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Abstract: - In this paper, we define some n n  Hessenberg matrices and then we obtain determinants and 
permanents of their matrices that give the odd and even terms of bivariate complex Perrin polynomials. 
Moreover, we use our results to apply the application cryptology area. We discuss the Affine-Hill method over 
complex numbers by improving our matrix as the key matrix and present an experimental example to show that 
our method can work for cryptography.  
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1 Introduction 
Perrin’s complex bivariate polynomials   ,

n
x yP  

have been introduced by [1], and are defined by the 
recurrence relation, for 3n  , 

     2 2

2 3, , , ,
n n n

x y ix x y y x y
 

 P P P  (1) 

  where initial conditions  0 , 3,x y P   1 , 0,x y P

 2 , 2x y P and 2 1i   . The first terms of the 
above sequences are presented in Table 1. 
 In recent years, the determinants and permanents 
of one type of Hessenberg matrices representation 
of many sequences. For example, [2], introduced 
determinants and permanents of Hessenberg 
matrices as the generalized Fibonacci and Pell 
sequences. In 2014, [3], presented some 
determinantal and permanental representations of 
associated polynomials of Perrin and Cordonnier 
numbers. In 2020, [4], defined tridiagonal matrices 
whose permanent is equal to the 𝑘-Jacobsthal 
sequence. See more examples in [5], [6], [7], [8]. 
 In addition, the applications of number theory 
have been widely studied. One of the most 
interesting applications is cryptography. Several 
authors used the methods for encryption using their 
obtained results as a key such as in 2017, [9], 
presented a coding and decoding method using the 
generalized Pell numbers. In 2019, [10], proposed a 
new coding and decoding algorithm using Padovan 
𝑄-matrices and Maxrizal, [11], showing the Hill 

Cipher method can be generalized to key matrices 
over complex numbers. 
 

Table  1. The first terms of Perrin’s complex 
bivariate polynomials. 

n   ,
n

x yP  
1  0  
2  2  
3  23y  
4  22ix  
5  2 2 22 3y ix y  
6  4 43 2y x  
7  4 2 2 23 4x y ix y   
8  2 4 6 46 2 2ix y ix y   
9  6 2 4 2 63 6 3ix y x y y    

10  4 4 2 4 89 6 2x y ix y x    
 

 In 2021, [12], defined some third-order Bronze 
Fibonacci sequences and developed the obtained 
results in encryption theory. Moreover, the anti-
orthogonal and 𝐻-anti-orthogonal of type 𝐼 matrices 
were firstly defined by [13], and they applied these 
matrices in cryptology. 
 In this paper, we consider the bivariate Perrin’s 
complex polynomials and then define new n n

Hessenberg matrices which have determinants and 
permanents related to these polynomials. In 
addition, we consider an application in cryptology 
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based on the Affine-Hill chipher which was 
introduced by [14]. We improve and modify the 
public key over complex numbers by using our 
obtained matrix which is a non-singular matrix. 
Finally, a numerical example of an encryption and 
decryption algorithm is given. 
 

 

2  Preliminaries 
In this section, the following definitions and lemmas 
for determinants and permanents of the Hessenberg 
matrix are given. 
Definition 2.1 [15], An n n  matrix ,n r sA a     is 

called a lower Hessenberg matrix if , 0r sa   when 

1s r  , i.e.,   

 

1,1 1,2

2,1 2,2 2,3

3,1 3,2 3,3

1,1 1,2 1,3 1,

,1 ,2 ,3 ,

0 0

0

0
n

n n n n n

n n n n n

a a

a a a

a a a
A

a a a a

a a a a

   



 
 
 
 
 
 
 
 
 

. (2) 

 
Lemma 2.2 [16], Let nA  be a lower Hessenberg 

matrix. The following determinant formula for nA  is 

given by 

  ,, 1

11

, 1 1
1

d ,tet de et 1 d
nn

n t

n t j j t

t j

n n n n

t

a a AA a A




 

 


  

  
  

  
   

for 2n  , where 0det 1A   , and 1 1,1det A a .  

Definition 2.3 Let nA  be n n  a matrix, the 

permanent of nA  is defined by  

 ,
1

per ,
n

n

n i i

i

A a


 

 
S

 (3) 

where nS  denotes the set of permutations of 

 1,2, ,n . 

Lemma 2.4 [17], Let nA  be a lower Hessenberg 

matrix. The following permanent formula for nA  is 

given by 

11

, 1 , , 1 1
1

per  per per ,
nn

n n n n n t j j t

t j t

A a A a a A


  

 

  
     

  
   

for 2n  , where 0per 1A   , and 1 1,1per A a .  

 

 

 

3  Main Results 

In this section, we will define new n n  lower 
Hessenberg matrices and present the determinants 
and permanents of their matrices which are bivariate 
Perrin’s complex polynomials, respectively.  
Theorem 3.1 Let ,n r sB b     be a n n  lower 

Hessenberg matrix, is defined by   
2

2

2

22

2

22

2

,

3 if   1

if     for   , 2

2 if   1

( ) if   2, 1
2

1
if   2  for   4, 2

4 2

0 otherwise

.
r

r

r s

r s

y r s

ix r s r s

y s r

x
i r s

y

x i
r s r s

y

b



 

 

 

 

  


   








  
  

 


 
   




 

(4) 

Then  

 2 1det , , n nB x y P  for 1.n   (5) 
Proof. We proved this by mathematical induction on 
n . By hypothesis, the result holds for all 4n  . 

Then, we suppose that the result is true for all 
positive integer k  such that 5k  . We will prove it 
for 1.k   
 Firstly, we use elementary row operations on the 
matrix 1kB  . We multiply the th( 1)k   row by 

4

44
x

y
 then add to th( 1)k   row. So, we get the 

th( 1)k   row as 

th

2 6 4 4
2

2 4 2

( 3)
8 4 2

0 0 0
k

ix ix y x
ix

y y y


 
 
 




 

. 

That is 
2 2

2

2

2

4

4

6 2
1

6 2

2

2 6 4 4
2

2 4 2

3 2 0 0
1 0 0

0
2

1
44

8 8
0

1
0 2

4

0 0 0
8 4 2

.
k

y y

ix

ix

y

x

y

B ix ix

y y

y

ix ix y x
ix

y y y






 




 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
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Now, using Lemma 2.2, we have   

 
12

1 1, , 1 1
1

det det 1 det
kk

k t

k k k t j j t

t j t

B ix B b b B
 

   

 

  
     

  
   

  
3

12
1, , 1 1

1
det 1 det

kk
k t

k k t j j t

t j t

ix B b b B


 

  

 

  
     

  
   

     
1

1, , 1 1
2

1 det .
kk

k t

k t j j t

t k j t

b b B
 

  

  

  
    

  
   

Since 1, 0k tb    for 1 3t k   , then 

 2
1 2 1det  ,k kB i x x y  P  

 
        

1
1, , 1 1

2
1 det

kk
k t

k t j j t

t k j t

b b B
 

  

  

  
    

  
   

    2 2 4
2 1 2 5 ,  ,

k k
ix x y ix y x y

 
 P P  

      6 4 4
2 3 2 1     ,  ,

k k
ix y x y x x y

 
  P P  

       2 2 2 2
2 1 2 2 2 4 , ,  ,k k kix x y ix y x y ix x y    P P P  

      6 4 4

2 3 2 3 2 1     ,  ,  ,
k k k

ix x y y x y x x y
  

  P P P  
       2 4 2 2

2 1 2 3 2 4 ,  ,  ,k k kix x y x ix x y y x y    P P P  
       2 2 2 4

2 2 2 3 2 1     , ,  ,k k ky ix x y y x y x x y    P P P  
    2 2

2 1 2 ,  ,
k k

ix x y y x y


 P P  
  2 3 ,

k
x y


 P  

 
   2 1 1 , .
k

x y
 

 P  
 
Then,  2 1det ,n nB x y P  for all 1n  .     

Example 3.2 Let 6B  is defined by  4 . So, the 

determinant of 6B  which is as follows:  

2 2

2 2

2
2 2

2

4
2 2

6 4

6 2
2 2

6 2

8 4 2
2

8 4 2

3 2 0 0 0 0
1 2 0 0 0

0 2 0 0
2

1det 0 2 0
44

1 0 2
48 8

1 0
416 16 8

y y

ix y

ix
ix y

y

x
B ix y

y

ix ix
ix y

y y

x x ix
ix

y y y








 


 

          10 2 8 2 4 6 2 63 10 18 8ix y x y x y ix y     

           13 ,x y P  
             2 6 1 , .x y


 P  

 

 

Theorem 3.3 Let ,n r sD d     be a n n  lower 

Hessenberg matrix, is defined by 
2

1,1 ,d y  
2

2 2 2
1,2 2,1 2,2 3,1

3, 2 , 3 , ,
2
y

d ix d ix d y d      

3,2 1d    and 

 

2

2

32
1

2

22

, 2

42 2
2

2

if     for  , 3
2 if   1  for  3

( ) if   3, 2
2

1 .if   2
4 2

for  5, 3

( ) 2 3 if   4, 1
4 2

0 otherwise

r

r

r s

r s

r
r

ix r s r s

y s r s

x
i r s

y

ix
d r s

y

r s

i x
ix r s

y





 




  


  


     
  

  

    
  
  

  
    
  



 

(6) 

Then 

 2 2det , ,  n nD x y P  for 2.n   (7) 
Proof. We proved this by mathematical induction on 
n . By hypothesis, the result holds for all 2 5n  . 

Then, we suppose that the result is true for all 
positive integer k  such that 6k  . We will prove it 
for 1.k   

    We use elementary row operations on the matrix 

1kD  . We multiply the th( 1)k   row by 
4

44
x

y
 then 

add to th( 1)k   th row. So, we get the th( 1)k   row 
as 

th

2 4 6 4
2

2 4 2

( 3)
8 4 2

0 0 0
k

ix y ix x
ix

y y y


 
 

 
 

 .  

That is 
2 2

2 2 2

2
2

2 2

2

4 2 4
1

2 4

2

2 4 6 4
2

2 4 2

0 0
2 3 2 0 0
3 1

2
2 3 0

4 2
3 2 1

48 4
0

1 0 2
4

0 0 0
8 4 2

k

y ix

ix y y

y
ix

ix ix

y

D x x x

y y

y

ix y ix x
ix

y y y



 
 

 
 

 
 
  
 
 
   
 
 
 
 
 
 
 

 
 

 
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Now, using Lemma 2.2, we have   

 2 1
1, , 11 1

1
d  1 det  d eet t

kk
k t

k t j j t

t

k

j t

kD i D dx d D
 

  

 



  
    

 




   

   
3

12
1, , 1 1

1
det 1 det

kk
k t

k k t j j t

t j t

ix D d d D


 

  

 

  
     

  
   

 
     

1
1, , 1 1

2
1 det .

kk
k t

k t j j t

t k j t

d d D
 

  

  

  
    

  
   

Since 1, 0k td    for 1 3t k   , then 

 2
1 2 2det  ,k kD i x x y  P  

 
        

1
1, , 1 1

2
1 det

kk
k t

k t j j t

t k j t

d d D
 

  

  

  
    

  
   

    2 2 4
2 2 2 4 ,  ,k kix x y ix y x y  P P  

      6 4 4
2 2 2     ,  ,k kix y x y x x y  P P  

       2 2 2 2
2 2 2 1 2 3 , ,      ,k k kix x y ix y x y ix x y    P P P  

      6 4 4
2 2 2 2 2 ,      ,  ,

k k k
ix x y y x y x x y

 
  P P P  

       2 4 2 2
2 2 2 2 2 3 ,  ,  ,k k kix x y x ix x y y x y    P P P  

       2 2 2 4
2 1 2 2 2     ,  ,  ,k k ky ix x y y x y x x y   P P P  

    2 2
2 2 2 1 ,  ,k kix x y y x y  P P  

  2 4 ,k x y P  
 

   2 1 2 , .
k

x y
 

 P  

Therefore,  2 2det ,n nD x y P  for all 2n  . 

Example 3. 4 Let 6D  is defined by  6 .  So, the 

determinant of 6D  which is as follows:  

2 2

2 2 2

2
2 2

2 2
2 2

6 2

4 2 4
2 2

2 4

4 6 6 2
2

4 6 2

0 0 0 0
2 3 2 0 0 0

3 1 2 0 0
2
2 3 0 2 0det 

4 2
3 2 1 0 2

8 4 4
2 3 1 0

16 8 8 4

y ix

ix y y

y
ix y

ix ix
ix yD

y

x ix x
ix y

y y

x ix ix ix
ix

y y y





 


 


 

 

          12 4 8 4 6 8 2 82 15 20 12 2x y x iy x iy x y       
           14 ,x y P  

             2 6 2 , .x y


 P  
 

 
    Now, we will present the permanents of matrices 
that are bivariate complex Perrin polynomials.  In 
[18], th is study  gave the relationship between the 
determinant and the permanent of a Hessenberg 
matrix by using Lemmas 2.2 and 2.4. 
    Then, let nA  be n n  lower Hessenberg matrix 

,r sA a     is given in  2  and also nE  be n n  a 

lower Hessenberg matrix which is defined by 

, 1 , 1r r r re a    for all r , , ,r s r se a  for r s   

and 0  otherwise.  So, we have det n nE A  or 

det pern nA E .  Then, we have the following 
Corollary without proof. 
Let nH  be n n  matrix, is defined by  

1 1 1 1
1 1 1 1

.1 1 1 1
1

1 1 1 1

nH

 
 


 
 
 

 
  

 (8) 

Corollary 3. 5 Let nV  and nW  be n n  matrices 

and define n n nV H B  and n n nW H C  where 

 denotes the operator of Hadamard product of 

matrix. Then, 

 2 1per , ,n nV x y P  (9) 

 2 2per , .n nW x y P  (10) 
 
 
4  Applications in Cryptography 
In this section, we present new encoding and 
decoding algorithms over complex numbers based 
on the Affine-Hill cipher method for encryption.  
We give some obtained results as a key matrix. 
     Let 1 2 3, , , , np p p p  be the plain text with 
numerical characters.  We consider the plain text 
with complex number form, i.e.,  

1 2 3 4 1, , , .n np p i p p i p p i     (11) 

      Define jP  as the thj  plain text in 2 2  matrix 

form, for 1 j l   where 8
nl     , is the smallest 

integer which is greater than or equal to the length 
of plain text divided by 8.  If the plain text matrix 
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jP  is not suitable, a zero will be added to complete 

the matrix jP . 

     Let us consider 37-characters with the numerical 
values in Table 2. 
 

Table 2. The 37-characters with  
the numerical values 

A
 

B
 

C
 

D
 

E
 

F
 

G
 

H
 

I
 

J
 

1
 

2
 

3
 

4
 

5
 

6
 

7
 

8
 

9
 

10
 

K
 

L
 

M
 

N
 

O
 

P
 

Q
 

R
 

S
 

T
 

11
 

12
 

13
 

14
 

15
 

16
 

17
 

18
 

19
 

20
 

U
 

V
 

W
 

X
 

Y
 

Z
 

0
 

1
 

2
 

3
 

21
 

22
 

23
 

24
 

25
 

26
 

27
 

28
 

29
 

30
 

4
 

5
 

6
 

7
 

8
 

9
 

blank
 

  

31
 

32
 

33
 

34
 

35
 

36
 37    

Example 4. 1 Suppose the plain text with the 

characters “CHOOSE HAPPY” .  In Table 2, we 

have the corresponding numerical characters as 3, 

8, 15, 15, 19, 5, 37, 8, 1, 16, 16, and 25. Then, the 

length of plain text is 12. So, we have 12
8 2.l      

Finally, plain text with complex number forms 

become  

3 8 ,15 15 ,19 5 ,37 8 ,1 16 ,16 25 ,i i i i i i       
and then  

1

3 8 15 15
,

19 5 37 8
i i

P
i i

  
  

  
 

and 

2

1 16 16 25
.

0 0 0 0
i i

P
i i

  
  

  
 

 

4.1 Encryption and Decryption Algorithms 

We will explain the following new coding and 
decoding algorithms. 

Firstly, we let   be a prime number and choose 

a private key G  such that  1 G     where 

    is the Euler’s phi function. Then, we select 

1  that is the primitive root of   and calculate 2  

that  2 1  modG   . Finally, we have a public 

key, denoted  1 2, ,    and G  as the private key. 

Encryption Algorithm 
Step 1: The sender chooses a secret number ς  

such that  1 .  ς  
Step 2: The sender calculates the signature   

such that  1  mod   ς
 . 

Step 3: The sender calculates the secret key   
such that  2  mod   ς

 . 
Step 4: The sender constructs K  as the key 

matrix of size 2 2  which is obtained in our results 
for x   and y  . 

Step 5: The sender constructs S  as the shifting 
matrix of size 2 2 . 

Step 6: The sender calculates  
   mod ,j jC P K S    

where jP  and jC  are thj  of 2 2  matrix of 
plain text and cipher text, respectively, for 1 j l 

. 
Finally, the sender will send  ,C  to the 

recipient for decoding the cipher text. 
Decryption Algorithm 
After receiving  ,C  , the recipient decrypts 

the cipher text with the following steps. 
Step 1: The recipient calculates the secret key   

such that   modG   . 
Step 2: The recipient receives K  as the key 

matrix with ,x   y   and calculates 1K 
. 

Step 3: The recipient receives S  as the shifting 
matrix. 

Step 4: The recipient calculates  
    1  mod .j jP C S K    
Note that: The prime number   shall be at least 

the number of different characters used in plain text 
and  gcd det , 1.K    
 
4.2  Numerical Example 

We suppose the key matrix K  is defined by 2B  that 

given in  4  and the shifting matrix S  is defined 

by 2D  that given in  6 , respectively. So, we have  

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2023.22.40 Jirawat Kantalo

E-ISSN: 2224-2880 344 Volume 22, 2023



 
2 2 2 2

2 2 2

3 2
  and  .

1 2 3
y y y ix

K S
ix ix y

   
    

    
 

Example 4.2 Assume that 37,   the key matrix 

, nK B  private key G  is 11 and primitive 

 the root of ,  1 5.   Then we calculate 2  such 

that 

 11
2 5    2 37 .mod So, the public key is 

   1 2, , 37,5,2 .     
 
We consider the plain text to be “STAY AT 

HOME” in encryption and decryption algorithms. 

Therefore, we obtain the plain text with numerical 
characters 19, 20, 1, 25, 0, 1, 20, 0, 8, 15, 13, 5 and 

12
8 2l     . 

Then, the plain text matrix jP  for 1 2j   
become  

 1

19 20 1 25
 mod37 ,

0 20 0
i i

P
i i

  
  

  
 

and  

 2

8 15 13 5
 mod37 .

0 0 0 0
i i

P
i i

  
  

  
 

 
Encryption Algorithm: 
Step 1: Choosing a secret number 32ς . 
Step 2: Calculating the signature :  

 325 9  mod37 .    
Step 3: Calculating the secret key :  

 322 7 mod37 .    
Step 4: We have K  as the key matrix for 9,x   

7,y  is defined by  

 
147 98 36 24

 mod37 .
1 81 36 7

K
i i

   
    

   
 

Step 5: We have S  as shifting matrix for 9x  , 
7y  , is defined by  

 
49 81 12 7

 mod37 .
162 147 23 36

i i
S

i i

   
    

   
 

Step 6: So, we have jC  cipher text for 1,2j   , as 
follows:  

1

19 20 1 25 36 24 12 7
0 20 0 36 7 23 36

i i i
C

i i i i

      
      

      
 

      
29 29 22 13

 mod37 .
17 22 36 16

i i

i i

  
  

  
 

2

8 15 13 5 36 24 12 7
0 0 0 0 36 7 23 36

i i i
C

i i i i

      
      

      
 

      
28 17 9 14

 mod37 .
0 23 36 0

i i

i i

  
  

  
 

So, we have cipher text with numerical numbers 
as 29, 29, 22, 13, 17, 22, 36, 16, 28, 17, 9, 14, 0, 23, 
36, 0 and sent the cipher text “22VMQV9P1QIN 
W9 ”  and signature 9   to the recipient. 
 

 

 

Decryption Algorithm : 
Step 1: Firstly, calculating the secret key from 

 119  mod37 .   So, we have 7.   

Step 2: Calculating 1K 
. By Theorem 3.1, we 

obtain 
 
  1 1

5det 9,7K p   

 1(24 30 )  mod37i    

    
1 24 30  mod37

1476
i   

                   9 24 7  mod37i   

                     31 26  mod37 .i   
 Then, we have  

   1 7 13
31 26  mod37

1 36
i

K i  
   

 
 

 
3 32 33 5

 mod37 .
31 26 6 11

i i

i i

  
  

  
 

Step 3: Calculating the shifting matrix for 7,   
then  

 
12 7

 mod37 .
23 36

i
S

i

 
  
 

 

Step 4: Finally, we decrypt the cipher text as 
follows.  

1

29 29 22 13 12 7
17 22 36 16 23 36

i i i
P

i i i

     
     

     
 

3 32 33 5
    

31 26 6 11
i i

i i

  
 

  
 

 
19 20 1 25

 mod37 .
0 20 0

i i

i i

  
  

  
 

2

28 17 9 14 12 7
0 23 36 0 23 36

i i i
P

i i i

     
     

     
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3 32 33 5
    

31 26 6 11
i i

i i

  
 

  
 

 
8 15 13 5

 mod37 .
0 0 0 0

i i

i i

  
  

  
 

 First, we receive the plain text with numerical 
characters after decrypting the cipher text, and then 
we decrypt it again to obtain “STAY AT HOME”. 
 
 
5  Discussion and Conclusion 
In this paper, we have obtained the n n  
Hessenberg matrices whose determinants and 
permanents are the odd and even terms of bivariate 
Perrin’s complex polynomial. Moreover, we 
demonstrate the significance of these in the field of 
mathematics and cryptography and provide 
experimental evidence of their usefulness in 
cryptography applications. We have developed a 
method over complex numbers based on the Affine-
Hill cipher method that requires an invertible key 
matrix. We have shown that our matrices can be 
used as the key matrix for encryption and decryption 
algorithms. In future work, these matrices may be 
applied in steganography. Finally, we hope that this 
will inspire further research in this area and provide 
a new algorithm for more secure encryption in the 
future.  
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