\operatorname{det} D_{6} & =\left|\begin{array}{llllll}
y^{2} & i x^{2} & 0 & 0 & 0 & 0 \\
-2 i x^{2} & 3 y^{2} & 2 y^{2} & 0 & 0 & 0 \\
\frac{3 y^{2}}{2} & -1 & i x^{2} & 2 y^{2} & 0 & 0 \\
\frac{-2-3 i x^{2}}{4} & \frac{i x^{2}}{2 y^{2}} & 0 & i x^{2} & 2 y^{2} & 0 \\
\frac{-3 x^{4}+2 i x^{2}}{8 y^{2}} & \frac{x^{4}}{4 y^{4}} & \frac{1}{4} & 0 & i x^{2} & 2 y^{2} \\
\frac{2 x^{4}+3 i x^{6}}{16 y^{4}} & -\frac{i x^{6}}{8 y^{6}} & -\frac{i x^{2}}{8 y^{2}} & \frac{1}{4} & 0 & i x^{2}
\end{array}\right| \\
& =-2 x^{12}+15 y^{4} x^{8}-20 i y^{4} x^{6}+12 i y^{8} x^{2}+2 y^{8} \\
& =\mathrm{P}_{14}(x, y) \\
& =\mathrm{P}_{2(6)+2}(x, y) .
\end{aligned}
$$

Now, we will present the permanents of matrices that are bivariate complex Perrin polynomials. In [18], this study gave the relationship between the determinant and the permanent of a Hessenberg matrix by using Lemmas 2.2 and 2.4.

Then, let A_{n} be $n \times n$ lower Hessenberg matrix $A=\left\lfloor a_{r, s}\right\rfloor$ is given in (2) and also E_{n} be $n \times n$ a lower Hessenberg matrix which is defined by $e_{r, r+1}=-a_{r, r+1}$ for all $r, e_{r, s}=a_{r, s}$ for $r \geq s$ and 0 otherwise. So, we have $\operatorname{det} E_{n}=A_{n}$ or $\operatorname{det} A_{n}=\operatorname{per} E_{n}$. Then, we have the following Corollary without proof.
Let H_{n} be $n \times n$ matrix, is defined by

$$
H_{n}=\left[\begin{array}{ccccc}
1 & -1 & 1 & \cdots & 1 \tag{8}\\
1 & 1 & -1 & \ddots & 1 \\
1 & 1 & 1 & \ddots & 1 \\
\vdots & \vdots & \ddots & \ddots & -1 \\
1 & 1 & \cdots & 1 & 1
\end{array}\right]
$$

Corollary 3.5 Let V_{n} and W_{n} be $n \times n$ matrices and define $V_{n}=H_{n} \circ B_{n}$ and $W_{n}=H_{n} \circ C_{n}$ where - denotes the operator of Hadamard product of matrix. Then,

$$
\begin{align*}
& \operatorname{per} V_{n}=\mathrm{P}_{2 n+1}(x, y) \tag{9}\\
& \operatorname{per} W_{n}=\mathrm{P}_{2 n+2}(x, y) \tag{10}
\end{align*}
$$

4 Applications in Cryptography

In this section, we present new encoding and decoding algorithms over complex numbers based on the Affine-Hill cipher method for encryption. We give some obtained results as a key matrix.

Let $p_{1}, p_{2}, p_{3}, \ldots, p_{n}$ be the plain text with numerical characters. We consider the plain text with complex number form, i.e.,

$$
\begin{equation*}
p_{1}+p_{2} i, p_{3}+p_{4} i, \ldots, p_{n-1}+p_{n} i \tag{11}
\end{equation*}
$$

Define P_{j} as the $j^{\text {th }}$ plain text in 2×2 matrix form, for $1 \leq j \leq l$ where $l=\left|\frac{n}{8}\right|$, is the smallest integer which is greater than or equal to the length of plain text divided by 8 . If the plain text matrix
P_{j} is not suitable, a zero will be added to complete the matrix P_{j}.

Let us consider 37-characters with the numerical values in Table 2.

Table 2. The 37 -characters with the numerical values

A	B	C	D	E	F	G	H	I	J
1	2	3	4	5	6	7	8	9	10
K	L	M	N	O	P	Q	R	S	T
11	12	13	14	15	16	17	18	19	20
U	V	W	X	Y	Z	0	1	2	3
21	22	23	24	25	26	27	28	29	30
4	5	6	7	8	9	blank			
31	32	33	34	35	36	37			

Example 4. 1 Suppose the plain text with the characters "CHOOSE HAPPY" . In Table 2, we have the corresponding numerical characters as 3, $8,15,15,19,5,37,8,1,16,16$, and 25 . Then, the length of plain text is 12. So, we have $l=\left\lceil\frac{12}{8}\right\rceil=2$. Finally, plain text with complex number forms become
$3+8 i, 15+15 i, 19+5 i, 37+8 i, 1+16 i, 16+25 i$, and then

$$
P_{1}=\left[\begin{array}{ll}
3+8 i & 15+15 i \\
19+5 i & 37+8 i
\end{array}\right],
$$

and

$$
P_{2}=\left[\begin{array}{ll}
1+16 i & 16+25 i \\
0+0 i & 0+0 i
\end{array}\right]
$$

4.1 Encryption and Decryption Algorithms

We will explain the following new coding and decoding algorithms.

Firstly, we let ρ be a prime number and choose a private key G such that $1<G<\phi(\rho)$ where $\phi(\rho)$ is the Euler's phi function. Then, we select
δ_{1} that is the primitive root of ρ and calculate δ_{2} that $\delta_{2} \equiv \delta_{1}^{G}(\bmod \rho)$. Finally, we have a public key, denoted $\left(\rho, \delta_{1}, \delta_{2}\right)$ and G as the private key.

Encryption Algorithm

Step 1: The sender chooses a secret number ς such that $1<\varsigma<\phi(\rho)$.

Step 2: The sender calculates the signature α such that $\alpha \equiv \delta_{1}^{\varsigma}(\bmod \rho)$.

Step 3: The sender calculates the secret key λ such that $\lambda \equiv \delta_{2}^{\varsigma}(\bmod \rho)$.

Step 4: The sender constructs K as the key matrix of size 2×2 which is obtained in our results for $x=\alpha$ and $y=\lambda$.

Step 5: The sender constructs S as the shifting matrix of size 2×2.

Step 6: The sender calculates

$$
C_{j} \equiv P_{j} K+S(\bmod \rho),
$$

where P_{j} and C_{j} are $j^{\text {th }}$ of 2×2 matrix of plain text and cipher text, respectively, for $1 \leq j \leq l$

Finally, the sender will send (α, C) to the recipient for decoding the cipher text.

Decryption Algorithm

After receiving (α, C), the recipient decrypts the cipher text with the following steps.

Step 1: The recipient calculates the secret key λ such that $\lambda \equiv \alpha^{G}(\bmod \rho)$.

Step 2: The recipient receives K as the key matrix with $x=\alpha, y=\lambda$ and calculates K^{-1}.

Step 3: The recipient receives S as the shifting matrix.

Step 4: The recipient calculates

$$
P_{j} \equiv\left(C_{j}-S\right) K^{-1}(\bmod \rho) .
$$

Note that: The prime number ρ shall be at least the number of different characters used in plain text and $\operatorname{gcd}(\operatorname{det} K, \rho)=1$.

4.2 Numerical Example

We suppose the key matrix K is defined by B_{2} that given in (4) and the shifting matrix S is defined by D_{2} that given in (6), respectively. So, we have

$$
K=\left[\begin{array}{ll}
3 y^{2} & 2 y^{2} \\
-1 & i x^{2}
\end{array}\right] \text { and } S=\left[\begin{array}{ll}
y^{2} & i x^{2} \\
-2 i x^{2} & 3 y^{2}
\end{array}\right]
$$

Example 4.2 Assume that $\rho=37$, the key matrix $K=B_{n}$, private key G is 11 and primitive the root of $\rho, \delta_{1}=5$. Then we calculate δ_{2} such that
$\delta_{2} \equiv 5^{11} \equiv 2(\bmod 37)$. So, the public key is $\left(\rho, \delta_{1}, \delta_{2}\right)=(37,5,2)$.

We consider the plain text to be "STAY AT HOME" in encryption and decryption algorithms. Therefore, we obtain the plain text with numerical characters $19,20,1,25,0,1,20,0,8,15,13,5$ and $l=\left\lceil\frac{12}{8}\right\rceil=2$.

Then, the plain text matrix P_{j} for $1 \leq j \leq 2$ become

$$
P_{1} \equiv\left[\begin{array}{ll}
19+20 i & 1+25 i \\
0+i & 20+0 i
\end{array}\right](\bmod 37)
$$

and

$$
P_{2} \equiv\left[\begin{array}{ll}
8+15 i & 13+5 i \\
0+0 i & 0+0 i
\end{array}\right](\bmod 37)
$$

Encryption Algorithm:

Step 1: Choosing a secret number $\varsigma=32$.
Step 2: Calculating the signature :

$$
\alpha \equiv 5^{32} \equiv 9(\bmod 37)
$$

Step 3: Calculating the secret key :

$$
\lambda \equiv 2^{32} \equiv 7(\bmod 37)
$$

Step 4: We have K as the key matrix for $x=9$, $y=7$, is defined by

$$
K=\left[\begin{array}{cc}
147 & 98 \\
-1 & 81 i
\end{array}\right] \equiv\left[\begin{array}{cc}
36 & 24 \\
36 & 7 i
\end{array}\right](\bmod 37)
$$

Step 5: We have S as shifting matrix for $x=9$, $y=7$, is defined by

$$
S=\left[\begin{array}{ll}
49 & 81 i \\
-162 i & 147
\end{array}\right] \equiv\left[\begin{array}{ll}
12 & 7 i \\
23 i & 36
\end{array}\right](\bmod 37)
$$

Step 6: So, we have C_{j} cipher text for $j=1,2$, as follows:

$$
\begin{aligned}
C_{1} & =\left[\begin{array}{ll}
19+20 i & 1+25 i \\
0+i & 20+0 i
\end{array}\right]\left[\begin{array}{ll}
36 & 24 \\
36 & 7 i
\end{array}\right]+\left[\begin{array}{ll}
12 & 7 i \\
23 i & 36
\end{array}\right] \\
& \equiv\left[\begin{array}{ll}
29+29 i & 22+13 i \\
17+22 i & 36+16 i
\end{array}\right](\bmod 37) .
\end{aligned}
$$

$$
\begin{aligned}
C_{2} & =\left[\begin{array}{ll}
8+15 i & 13+5 i \\
0+0 i & 0+0 i
\end{array}\right]\left[\begin{array}{ll}
36 & 24 \\
36 & 7 i
\end{array}\right]+\left[\begin{array}{ll}
12 & 7 i \\
23 i & 36
\end{array}\right] \\
& \equiv\left[\begin{array}{ll}
28+17 i & 9+14 i \\
0+23 i & 36+0 i
\end{array}\right](\bmod 37)
\end{aligned}
$$

So, we have cipher text with numerical numbers as $29,29,22,13,17,22,36,16,28,17,9,14,0,23$, 36,0 and sent the cipher text " $22 \mathrm{VMQV9P} 1 \mathrm{QIN}$ W9 " and signature $\alpha=9$ to the recipient.

Decryption Algorithm :

Step 1: Firstly, calculating the secret key from $\lambda \equiv 9^{11}(\bmod 37)$. So, we have $\lambda=7$.
Step 2: Calculating K^{-1}. By Theorem 3.1, we obtain

$$
\begin{aligned}
\operatorname{det} K^{-1} & =p_{5}^{-1}(9,7) \\
& \equiv(24+30 i)^{-1}(\bmod 37) \\
& \equiv \frac{1}{1476}(24-30 i)(\bmod 37) \\
& \equiv 9(24+7 i)(\bmod 37) \\
& \equiv 31+26 i(\bmod 37)
\end{aligned}
$$

Then, we have

$$
\begin{aligned}
K^{-1} & \equiv(31+26 i)\left[\begin{array}{ll}
7 i & 13 \\
1 & 36
\end{array}\right](\bmod 37) \\
& \equiv\left[\begin{array}{ll}
3+32 i & 33+5 i \\
31+26 i & 6+11 i
\end{array}\right](\bmod 37)
\end{aligned}
$$

Step 3: Calculating the shifting matrix for $\lambda=7$, then

$$
S \equiv\left[\begin{array}{ll}
12 & 7 i \\
23 i & 36
\end{array}\right](\bmod 37)
$$

Step 4: Finally, we decrypt the cipher text as follows.

$$
\begin{aligned}
P_{1}= & \left(\left[\begin{array}{ll}
29+29 i & 22+13 i \\
17+22 i & 36+16 i
\end{array}\right]-\left[\begin{array}{ll}
12 & 7 i \\
23 i & 36
\end{array}\right]\right) \\
& \times\left[\begin{array}{ll}
3+32 i & 33+5 i \\
31+26 i & 6+11 i
\end{array}\right] \\
& \equiv\left[\begin{array}{ll}
19+20 i & 1+25 i \\
0+i & 20+0 i
\end{array}\right](\bmod 37) . \\
P_{2} & =\left(\left[\begin{array}{ll}
28+17 i & 9+14 i \\
0+23 i & 36+0 i
\end{array}\right]-\left[\begin{array}{ll}
12 & 7 i \\
23 i & 36
\end{array}\right]\right)
\end{aligned}
$$

$$
\begin{aligned}
& \times\left[\begin{array}{ll}
3+32 i & 33+5 i \\
31+26 i & 6+11 i
\end{array}\right] \\
\equiv & {\left[\begin{array}{ll}
8+15 i & 13+5 i \\
0+0 i & 0+0 i
\end{array}\right](\bmod 37) . }
\end{aligned}
$$

First, we receive the plain text with numerical characters after decrypting the cipher text, and then we decrypt it again to obtain "STAY AT HOME".

5 Discussion and Conclusion

In this paper, we have obtained the $n \times n$ Hessenberg matrices whose determinants and permanents are the odd and even terms of bivariate Perrin's complex polynomial. Moreover, we demonstrate the significance of these in the field of mathematics and cryptography and provide experimental evidence of their usefulness in cryptography applications. We have developed a method over complex numbers based on the AffineHill cipher method that requires an invertible key matrix. We have shown that our matrices can be used as the key matrix for encryption and decryption algorithms. In future work, these matrices may be applied in steganography. Finally, we hope that this will inspire further research in this area and provide a new algorithm for more secure encryption in the future.

Acknowledgment:

The author would like to sincerely appreciate the referees for their valuable comments and suggestions on the manuscript. This work is supported by Research and Development Institute, Sakon Nakhon Rajabhat University under Grant No.1/2022.

References:

[1] R. P. M. Vieira, M. C. dos Santos Mangueira, F. R. V. Alves and P. M. M. C. Catarino, Perrin's bivariate and complex polynomials, Notes on Number Theory and Discrete Mathematics, Vol.27, 2021, pp.70-78.
[2] E. Kilic and D. Tasci, On the generalized Fibonacci and Pell sequences by Hessenberg matrices, Ars Combin, Vol.94, 2010, pp.161174.
[3] K. Kaygisiz and A. Sahin, Calculating terms of associated polynomials of Perrin and Cordonnier numbers, Notes on Number

Theory and Discrete Mathematics, Vol.20, 2014, pp.10-18.
[4] P. Kasempin, W. Vipismakul and A. Kaewsuy, Tridiagonal Matrices with Permanent Values Equal to k-Jacobsthal Sequence, Asian Journal of Applied Sciences, Vol.8, 2020, pp.269-274.
[5] F. Yilmaz and D. Bozkurt, Hessenberg matrices and the Pell and Perrin numbers, Journal of Number Theory, Vol.131, 2011, pp.1390-1396.
[6] K. Kaygisız and A. Sahin, Determinant and permanent of Hessenberg matrix and Fibonacci type numbers, Gen, Vo.9, 2012, pp.32-41.
[7] J. L. Cereceda, Determinantal representations for generalized Fibonacci and Tribonacci numbers, Int. J. Contemp. Math. Sci, Vol.9, 2014, pp.269-285.
[8] İ. Aktaş and H. Köse, On Special Number Sequences via Hessenberg Matrices, Palestine Journal of Mathematics, Vol.6, 2017, pp. 94 100.
[9] N. Taş, S. Uçar and N. Y. Özgür, Pell coding and pell decoding methods with some applications, Contributions to Discrete Mathematics, Vol.15, 2020, pp.52-66.
[10] J. Shtayat and A. Al-Kateeb, An EncodingDecoding algorithm based on Padovan numbers, 2019, arXiv preprint arXiv: 1907.02007.
[11] M. Maxrizal, Hill Cipher Cryptosystem over Complex Numbers, Indonesian Journal of Mathematics Education, Vol.2, 2019, pp.9-13.
[12] M. Akbiyik and J. Alo, On Third-Order Bronze Fibonacci Numbers, Mathematics, Vol.9, 2021, 2606.
[13] N. Kamyun, K. Pingyot and S. Sompong, Encryption Schemes Using Anti-Orthogonal of Type I Matrices, Thai Journal of Mathematics, Vol.19, 2021, pp.1671-1683.
[14] D. R. Stinson, Cryptography: theory and practice, Chapman and Hall/CRC, 2005.
[15] M. Esmaeili, More on the Fibonacci sequence and Hessenberg matrices, Integers, Vol.6, 2006, A32.
[16] N. D. Cahill and D. Narayan, Fibonacci and Lucas numbers as tridiagonal matrix
determinants, The Fibonacci Quarterly, Vol.42, 2004, pp.216-285.
[17] A. A. Öcal, N. Tuglu and E. Altinişik, On the representation of k-generalized Fibonacci and Lucas numbers, Applied mathematics and computation, Vol.170, 2005, pp.584-596.
[18] K. Kaygisız and A. Sahin, Determinant and permanent of Hessenberg matrix and generalized Lucas polynomials, Bulletin of the Iranian Mathematical Society, Vol.39, 2013, pp.1065-1078.

Contribution of Individual Authors to the Creation of a Scientific Article (Ghostwriting Policy)
The author equally contributed in the present research, at all stages from the formulation of the problem to the final findings and solution.

Sources of Funding for Research Presented in a Scientific Article or Scientific Article Itself
The research was financially supported by the Research and Development Institute, Sakon Nakhon Rajabhat University under Grant No.1/2022.

Conflict of Interest

The author has no conflict of interest to declare.

Creative Commons Attribution License 4.0 (Attribution 4.0 International, CC BY 4.0)
This article is published under the terms of the Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en _US

