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1 Introduction 
The characteristic mean value property of harmonic 
(respectively parabolic) functions involves the 
measures	 , where  is the Dirac 
measure at  and  is the harmonic 
(respectively parabolic) measure relative to  
and	 , supported by the sphere  (respectively 
by the level surface  of the heat kernel). The 
adjoint potential of these measures is equal to zero 
on ∁  (the complement of ), or equivalently, their 
swept measures satisfy	 ∁ 	 0.  
 
In 1944, G. Choquet and J. Deny generalized the 
measure	 , and introduced the normal 
distribution. Moreover, they proved some 
characteristic properties of solutions of the 
equations	 0, and 0 in	 . Next, in 
1967, de La Pradelle following an idea of [8], 
extended the notion of normal measure to the setting 
of Brelot's theory, [3]. Finally, in 1971, E. 
Smyrnelis, using the extended notion of normal 
measure, proved several characteristic properties of 
normal measures and harmonic functions in Brelot 
spaces, applicable to solutions of	 0, where  is 
a second-order linear elliptic operator in	 . 
 
On the other hand, biharmonic functions (that is, 
solutions of 0) satisfy a mean value property 
which involves the measures ,   
where ,  are functions of ⊂ ⊂  and 
of the radii ,  of the concentric spheres , 

 (cf., [17]). The scope of this article is to 
generalize this property and study some related 

issues, for the solutions of the equation	
0, where  1,2  is a second-order linear 
elliptic differential operator. The idea is to work in a 
biharmonic elliptic space, and use special general 
measures, applicable to the above equation, in 
particular; note that to this biharmonic elliptic space, 
we associate a 1-harmonic and a 2-harmonic space 
that in the applications correspond respectively to 
the solutions of the equations	 0, and 
0. 
 
To this end, we first introduce in Section 2, the 
binormal pair of measures ,  supported by 
the compact set , as the pair such that the swept 
measures on ∁  of ≔ , 0  and ≔ 0,  
vanish. Since	 , it follows that ∁

∁ ∁  or , ∁ , 0 ∁ 0, ∁   (cf., 
[15]). 
 
The pair , 0  is called a pure biharmonic pair if 
, 0 ∁ 0,0  or equivalently if the pure adjoint 

potential pair vanishes on ∁ . 
 
The pair 0,  is called 2-normal if	 0, ∁

0,0) or equivalently if the 2-adjoint potential 
vanishes on ∁  (see, [14]). 
 
Several examples of the aforementioned pairs of 
measures are given in Section 3. 
 
In Section 4, we prove the characteristic mean value 
properties of biharmonic pairs in relation to 
biharmonic pairs of measures. 
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Section 5 is devoted to the study of the properties of 
binormal pairs of measures. Furthermore, we show 
that the linear combinations of the pairs 

∁ , ∁  are dense for the vague topology, in the 
space of the pure binormal pairs of measures, where 
( ∁ , ∁ , 0 ∁ . Analogous results hold 
for the measures ∁  (respectively	

∁ ) in the space of 1-normal (respectively 2-
normal) measures, where ∁  is the swept 
nonnegative measure of  in the 1-harmonic space 
(respectively ∁  is the swept nonnegative 
measure of  in the 2-harmonic space). Finally, we 
examine the relation between binormal and normal 
measures. 
 
Note. In this work, we use the term `measure' for 
`signed measure'.  
 
 

2 Reminders, Definitions, and 
Preliminary Results 
Let us first point out there are equivalent views of 
potential theory. We refer for instance to [1], [11]. 

In this paper, our setting is a general biharmonic 
space, as the space of solutions of the system 

, 0, where  1,2  is a 
second-order linear elliptic or parabolic differential 
operator (cf., [15]). From this space, one can 
construct using Green’s pairs, the associated adjoint 
space corresponding to the system ∗ , 
∗ 0, which is in duality with the initial space 

(cf., [20]). In this context, the potential theory of the 
harmonic case can be extended, and appropriate 
tools are provided to study boundary value 
problems. We also point out in [21], [22], two 
different approaches to the study of the biharmonic 
boundary value problem. 

In what follows, we briefly present the main facts 
about biharmonic spaces. These spaces have been 
inspired by the classical biharmonic equation 
	 0, and we point out that the polyharmonic 

case can be studied with the same approach. For 
more details, we refer to [12]. 

We consider a locally compact, connected space  
with a countable basis. We denote by  
(respectively	 ) the set of all nonempty open sets 
(respectively the set of all nonempty relatively 
compact open sets) in . 

Let  be a map that associates to each ∈  a 
linear subspace of  which is composed 
of compatible pairs ,  in the sense that if 
0 on an open set, then  also vanishes there. The 
pairs of  are called biharmonic on	 . 

On the other hand, a set ∈  with ∂ ⌀ is 
called -regular if the following conditions hold: 

• The Riquier boundary value problem has 
only one solution , , ,  associated 
to the pair , ∈ ∂ ∂ . 

• The inequalities 0 1,2  imply that 
, 0, while the inequality 0 

implies that , 0. Hence, for every	 ∈
, there exists a unique system 
, ,  of Radon nonnegative 

measures on ∂ , such that ,

  	   , while ,

  . 

Next, we recall that a pair of functions ,  
defined on	 ∈ , is called hyperharmonic if 

• : → ∞, ∞ , 

•  is lower semi-continuous, 

• and the inequalities  
	   , as well as   , 

hold for every regular set ⊂ ⊂ , and 
every ∈ . 

Let us also mention that if the function  is finite 
on a dense subset of	 , then the hyperharmonic pair 

,  is called superharmonic on	 . Finally, a 
nonnegative superharmonic pair ,  will 
be called potential pair (on	 ), if , 0,0  is 
the only biharmonic pair satisfying	0
	 1,2 . 

The space ,  with the axioms I, II, III, and IV 
introduced in [15], is called biharmonic. A 
biharmonic space is called elliptic if, for every ∈

 and every regular set ∋ , we have 
supp supp supp ∂ ; it will 
be called strong if there exists a strictly positive 
potential pair on . In a biharmonic space, we 
associate the underlying harmonic spaces ,  
and	 , , which correspond respectively to the 
solutions of the equations	 0, and 0 
in the classical case. We use respectively the 
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prefixes 1 or	2, to refer to the harmonic spaces 
defined previously. 

We shall say that the hyperharmonic (respectively 
superharmonic/potential) pair ,  is pure, if 
given a nonnegative 2-hyperharmonic function  
on ,  is the smallest nonnegative function such 
that ,  is a nonnegative hyperharmonic 
(respectively superharmonic/potential) pair on . 
The -harmonic (respectively biharmonic) support 
of a -hyperharmonic function (respectively 
hyperharmonic pair) is defined as the smallest 
closed set such that the function (respectively the 
pair) is -harmonic (respectively biharmonic) in its 
complement ( 1,2). We call Green’s pair, a pure 
potential pair with punctual biharmonic support. We 
also recall that if  is a numerical function on an 
open set , the function  is defined as follows: 

lim
→
∈

inf . 

In [20], we define and study the adjoint biharmonic 
spaces corresponding to the adjoint 
equation	 ∗ 0, that is, to the system: 

∗ , 	 ∗ 0. 

The asterisk symbol is used in the sequel to refer to 
adjoint spaces. 

Our setting will be a strong biharmonic elliptic 
connected space. We assume the proportionality of 
-Green’s potentials and -adjoint Green’s 

potentials, and also the existence of a topological 
basis of completely determining domains for the 
associated -harmonic spaces	 1,2 . For the 
notions and notations not explained in this work, we 
refer to [15], [9]. 

Definition 1.  Let ,  be Radon measures supported 
by a compact set	 ⊂ , and let	 ,	

, with 0, 0, 1,2 . 

• The pair ,  is called binormal for  if 
, 0 ∁ 0,0  and	 0, ∁ 0,0 . 

• The pair , 0  is called pure binormal for  
if	 , 0 ∁ 0,0 . 

• The pair 0,  is called 2-normal for  
if	 0, ∁ 0,0 . 

Let us consider the open subset	 ⊂ , the 
points	 , ∈ , the Green’s pair ,  of 

biharmonic support  and the adjoint Green’s pair 
∗, ∗  of support  (cf., [19], [20]). We denote 

by , ,  the swept pair on  of the former 

pair, and by ∗, , ∗,  the swept pair on  of 
the latter pair. We also consider the adjoint pure 
potential pair ∗ ∗, ∗  with associated 
nonnegative measure	 , where 

• 	 ∗ ∗ , 

• ∗ ∗ , 

and ∗, , ∗,  the swept pair corresponding to 
the open set . 

Lemma 2. We assert that 

∗, ∗, . 

Proof. If ,  is the adjoint swept pair of 
, 0  on	 , then it holds: 

∗, ∗

         ∗

∗

         ∗

∗

         ∗ .

 

On the other hand, since we have	 ∗,

∗ ∗ , using, [20], 
Lemma 4, and a remark after the proof of [20], 
Proposition 4.2, we obtain	 ∗, , 
which completes the proof.  

Theorem 3. Let , 0  be a pair of measures 
supported by the compact set . Then, the following 
properties are equivalent: 

(i) , 0  is pure binormal relative to . 
(ii) The adjoint pure potential pair ∗, ∗  

vanishes on ∁ . 

Proof. First, we notice that as the pair ∗, ∗  is 
adjoint biharmonic on	∁ , and therefore compatible, 
if ∗  = ∗ holds on	∁ , then ∗ = ∗ also holds 
on	∁ . In other words, if , 0  is pure binormal, 
then  is 1-normal. 

⇒ . The equality ∗ ∗  on ∁  implies 

that the respective reduced functions satisfy ∗∁  = 
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∗∁  in	 , and it follows from Lemma 2 that 
∁ = ∁ . In view of 

[15], Theorem 7.11, we have 

∁
,
∁

         ,
∁ ,

 

where : , 0 , : , 0  and ∁

∁ , ∁ , ∁
,
∁ , ,

∁ , are the respective 

swept pairs on ∁ ; therefore ∁  = ,
∁

,
∁ , 

1,2 . Finally, using [15], Theorem 7.1, (cf. 
also, [14]), we deduce that ,

∁
,
∁ , and 

,
∁  = ,

∁  or equivalently 

,
∁
∗  = 

,
∁
∗  in ; it follows that ,

∁  = ,
∁ , hence 

∁  = ∁  = 0. 

⇒ . The previous arguments can be reversed 
to prove the converse implication.  

Remark 4.  The case of the pair 0,  with 
0, ∁ 0,0  was studied in [14], and it was 

established that 0, ∁  = 0,0  ⇔ ∗ = 0 on	∁ . 

Corollary 5.  We suppose that  (that is, 
L L  in the classical case). Let λ, 0  be a pure 
binormal pair for the compact set	K. Then, λ is 1- 
and 2-normal, while λ, λ  is binormal for	K. 

Proof. It follows from Theorem 3 that ∗ ∗ ; as 

the pair ∗, ∗  is adjoint biharmonic on ∁ , and 
therefore compatible, we have ∗ 0 on ∁ , and 
by assumption, ∗ ∗. We also know 
that	 , ∁ , 0 ∁ 0, ∁ . Consequently,  
is 1- and 2-normal, while in view of Definition 1, 
,  is binormal.  

 
 

3 Some Examples 
The functions  such that 0 on an open set  
of  satisfy a characteristic mean value property 
(see, [17]): 

, 

where , , 1,2 , are concentric balls 

with 0 , ⊂ ,  = ,  = , 

 = ‖ ‖, ∈  and , 1,2 , are the 
respective harmonic measures. 

Let ,  be the Green’s pair in  (cf., [19]); it 
is biharmonic on the open set	 \ . If ⊂

 and	 ∈ , then we have 

 

or equivalently 

∗ ∗ ∗  

Example 6. We consider the compact set	 ; 
the pair of measures , 0  with	 , where 

,  is a pure binormal 
pair of measures. We can also take the 
decomposition	 , where	

, . Moreover, we observe 
that the pair ,  is a binormal pair for K. 

Example 7. Let  be a measure with compact 
support in	 . If	 ∈ ∁ , we obtain: 

∗ ∗

         ∗

∗ ∗ .

 

The pair	 , 0 , where  is pure 
biharmonic, while the pair ,  is a binormal pair. 

Note.  Obviously, since every compact set is 
contained in a ball, we can construct pure binormal 
(respectively binormal) pairs from a given measure. 

Example 8. Starting from a measure  supported by 
a compact set ⊂ , G. Choquet and J. Deny (cf., 
[6]) have constructed another measure	 ′ such that 
′  on  ∪ ∪ , where the sets  

are the connected components of ∁ ,  is compact, 
 is the potential generated by , and  is the 

volume element (and so on for the polyharmonic 
case). The potential ´ is defined as follows: 

´ , ′
,
, ,

, ,

 

where  is the Newtonian kernel, and ,
, ,  is the iterated kernel (see, 

[12]). If	 ´ , 0, on	∁ , then 

, , 0	on	∁ . 

Therefore, the pair ,  is binormal. 
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Example 9. Let	 ∗ , 1  be a strictly positive adjoint 
biharmonic pair and let ∗ be the associated kernel 
of the potential part of	 ∗ . If ∗ is a nonnegative 
adjoint 1-hyperharmonic function, the adjoint pair 

∗ ∗, ∗  is a pure hyperharmonic pair; it will be 
an adjoint pure potential pair, if ∗ is an adjoint 1-
potential, continuous with a compact harmonic* 
support. Let  be a measure supported by a compact 
set	 ⊂ ; we have	 ∗ ∗ , as 
well as	 ∗1 ∗ , where  is the 
nonnegative measure associated with the adjoint 
potential	 ∗1. Now, let ′ be another measure with 
density ∗ relative to	 ; we consider the following 
function: 

∗ ∗ ∗

∗ ∗

∗ ∗ ∗

∗ .

 

Therefore, if ∗ ∗ 0 on	∁ , we also have that 
∗ 0. Consequently, the pair , 0  is pure 

binormal for	 . On the other hand, if  is a 2-
normal measure for	 , then the pair ,  will be 
binormal for	 . 
 
 

4 Some Mean Values Properties of 
Biharmonic Pairs 
Let us recall some further results on harmonic and 
biharmonic spaces (cf., [15], parts X, XI). In a 
harmonic space, we consider a potential  on , 
which is finite, continuous, and strictly 
superharmonic. Let  be its associated nonnegative 
measure. We define Dynkin’s operators	 , and ′ 
relative to	 , as 

limsup
↘

				 1   

′ liminf
↘

				 2   

where	 ∈ ,  is an open set with ‾  compact,  is 
a numerical function on  such that the numerator 
in (1) and (2) is defined, and  is the harmonic 
measure. We can see that  on the 
harmonic space	 , where	 , 
and	 ∈ . Moreover, if  is the kernel associated 
with	 , then we have , for	 ∈

. The following inequality 0 

(or	 ′ 0) on an open set ⊂  is also 
characteristic of hyperharmonic functions on	 . 

Let	 , ´ be the operators in (1)-(2) associated to 
the space ,  ( 1,2). We say that the pair 

,  of finite and continuous functions in the 
open set	 ⊂ , is regular if  and  (or 
equivalently ´  and	 ´ ) are finite and 
continuous in	 . 

Next, we define the operators: 

				 limsup
↘

  ,  

′ liminf
↘

. 

Since on a relatively compact open set, there exists a 
strictly positive biharmonic pair	 , , we can 
assume, without loss of generality, that	 1. The 
Riesz decomposition yields	 , where  
is a 1-potential and  is a 1-harmonic function on 

. We have	 , and	 ′
′ . Moreover, the inequality  (or 
′ ), at the points where  is finite, is a 

characteristic property of the hyperharmonic pairs 
, . 

Proposition 10. ,  be a binormal pair of 
measures supported by a compact set ⊂ , where 

 is an open subset of , and ,  a biharmonic 
pair of functions on . Then,	 0, and 

0. 

Proof. We know that 0 if  is a 2-normal 
measure relative to a compact set ⊂  (cf., [14], 
Proposition 1]). Thus, it remains to prove the other 
equality. Let us consider a relatively compact open 
set	 , such that	 ⊂ ⊂ ⊂ . By [18], 
Proposition 1.7, there exist continuous potential 
pairs	 , , and	 , , which are biharmonic 
on	 , and such that	 , , , . 
We have the decompositions: , ′ ,

, 0 , as well as , ′ , , 0 , 
where ′ , , ′ ,  are pure potential pairs in 

, biharmonic on , while  and  are 1-potentials 
in  (see, [18], Proposition 2.8 and Proposition 2.2); 
moreover,  and  are 1-harmonic on , since 

′ , ′  on , while 
′ 0, ′ 0 on , (cf., [15], 

Corollary 11.4). Therefore, we have on	 : 
′ ′ , where  is 1-
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harmonic on . Finally, the nonnegative measures  
and  associated with the pure pairs ′ ,  and 
′ ,  (cf., [18], (3.13)), are supported by	∁ . 

As	 0, (cf., [14], Proposition 1), we obtain: 

′ ′

0,
 

where	 , since 0 holds on 
∁ ⊃ ∁ .  

Next, we shall study the converse of Proposition 10. 

Proposition 11.  Let  be an open subset of  and 
let ,  be a pair of regular functions satisfying 

0, 0 for a family ,  of 
binormal pairs of measures relative to compact sets 

⊂  with 0, 0, such that 
,
∗

,
∗ , 

,
∗

,
∗ , for all ∈ , the open sets  forming a 

basis of ; then, the pair ,  is biharmonic on 
. 

Proof. Let  be an open set with ⊂  and  
compact. There is a strictly positive biharmonic pair 

,  on  (cf., [15], Theorem 6.9); without loss 
of generality, we may assume that	 1, and we 
may replace  with . In the associated 1-harmonic 
space, the Riesz decomposition implies that	

; we consider the kernel  associated with 
the potential  and the associated operators	 ,   
(cf., [15], parts X, XI). The pair ,  is 
biharmonic since	 , and  
is a 2-harmonic function (cf., [14], Proposition 2)1. 

It follows from Proposition 10 that 0 
holds for all  satisfying the assumptions of 
Proposition 11. At this stage, we consider the 
function  on	 ; since the functions 

 and  are continuous on	 ,  will also be 

continuous on	 . Therefore, we obtain	 0. 

In addition, since ∗ 0 on ∁  (see the beginning 

of the proof of Theorem 3),  is in view of [14], 
Proposition 3, a 1-harmonic function, that we 
denote by	 . Therefore,  is the first 

                                                 
1 Analogous notions and results are available in the 
adjoint case. 

component of a biharmonic pair on	 , namely, of 
the pair	 , . Finally, since the pair 

,  is biharmonic on every open set	 ⊂ ⊂
, with  compact, it will also be biharmonic on .  

Corollary 12.  Let  ( 1,2) be a second-order 

linear elliptic operator with regular coefficients 
defined on a domain ⊂  ( 2). We consider 
the biharmonic space of the solutions of the 
system	 , 0 on . We suppose 
that there exists a positive potential pair; therefore, 
there exists a positive -potential ( 1,2) (cf., 

[15], part XI, [9], Chap. VII). Then, 

 holds for every	 ∈ , 

where	 ,  are concentric balls such that ∈
⊂ ⊂  (cf. Section 3). This property is 

characteristic of biharmonic2 functions on	 . We 
notice that if	 , then we can also write 

.  
 
 

5 Properties of Binormal Pairs of 
Measures 
Let ,  be measures, , , 
with 0, 0, 1,2 , and consider the 
pairs : , 0 , : , 0 , as well as the pair 
: 0, . Therefore, we have ∁

,
∁

,
∁  

and ∁ 0, ∁  (cf. Section 1 and the proof of 
Theorem 3). 

Theorem 13. The following are equivalent: 

(i) The pair , 0  is pure binormal and 
the pair 0,  is 2-normal. 

(ii) ∁ 0, and	 ∁ 0 1,2 . 

(iii) 0 and	
0, where , , ,  are potential 
pairs in  with support in ∁ . 

(iv) The previous potential pairs could be 
pure potential pairs. 

(v) 0, and 0 hold for 
every biharmonic pair of functions 

,  on an open set	 ⊃ . 

                                                 
2 The function  is called biharmonic on	 , if it is 
the first component of a biharmonic pair on	 . 
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(vi) ∁ , and ∁ 0, where 
, 0 ∁ ∁ , ∁  with  the part of 

 supported by the set of points of  
where ∁  is 1-thin; ∁ , where 
0, ∁ ∁ , ∁ , with  the part of 
 supported by the set of points where 
∁  is 2-thin. 

Proof. (i) ⇔ (ii). We have already established the 
first part of Theorem 13 in the proof of Theorem 3. 
Concerning the second part, we can see that these 
implications are well-known in harmonic spaces 
(cf., [14]). 

(i) ⇒ (v). This is proved in Proposition 10. 

(v) ⇒ (i). Suppose there exist points , ∈ ∁  
where ∗ ∗ , ∗ ∗ ; we 

take as ,  the Green pair ,  and we 
have  as well as 

, therefore we 
get ∗ ∗  and ∗ ∗ , 
which contradicts our assumptions (cf. Theorem 3). 

(iii) ⇒ (v). By [18], Proposition 1.7, there are two 
continuous potential pairs , , and , , 
which are biharmonic on a relatively compact open 

set ′, with ⊂ ′ ⊂ ′ ⊂ , and such that 
 on ′, (i=1,2). 

(v) ⇒ (iii). We choose an open set ⊃  such that 
the supports of the potential pairs	 , , and 

,  are not contained in ; hence, these pairs 
are biharmonic on . 

(iii) ⇒ (iv). This is straightforward because (iv) is a 
particular case of (iii). 

(iv) ⇒ (i). Suppose there exist two points , ∈
∁  such that	 ∗ ∗ , and	 ∗

∗ . We take as pure potential pairs supported 

on	∁ , the Green’s pairs , , and , , 
where 0, 1. Therefore, we obtain 

																	 ,  

and	 1 ∗ 1 ∗ ; clearly, this 
contradicts our assumptions (see also Theorem 3). 

(ii)⇒(vi). , 0 , 0 , 0 , with  the part of 
 supported by the set of points where ∁  is not 1-

thin. Setting	 : , 0 , we have	 , 0 ∁

∁ , ∁ ∁ , ∁ ∁ , ∁ . On the 

other hand, we know that	 ∁ . As	 ∁ 0, we 
deduce that	 ∁ ∁ 0; consequently, it 
follows that	 ∁ . Furthermore, 
since	 ∁ 0, we obtain	 ∁ ∁ 0. Finally, 
in view of [16], Remark 2.12, we conclude that 
∁ 0 (see also, [15], Theorem 7.13). 

(vi)⇒(i). We know that	 ∁ ∁

∁ , where ,  is a potential pair; since 
∁ 0, it follows that ∁ ∁ . 

Now, if ,  is the Green’s pair	 , , then 

we have	 ∁ ∁ . That 

is, ∗∁ ∗ ∁ , in view of 
Lemma 1. As for	 ∈ , it holds that ∗∁ ∗ 
on	∁ , so we deduce that	 ∗

∗ ∁ ; therefore, ∗ 0 on	∁ . 

Note.  We point out that the implication (vi)⇒(ii) 
can be established, by reversing the arguments in 
the proof of (ii)⇒(vi). We can see in the proof of 

[4], Proposition 3, that ∁  holds for every 1-
normal measure.   

Theorem 14.  Let  be a compact subset of	 . The 
following are equivalent: 

(i) There exists a pure binormal pair of 
measures , 0  for the compact set	 , 
with 0. 

(ii) ∁  is	1-thin for at least one point of . 

Proof. (i)⇒(ii). In view of Theorem 13, we 
have	 ∁ 0, ( 1,2), and by assumption 0. 
If ∁  is not 1-thin at any point of	 , then we will 
obtain ∁  (cf., [14], Proposition 3); 
since	 ∁

,
∁

,
∁ 0, it follows that	 0. 

This is a contradiction. 

(ii)⇒(i). Given a pure binormal pair	 , 0 , suppose 
that 0. By assumption and in view of Theorem 
13, we will obtain ∁ ∁ 0 and 
0 (since ∁  is 1-thin for at least one point of	 ). As 
the measure  is supported by the set of unstable 
points of	 , and ∁  is supported by the set of 
points where ∁  is not 1-thin, we deduce that 
∁  (see, [1], Proposition 4.6, [4], Lemma VIII, 2); 

therefore, 0, which is a contradiction.   

We denote by  the set of measures on	 . We 
endow it with the vague topology, that is, the 
topology of the simple convergence on the space of 
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continuous functions with compact support. 
Similarly, we consider the set  with the 
respective vague topology. We also denote by  
the set of points of	 , where ∁  is -thin, and by  
(resp. , the set of pure binormal pairs of 
measures (resp. the set of -normal measures, 

1,2) for . Finally, we recall that	 , 0 ∁

∁ , ∁ , where ∁  is the swept measure of  

on ∁  in the 1-harmonic space, and	 0, ∁

0, ∁ , where ∁  is the swept measure of  on 

∁  in the 2-harmonic space. 

Theorem 15.    

(i) The pairs	 ∁ , ∁ , where	 ∈
, form a total subset of . 

(ii) The measures	 ∁ , where	 ∈ , 
form a total subset of . 

(iii) The measures	 ∁ , where	 ∈ , 
form a total subset of	 . 

Proof. (i) First, it is well known that the swept pair 
∁ , ∁  of , 0  on	∁ , is expressed by 
∁ = ∁ , ∁  = ∁ , 

where  is any continuous function with compact 
support. Next, we recall that by definition of the 
integral, there exist points  of  such that 

∣ ∁ ∑ ∁ ∣ ′                (3) 

with	 ∑ . Note that by considering a 

suitable partition of	 , we can choose the (same) 
coefficients	 , such that relations (3) and (4) are 

satisfied (cf. [5, p. 109-109], [2] and [7, p. 126-127]. 

Moreover, according to [2], Theorem 1, chap. III, 

§2, No. 4, there exists a linear combination ∑  

such that 

∣ ∑ ∣ ″	and	 ∑ .  (4) 

Consequently, by combining (3) and (4), we can 
write 

∑ ∁ ∁

∑ ∁ , 

and ∑ ∁  with ∑ . 

Since, by Theorem 13, , 0 , 0 ∁ , ∁ , 
the result follows. Assertions (ii) and (iii) can be 
proved in the same way.  

Finally, we shall examine how normal and binormal 
measures are connected. 

Proposition 16.    

(i) If , 0  is a pure binormal pair for the 
compact set	 , then the measure  is 1-
normal for . 

(ii) Conversely, suppose that  is a 1-normal 
measure for	 . Then the pair , 0  is not 
necessarily a pure binormal pair, even if 
the -harmonic spaces coincide ( 1,2). 

Proof. (i) Since the pair ∗, ∗  is biharmonic 
adjoint on	∁ , and therefore compatible, then the 
equality ∗ ∗  on ∁  implies that ∗ ∗ 
holds there. Consequently,  is 1-normal for	 . 
(ii) If ∗ ∗ on	∁ , then we assert that ∗

∗ ∗  on	∁ , where ∗  is an adjoint 2-harmonic 
function on ∁ . Indeed, since the pure potential 
pairs satisfy the relations ∗ ∗ ∗ and ∗ ∗

∗ on	∁ , we obtain ∗ ∗ ∗ 0 on ∁ , 
that is, ∗ ∗ ∗ , where	 ∗  is an adjoint 2-
harmonic function on the complement of .	 

Let us now take for the elliptic operator, the 
Laplacian. We have the following inclusion: 

: , 0 	is	pure	binormal 																																											
⊂ : 	is	a	1 normal	measure . 

For instance, the measure	 , where  is 
a ball, is normal for	 , but the pair , 0  is not 
a pure binormal pair. On the other hand, the 
measure  is 1-normal, and 
the pair , 0  is also pure binormal ( ,  are 
concentric balls, and	 ⊂ ⊂ ).  

Nevertheless, in general, we have: 
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Proposition 17.  Let  be a 1-normal measure for	 . 
Then, , 0  is a pure binormal pair if and only 

if	 ∁ 0. 

Proof. This follows immediately from Theorem 13.  
 
	

6 Conclusion and Future Work 
In the present paper, we consider a biharmonic 
elliptic space, corresponding in	  to the solutions 
of the system , 0, where the 
second-order linear elliptic differential operators  

1,2  (cf., [15]), have adjoint operators ∗ 
1,2  satisfying ∗ , ∗ 0 (cf., [20]). 
By introducing binormal pairs of measures, we have 
extended the normal measures from the harmonic 
case (cf., [6], [10], [14]) to the biharmonic context.  
 
More specifically, by using pure adjoint potential 
pairs, we have studied the binormal pairs of 
measures satisfying the equivalent properties of 
Theorem 3. We have also established some 
characteristic properties of biharmonic pairs and 
binormal pairs of measures. In addition, we have 
pointed out in Theorems 13 and 14, the connection 
between binormal pairs of measures and the fine 
topologies of the associated harmonic spaces 
(corresponding in	  to the solutions of equations 

0 and  0 respectively). On the other 
hand, Theorem 15 provides an approximation of 
pure binormal pairs of measures by normal 
measures.  
 
Finally, Example 6 generalizes a characteristic 
property of the classical biharmonic case for the 
equation 0 (cf., [17]). It is an important 
result that may be useful to study some boundary 
value problems, for the above systems. For instance, 
it would be interesting to   examine the following 
biharmonic problem in . Can we determine a 
biharmonic function in the interior of a smooth 
domain if its values and the values of its normal 
derivative are known on the boundary? Here, a 
biharmonic function is the first component of a 
biharmonic pair. Another interesting open problem 
would be the extension of the results in [13], in the 
context of the heat equation, to more general 
parabolic operators.  
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