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Abstract: - The objective of this work is to compare linear discriminant analysis (LDA) and regularized 

discriminant analysis (RDA) for classification in high-dimensional data. This dataset consists of the response 

variable as a binary or dichotomous variable and the explanatory as a continuous variable. The LDA and RDA 

methods are well-known in statistical and probabilistic learning classification. The LDA has created the 

decision boundary as a linear function where the covariance of two classes is equal. Then the RDA is extended 

from the LDA to resolve the estimated covariance when the number of observations exceeds the explanatory 

variables, or called high-dimensional data. The explanatory dataset is generated from the normal distribution, 

contaminated normal distribution, and uniform distribution. The binary of the response variables is computed 

from the logit function depending on the explanatory variable. The highest average accuracy percentage 

evaluates to propose the performance of the classification methods in several situations. Through simulation 

results, the LDA was successful when using large sample sizes, but the RDA performed when using the most 

sample sizes. 
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1 Introduction 
The discriminant analysis is a statistical technique 

that is helped the researcher to separate response 

variables in terms of categorical data depending on 

the explanatory variable. This method comprises a 

discriminant function or decision function in the 

form of a linear or quadratic function to divide two 

or more classes of the response variable. [1], 

illustrated the discriminant analysis to challenge the 

classifying data. This paper demonstrated that the 

discriminant analysis had good predictive accuracy 

in the normal distribution. [2], applied the cosine 

similarity measure based on decision rue in the 

discriminant analysis.  

Linear discriminant analysis is a well-known 

technique for dimensionality reduction problems. 

Pre-processing step is a machine learning and 

pattern classification application, [3]. This technique 

comes from the assumption of a standard covariance 

matrix based on the multivariate normal 

distribution. The decision boundary function is 

created for computing the population. The 

maximization of the likelihood function is to 

evaluate the observation and the proportion of each 

population. [4], applied linear discriminant analysis 

for small sample sizes in the classification of face 

recognition, bioinformatics, and text recognition. 

[5], developed the linear discriminant analysis to 

neighborhood linear discriminant analysis. Then, the 

scatter matrices are defined on a neighborhood 

consisting of reverse nearest neighbors.  

When the assumption of the covariance matrix 

has an individual for each group, this leads to so-

called quadratic discriminant analysis. The linear 

discriminant analysis is straightforward, where the 

number of observations is greater than the number 

of the explanatory variable. However, it becomes a 

severe problem where the number of the 

explanatory variable is greater than the number of 

observations, or it defines the high-dimensional 

data. The quadratic discriminant analysis cannot be 

inverted for computation because the sample 

covariance matrix is singular. To overcome these 

problems, the linear discriminant analysis makes 

some adaptations to a new method as regularized 

discriminant analysis, [6]. [7], improved the 

covariance in regularized discriminant analysis on 

the high-dimensional low-sample size data for the 

ill-posed inverse problem. [8], conducted a large 

dimensional experiment of regularized discriminant 

analysis classifiers with its two popular methods, 

known as regularized LDA and QDA. 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2023.22.37 Autcha Araveeporn, Somsri Banditvilai

E-ISSN: 2224-2880 315 Volume 22, 2023



The LDA has extended to flexible discriminant 

analysis (FDA), [9], a valuable multigroup 

classification tool. FDA obtained nonparametric 

versions of discriminant analysis by replacing linear 

regression with any nonparametric regression 

method, and this technique can improve its 

classification performant results.  [10], considered 

the high-dimensional data for the within-class 

covariance singular matrix, called penalized LDA, 

that evaluated the performance of the resulting 

methods in the simulation study. [11], described a 

penalized version of LDA designed for highly 

correlated independent variables. [12], fitted the 

Gaussian mixture to each class to facilitate effective 

classification in non-normal settings.   

This article aims to study the binary 

classification of high-dimensional data by 

comparing LDA and QDA. Through simulation 

data, we generate explanatory variables from the 

normal distribution, contaminated normal 

distribution, and uniform distributions, while 

response variables are obtained from the logit 

function. The maximum average accuracy 

percentage investigates the performance of two 

methods.   

This study is divided into four sections: the first 

section discusses the importance and background of 

linear discriminant analysis and regularized 

discriminant analysis. Section 2, the general 

definitions related to discriminant analysis, proposes 

the theorems of these methods. Section 3 presents 

the simulation study and results used to construct 

the response and explanatory variables in the high-

dimensional data. A discussion of our simulation 

results is shown in section 4. Finally, the conclusion 

and recommendations are provided in Section 5. 

    

 

2 Discriminant Analysis  
The explanation of LDA and RDA relates to the 

Bayes theory concept based on a multivariate 

normal distribution. The two classes have a normal 

distribution in the real world, then 
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where 1C  and 2C  denote the first and the second 

class. The definition of the probability distribution is                                             
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where C is the number of class. The likelihood and 

the prior functions of class are    1f x and 
1 . 

Therefore, the posterior distribution in (1) becomes      
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Now, the thinking of a multivariate dataset of 

discriminant analysis is 1 2( , ,..., )n= x x xx with 

n  observations where 

  1 2( , ,..., ) , 1,2,...,i i i ipx x x x i n  in p

variables. This dataset focuses on the multivariate 

normal distribution called  ~ ( , )N x  .  The 

probability distribution function for  x is   
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where 1 2( , ,..., )p=     denotes the mean of 

the dataset,   denotes the covariance matrix, and 
1 denotes the inverse of the covariance matrix.  

 Therefore, the two classes of multivariate 
normal distribution in (2) and (3) become 
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2.1 Linear Discriminant Analysis 
The linear discriminant analysis mentions the equal 

covariance matrix on two classes
1 2    , 

[13]. Therefore, the probability distribution function 

in   (3) becomes:  
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where 
1  and 

2 are the probability of two 

classes, and 
1  and 

2 are the mean of two 

classes.  

      Take the natural logarithm in (5) two sides, and 

the simplified term shows that  
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For obtaining (7), this equation can be seen in the 

form of a linear function T
A x+ b = 0  which is 

called the LDA. The decision boundary to 

discriminate the two classes is    
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The parameters associated with (9) are 

approximated from the multivariate dataset as the 

mean and covariance matrices following:  
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where ̂  is called the pooled covariance matrix. 

 

2.2 Regularized Discriminant Analysis   
In high-dimensional data, the performance of linear 

discriminant analysis is far from optimal since the 

lack of observation is unstable data. Therefore, the 

regularized discriminant analysis is proposed to 

resolve the singularity problem.  [14], proposed the 

regularization in a covariance matrix 

( ) by defining   

           ˆ (1 ) pI      ,                        (10)                                        

where   is defined as the regularized parameter on 

values 0 1  . Then, the regularization probably 

is adjusted by the sample correlation matrix 

1/2 1/2ˆˆ ˆ ˆR D D  in the same way, 

 ˆ (1 ) ,pR R I                             (11)  

where  D̂  is the diagonal matrix of the pooled 

covariance matrix ( ̂ ).  Then, the regularized 

covariance matrix is modified by (10) and (11) as  

                          
1/2 1/2ˆ ˆ .D R D                          (12)                                                        

Now, the decision boundary depends on regularized 
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covariance matrix that can define the corresponding 

linear discriminant analysis as,  
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where the   can be from (12) and the classify 

criterion is the same as (9).  

 

 

 3 Simulation Study and Results 
The simulation study will classify the binary 

response variables ( y ) based on an explanatory 

variable ( x ) by using linear discriminant analysis 

and regularized discriminant analysis. The 

explanatory variables are generated on the normal 

distribution, contaminated normal distribution, and 

uniform distribution. 

      The normal distribution is the common data with 

parameter  and variance 2 in the following 

function: 
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The simulation data is generated from a normal 

distribution with a mean of zero and a variance of 

twenty-five or called
2( , ) (0,25)N N    and the 

probability density is shown in Fig. 1. 

 
Fig. 1: The normal probability density with mean 

zero and variance twenty-five.    

 

The contaminated normal distribution is a mixture 

of two normal distributions with a mixing 

probability of contaminated data p and 1 p , 

where 0 0.1p   . Then the contaminated normal 

probability density is  

 2 2 2 2; , (1 ) ( , ) ( , )f x p N pN c        , 
where c is a parameter that determines the wider 

standard deviation. In this case, we used the ten 

percent of contaminated data ( 0.1p  ) and 5c  . 

The mean and variance are defined as normal 

distribution, and the histogram of the contaminated 

normal distribution is shown in Fig. 2. 

 

 
Fig. 2: The histogram of contaminated normal 

distribution with mean zero, variance twenty-five, 

0.1p  , and 5c  .    

 

 Finally, the uniform distribution is the 

symmetric distribution with parameters a and b , 
which are the minimum and maximum values. The 

uniform probability density is written by  

1
( ) , ,f x a x b

b a
  


  

where the mean is   ( )
2

b a
E X


 , and variance is 

2( )
( )

12

b a
Var X


 . This explanatory variable is 

simulated in the range of -2 to 2 with a mean zero 

and a variance of 1.333. The probability density is 

exhibited in Fig. 3.   
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Fig. 3: The uniform probability density in the range 

of -2 to 2. 

 

Through simulation, the explanatory variables 

are greater than the observed data ( )n  standing on 

the high-dimensional data.  The number of 

explanatory variables is defined as 

 30 ( 15, 20, 25)n  ,  

60 ( 20, 30, 40, 50, 55)n  ,  

and 100 ( 20, 30, 40, 50, 70, 95)n  . The 

response variable is obtained from the logit function   

( )
1

i

i
i

e
p

e








x

x
x , where x  are the explanatory 

and  are the parameter of correlation coefficients. 

If ( ) 0.5ip x , the response variables are denoted 

as 1iy  , and 0iy  , when ( ) 0.5.ip x  

     

     The R program was conducted to simulate data 

and approximated the decision boundary to classify 

the response variable. The confusion matrix was 

created to decide the performance of these 

classification methods. The predicted data were 

evaluated to compare with the real data using the  

accuracy percentage (Table 1). 

 

Table 1. The confusion matrix of real data  

(
iy ) and predicted data ( ˆ

iy ). 

 

 Accuracy Percentage 100.
TP TN

TP TN FP FN


 

  
 

The average accuracy percentage for the 
classification of the linear discriminant analysis and 
regularized discriminant analysis are shown in Table 
2, Table 3, and Table 4. Then Fig. 4, Fig. 5, and Fig. 
6 show the average accuracy percentage trend when 
sample sizes are increased.     

 

Table 2. The average accuracy percentage of linear discriminant analysis (LDA) and regularized 
discriminant analysis (RDA) under 30 independent variables. 

  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
In Table 2, the RDA employs the highest 

average accuracy percentage in all cases. It can 
see that the increased sample size of  RDA does 
not affect classification except for LDA. When 
the sample sizes increase, the average accuracy 
percentage of LDA is increased, as shown in 
Fig. 4. 

 

 

 

Predicted data 
Real data 

1iy   0iy   

ˆ 1iiy   
   True Positive 

 (TP) 

False Positive 

 (FP) 

ˆ 0iy   
False Negative 

 (FN) 

True Negative 

 (TN) 

Sample Sizes 

 ( n ) 
Normal Contaminated Normal Uniform 

LDA RDA LDA RDA LDA RDA 

15 85.14 99.60 84.21 97.13 85.69 99.72 

20 92.71 99.63 90.64 97.12 93.15 99.54 

25 98.44 99.36 96.30 96.52 98.44 99.27 
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Fig. 4: The trend of the average accuracy percentage of linear discriminant analysis (LDA) and regularized 
discriminant analysis (RDA) under 30 independent variables. 

 
Table 3. The average accuracy percentage of linear discriminant analysis (LDA) and regularized 

discriminant analysis (RDA) under 60 independent variables. 

 

  

 

 

 

From the average accuracy percentage in Table 2, 
the RDA is appropriate for the small sample sizes, 
but LDA outperforms the large sample sizes. The 
average accuracy percentage of LDA is increased 
when the sample sizes increase, as shown in Fig. 5. 

 
 

 

 

Fig. 5: The trend of the average accuracy percentage of linear discriminant analysis (LDA) and regularized 
discriminant analysis (RDA) under 60 independent variables. 

Sample Sizes 

 ( n ) 
Normal Contaminated Normal Uniform 

LDA RDA LDA RDA LDA RDA 

20 77.71 99.86 79.62 98.64 77.04 99.82 

30 85.61 99.67 87.19 98.28 85.64 99.65 

40 94.00 99.31 93.05 98.15 94.19 99.52 

50 99.27 99.23 97.94 97.78 99.28 99.16 

55 99.94 99.06 99.50 97.66 99.95 99.14 
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Table 4. The average accuracy percentage of linear discriminant analysis (LDA) and regularized 
discriminant analysis (RDA) under 100 independent variables. 

Sample Sizes 

 ( n ) 
Normal Contaminated Normal Uniform 

LDA RDA LDA RDA LDA RDA 

20 70.74 99.96 73.61 99.45 70.70 99.96 

30 75.60 99.87 78.69 99.14 75.33 99.89 

40 80.75 99.80 83.32 99.09 80.82 99.79 

50 85.92 99.54 87.51 98.83 86.16 99.62 

70 96.14 99.33 94.93 98.58 96.29 99.42 

95 99.99 98.99 99.94 98.19 99.99 98.89 

 

According to the results in Table 4, the RDA 

performs well in most cases, but the LDA is a 

perfect classification in the largest sample sizes. The 

average LDA accuracy percentage increases when 

the sample sizes increase, as shown in Fig. 6. 

 

 

 

 

 

 
Fig. 6: The trend of the average accuracy percentage of linear discriminant analysis (LDA) and regularized 

discriminant analysis (RDA) under 100 independent variables.

 

4 Discussion 
The classification performance for the binary 

response variable depended on the explanatory 

variables via the normal, contaminated normal, and 

uniform distributions shown in Table 2, Table 3, and 

Table 4. Starting with the first table, the average 

accuracy percentage in RDA for small explanatory 

variables is more significant than LDA for all 

sample sizes. Moreover, when the explanatory 

variables are increased to the moderate and high 

range, the average accuracy percentage in RDA is 

more significant than LDA in most sample sizes, as 

shown in Table 3 and Table 4. Meanwhile, in the 

largest sample sizes, the average accuracy 

percentage in LDA is greater than RDA. The 

average accuracy percentage increases when the 

sample sizes are increased, as shown in Fig. 4, Fig. 

5, and Fig. 6. The several distributions give the 

same performance methods, but the normal and 

uniform distributions present the highest average 

accuracy percentage. The choice of data distribution 

plays a vital role in good classification accuracy, 

[15].  

 

 

5 Conclusion 
This paper provided a binary classification by 

applying the high-dimensional data for linear 

discriminant analysis (LDA) and regularized 

discriminant analysis (RDA). We explained the 

benefit of explanatory variables on several 

distributions for predicting binary response 
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variables. Through a simulation study, the RDA 

outperformed more than the LDA in most sample 

sizes. However, the LDA was reasonable working 

with the largest sample sizes.   

      When considering the distribution, the average 

accuracy percentage of the normal and uniform 

distributions was slightly different because of the 

symmetric distribution. In the case of outlier data, 

the RDA performed well for classification. These 

results explained that the RDA was adequate for a 

classification based on high-dimensional data in 

most cases. Therefore, we concluded that the RDA 

could classify the situation of the sizeable 

explanatory variable and the sample sizes. 

Furthermore, the RDA was recommended for small 

sample sizes, [16], and large dimensional data, [17]. 

For future work, the RDA can apply the 

classification of psychological tasks, [18]. 

The simulation data is mainly used in this 

research. For future work, the real dataset in high-

dimensional distribution, especially medical data 

such as large-scale gene expression data for 

classification disease in small patients. This research 

focuses the discriminant classification. Then the 

machine learning method can apply in this case.  
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