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1 Introduction  

The problem of vibrations in mechanical systems 

is important from a practical point of view and 

interesting as a descent object of investigation for 

theoreticians. The mathematical models often are 

formulated in terms of the second-order ordinary 

differential equations. The second-order oscillators 

are of great importance in mechanics, engineering, 

and other practical areas. The oscillatory behavior 

of solutions was and continues to be an object of 

intensive studies (books, [19], [7], [15]). The main 

characteristics of these oscillators are the 

amplitude and periods of solutions, as well as the 

amplitude-period relations, [2], [3], [4], [5], [6], 

[8], [9], [10], [11], [12], [14], [16], [17], [21]. This 

theory arose from elementary harmonic 

oscillations represented by equation 
𝑥′′ + 𝑘2𝑥 = 0. (1) 

An interesting question arises immediately. What 

happens if the coefficient 𝑘2 is not constant? If it 

depends on the independent variable t, then the 

equation is still linear, and the linear theory 

applies. But if 𝑘2  is dependent on 𝑥  or 𝑥′  (or 

both), the equation can become nonlinear. The 

remarkable feature of nonlinear equations is that the 

oscillation amplitude is dependent on the period of 

a solution, and vice versa. In a series of papers, [8], 

[9], [10], [11], [12], [14], this problem was treated 

using the “ancient Chines” technique. 

For instance, in the work, [11], the nonlinear 

oscillator 

𝑥′′ + (1 + 𝑥′2)𝑥 = 0 (2) 

 

was investigated. The trial solution in the form 

𝑥(𝑡) = 𝐴𝑐𝑜𝑠 𝜔𝑡  was used, where 𝜔  is the 

frequency to be determined. For equation (2) the 

frequency-amplitude relation was found in the form 

 

𝜔 =
2

√4−𝐴2
 (3) 

Another approximate relation was found using “the 

ancient Chinese inequality called Chengtian’s 

inequality”, [13]. The resulting formula is   

 

𝜔 = √
8

8−𝐴2 (4) 

Let us look at this problem from a different 

point of view. Rewrite equation (2) as  
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𝑥′′ + 𝑥 𝑥′2 + 𝑥 = 0 (5) 

 

It resembles the classical Liénard equation 

 

 𝑥′′ + 𝜇(𝑥2 − 1)𝑥′ + 𝑥 = 0 (6) 

and the generalized one 

 

𝑥′′ + 𝑓(𝑥)𝑥′ + 𝑔(𝑥) = 0. (7) 

 

The second term in (5), however, is quadratic. 

In the work, [20], a special transformation was 

invented which can be used for the reduction of the 

equation 

 

𝑥′′ + 𝑓(𝑥)𝑥′2 + 𝑥 = 0 (8) 

to the Newtonian form 

 

𝑢′′ + ℎ(𝑢) = 0. (9) 

 

We will apply this transformation to the study of 

our selected cases. We are interested in establishing 

the relation period versus amplitude. 

 

2 The Scheme of the Study  

Consider the equation 

𝑥′′ + 𝑓(𝑥)𝑥′2 + 𝑔(𝑥) = 0. (10) 

Introduce the new variable u by the relation 

 

𝑢 = ∫ 𝑒𝐹(𝑠)𝑑𝑠
𝑥

0
, (11) 

 

where 𝐹(𝑥) = ∫ 𝑓(𝑠)𝑑𝑠
𝑥

0
. Then 

𝑑𝑢

𝑑𝑥
= 𝑒𝐹(𝑥) > 0. 

 

Therefore 𝑢(𝑥) is a monotone function and, as a 

consequence, the inverse function 𝑥(𝑢) exists. If 

𝑥(𝑡)  is an arbitrary solution of (10), then the 

corresponding function  

𝑢(𝑡) = ∫ 𝑒𝐹(𝑠)𝑑𝑠
𝑥(𝑡)

0
 (12) 

 

satisfies the second-order conservative equation 

𝑢′′ + ℎ(𝑢) = 0, (13) 

 

where ℎ(𝑢) = 𝑥(𝑢)𝑒𝐹(𝑥(𝑢)). Equation (13) has an 

integral   

 

𝑢′2(𝑡) + 2𝐻(𝑢(𝑡)) = 𝑐𝑜𝑛𝑠𝑡, (14) 

where 𝐻(𝑢) = ∫ ℎ(𝜉)𝑑𝜉
𝑢

0
. 

 

The purpose of this article is to use the 

described approach to equations of the form (8). 

Several cases will be considered. 

Since we are interested in periodic solutions of 

differential equations, the following assertion is 

important. 

Proposition 2.1. If 𝑥(𝑡) is a periodic solution 

of the equation (15), then the corresponding 

function 𝑢(𝑡), obtained by the formula (11), is the 

periodic solution of (13). 

Proof. If 𝑥(𝑡) is a periodic solution of (15), 

then 𝑥(𝑡1) = 𝑥(𝑡2) , 𝑥′(𝑡1) = 𝑥′(𝑡2)  for some 

𝑡1 ≠ 𝑡2 . The respective trajectory in the (𝑥, 𝑥′)- 

phase plane is closed. The respective solution 𝑢(𝑡), 

defined by (11) is also periodic, because 𝑢(𝑡1) =

∫ 𝑒𝐹(𝑠)𝑑𝑠
𝑥(𝑡1)

0
= ∫ 𝑒𝐹(𝑠)𝑑𝑠

𝑥(𝑡2)

0
= 𝑢(𝑡2) . Due to 

the autonomy of both equations (15) and (13), these 

solutions on a phase plane are represented by closed 

trajectories.  

 

3 Equation 𝒙′′ + (𝟏 + 𝒙′𝟐)𝒙 = 𝟎  

First, notice that this equation can be written in the 

form 

𝑥′′ + 𝑥𝑥′2 + 𝑥 = 0. (15) 

This is a Liénard type equation with quadratic 

dependence on 𝑥′. The variable change, described 

above, is applicable. 

Equation (15), written as 𝑥′′ + (1 + 𝑥′2)𝑥 =
0 , can be considered as a perturbation of the 

harmonic equation, which is known to have 

periodic solutions. Does equation (15) have a 

periodic solution? Let us write equation (15) in the 

form (13). We get 𝑓(𝑥) = 𝑥, 𝐹(𝑥) = ∫ 𝑓(𝑠)𝑑𝑠
𝑥

0
=

∫ 𝑠 𝑑𝑠
𝑥

0
=

𝑠2

2
, 𝑢(𝑥) = ∫ 𝑒  

𝑠2

2 𝑑𝑠.
𝑥

0
 The latter can be 

written as the differential equation, given the initial 

condition,  

𝑑𝑢

𝑑𝑥
= 𝑒  

𝑥2

2 ,   𝑢(0) = 0. (16) 

Evidently, 𝑢 = 𝑢(𝑥)  is strictly monotonically 

increasing function with the graph, symmetrical 

with respect to the origin and passing through the 

origin. It is known as the function √
𝜋

2 
 𝑒𝑟𝑓𝑖

𝑢

√2
, 

[22]. The inverse function 𝑥 = 𝑥(𝑢) exists and has 

similar properties. Both functions are depicted in 

Figure 1. 
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Fig. 1: Blue: 𝑥 = 𝑥(𝑢), red: 𝑢 = 𝑢(𝑥). 

 

The function 𝑥(𝑢) is the solution of the Cauchy 

problem  

𝑑𝑥

𝑑𝑢
= 𝑒  

−
𝑥2

2 ,   𝑥(0) = 0. (17) 

 

The function ℎ(𝑢) in equation (13) is 

ℎ(𝑢) = 𝑥(𝑢)𝑒𝐹(𝑥(𝑢)) = 𝑥(𝑢)𝑒  
𝑥2(𝑢)

2 . (18) 

 

The functions 𝑥(𝑢)  and ℎ(𝑢)  are depicted in 

Figure 2. 

 
Fig. 2: Blue: 𝑥 = 𝑥(𝑢), red: ℎ(𝑢). 

 

Equation (13) has the only equilibrium 𝑢 = 0 

and, therefore, the periodic solution ought to 

oscillate around it. 

Let us apply the above transformation to 

equation (2) written in the form (15).  

𝑢 = ∫ 𝑒  
𝑠2

2 𝑑𝑠
𝑥

0
. (19) 

The graphs of 𝑢(𝑥) and the inverse function 𝑥(𝑢) 

are depicted in the Figure 3 below (blue – 𝑢(𝑥), red 

- 𝑥(𝑢)). 

 
Fig. 3: Left: u(x), right: x(u). 

 

The inverse function 𝑥(𝑢)  exists and the 

graph is symmetrical with respect to the bisectrix.  

Equation (13) in this case is 

𝑢′′ + 𝑥(𝑢)𝑒  
𝑥(𝑢)2

2 = 0.  (20) 

 

Periodic solutions of the equation (2) are in 

one-to-one correspondence to periodic solutions of 

(20). 

 

3.1 Period-amplitude Relation  
Our goal in this subsection is to state the 

frequency-amplitude, or, which is almost the same, 

period-amplitude relation for the equation (15). For 

this, we have the function 𝑢(𝑥), defined in (19), or 

as a solution to the Cauchy problem (16). We have 

the inverse function 𝑥(𝑢), which can be obtained 

explicitly or numerically as in (17). The solution 

𝑥(𝑡) of the initial value problem 

𝑥′′ + 𝑥𝑥′2 + 𝑥 = 0, 𝑥(0) = 0, 𝑥′(0) = 𝛼 (21) 

 

has a counterpart 𝑢(𝑡) , which solves the initial 

value problem 

𝑢′′ + ℎ(𝑢) = 0, 𝑢(0) = 0, 𝑢′(0) = 𝛼, (22) 

 

since 𝑢(0) = ∫ 𝑒  
𝑠2

2 𝑑𝑠
𝑥(0)

0
= ∫ 𝑒  

𝑠2

2 𝑑𝑠
0

0
= 0, 

𝑑𝑢

𝑑𝑡
|
𝑡=0

= (𝑒
 𝑥(𝑡)2

2 𝑥′(𝑡))|

𝑡=0

= 𝛼. 

 

It follows that if 𝑥(𝑡) is a periodic solution of 

the problem (21), the same is a solution 𝑢(𝑡) of the 

problem (22), and their periods are equal. As an 

illustration, 𝑢(𝑡) and 𝑥(𝑡) are depicted in Figure 

4. 
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Fig. 4: Red: 𝑢(𝑡), blue: 𝑥(𝑡), 𝛼 = 1. 

 

It follows that 

𝑢′2(𝑡) + 2𝐻(𝑢(𝑡)) = 𝑐𝑜𝑛𝑠𝑡, 

where 𝐻(𝑢)  is the primitive for ℎ(𝑢) =

𝑥(𝑢)𝑒  
𝑥(𝑢)2

2 . One has, in a standard manner, that 

𝑐𝑜𝑛𝑠𝑡 = 𝑢′2(0) = 𝛼2  and, at the same time, 

2𝐻(𝑀) = 𝛼2, where M is the maximal va+lue of 

𝑢(𝑡). Hence formula for the amplitude of a solution 

𝑢(𝑡) of the initial value problem (19) is 

 

𝑀 = 𝐻−1 (
𝛼2

2
) (23) 

 

or, equivalently, 

2 ∫ ℎ(𝑠)𝑑𝑠
𝑀

0
= 𝛼2. (24) 

 

Periods of solutions 𝑥(𝑡) of the problem (21) and 

𝑢(𝑡) of the problem (22) are the same. The period 

T of a solution to the problem (22) can be found in 

the relation 

𝑀 = ∫ 𝑒𝐹(𝑠)𝑑𝑠
𝐴

0
,   4 ∫

𝑑𝑠

√𝛼2−2𝐻(𝑠)
= 𝑇.

𝑀

0
 (25) 

 

The amplitudes of solutions to the problem (21) and 

(22) may differ. The relation between the amplitude 

𝐴(𝛼) of 𝑥(𝑡) and 𝑀(𝛼) of 𝑢(𝑡) is  

𝑀 = ∫ 𝑒  
𝑠2

2 𝑑𝑠.
𝐴

0
 (26) 

 
Table 1. The amplitudes A of x(t) versus M of u(t). 

𝛼 Period 𝑇 
Amplitude 

𝐴 

Amplitude 

𝑀 

0.1 6.32 0.10 0.10 

0.5 6.11 0.47 0.49 

1.0 5.72 0.82 0.92 

1.5 5.40 1.06 1.30 

2.0 5.16 1.26 1.69 

 

 

 

4 Equation 𝒙′′ + 𝒇(𝒙)𝒙′𝟐 + 𝒌𝒙 = 𝟎  

The equation under investigation is  

𝑥′′ + 𝑓(𝑥)𝑥′2 + 𝑘𝑥 = 0. (27) 

 

Suppose that 

𝑓(𝑥) = −𝑓(−𝑥). (28) 

 

We get, using the transformation 

𝑢 = ∫ 𝑒𝐹(𝑠)𝑑𝑠
𝑥

0
,   𝐹(𝑥) = ∫ 𝑓(𝑠)𝑑𝑠

𝑥

0
, (29) 

 

that the equation (27) takes the Newtonian form 

𝑢′′ + ℎ(𝑢) = 0,  (30) 

 

where ℎ(𝑢) = 𝑘𝑥(𝑢)𝑒𝐹(𝑥(𝑢)), 𝑥(𝑢) is the inverse 

function of 𝑢(𝑥). 

Both functions 𝑢(𝑥)  and 𝑥(𝑢)  are odd 

functions, in view of (28). Their graphs are 

symmetrical with respect to the origin. Then 

ℎ(𝑢) = −ℎ(−𝑢). 
Therefore, if 𝑢(𝑡) is a solution of the equation 

(30), then 𝑢(𝑐 − 𝑡)  also, 𝑐  is an arbitrary 

constant. The function −𝑢(𝑡) is a solution also, 

since (−𝑢)′′ + ℎ(−𝑢) = −𝑢′′ − ℎ(𝑢) = 0 

The positive and negative amplitudes of 𝑢(𝑡) 

have the same absolute value, denote it M again. 

One has for M, using the integral relation  

𝑢′2(𝑡) + 2𝐻(𝑢(𝑡)) = 𝑐𝑜𝑛𝑠𝑡, (31) 

 

that for a solution 𝑢(𝑡) with the initial conditions 

𝑢(0) = 0,   𝑢′(0) = 𝛼 > 0, (32) 

 

holds  

∫
𝑑𝑠

√𝛼2−2𝐻(𝑠)

𝑀

0
=

1

4
𝑇, (33) 

 

where T is the period. 

Let 𝑥(𝑡) be a solution of (27) with the initial 

conditions 

𝑥(0) = 0, 𝑥′(0) = 𝛼 > 0. (34) 

 

Both solutions 𝑥(𝑡)  and 𝑢(𝑡)  have the same 

period 𝑇(𝛼). Let A be the amplitude of 𝑥(𝑡). In 

view of (29), the relation between T and A is 

𝑀 = ∫ 𝑒𝐹(𝑠)𝑑𝑠
𝐴

0
,   4 ∫

𝑑𝑠

√𝛼2−2𝐻(𝑠)

𝑀

0
= 𝑇, (35) 

 

for 𝛼  given. The relations (33) and (35) fully 

describe the period-amplitude relation. 
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5 Generalizations  

Using the same approach, more general oscillatory 

equations can be investigated. 

More general equations of the form 

𝑥′′ + 𝑓(𝑥, 𝑥′)𝑥 = 0 (36) 

 

can be studied by using Sabatini’s transformation. 

The function f in (36) can be interpreted as the 

stiffness coefficient, dependent generally on 
(𝑥, 𝑥′). The equation with a “generalized” stiffness 

coefficient may be in the form 

𝑥′′ + (𝑔(𝑥) + 𝑓(𝑥)𝑥′2)𝑥 = 0. (37) 

 

It can be represented as 

𝑥′′ + 𝑥𝑓(𝑥)𝑥′2 + 𝑥𝑔(𝑥) = 0. (38) 

 

In this form, it is convenient to study using 

Sabatini’s transformation. 

There are many articles on the subject, for 

instance, [16], [18], [11]. The main problem solved 

is the relation between oscillation frequency and 

amplitude. Equations of the form (38) can be shown 

to have multiple embedded period annuli. 

Investigation of oscillation of solutions, in that 

case, deserves special attention. 

Multiple cases are possible, depending on 

whether the function 𝑢(𝑥) has an asymptote for 

𝑥 > 0, or 𝑥 < 0, or two asymptotes. 

The equation in the next section can be studied 

in the generalized form 

𝑥′′ +
𝑥

1 − 𝑥2
𝑥′2 + 𝑔(𝑥) = 0, |𝑥| < 1. 

In particular, it was shown in the work, [1], 

that a period annulus may appear in this equation, 

while in the shortened equation without the 

middle-term period, annuli are absent. The function 

g(x) was chosen as a polynomial of the 5th degree.  

In the work, [23], the above equation was 

studied together with the Dirichlet boundary 

conditions. The number of solutions was estimated 

provided that g(x) is a cubic polynomial. 

 

6 Equation 𝒙′′ +
𝒙

𝟏−𝒙𝟐
𝒙′𝟐 + 𝒌𝒙 = 𝟎  

Consider equation 

𝑥′′ +
𝑥

1−𝑥2 𝑥′2 + 𝑘𝑥 = 0, |𝑥| < 1. (39) 

 

This equation and its generalization were studied in 

the paper, [1]. The effectiveness of Sabatini’s 

transformation was tested and confirmed. This 

equation exhibits an especially simple relation 

between the original one and its counterpart in 

terms of the variable u.  

Proposition 6.1. Equation (39) by Sabatini’s 

transformation turns into an equation 

𝑢′′ + ℎ(𝑢) = 0, ℎ(𝑢) =
𝑘𝑥(𝑢)

√1−𝑥2(𝑢)
, (40) 

Proof. Indeed, 

𝑓(𝑥) =
𝑥

1−𝑥2,    

𝐹(𝑥) = ∫ 𝑓(𝑠)𝑑𝑠
𝑥

0
= ln

1

√1−𝑥2
  

𝑒𝐹(𝑥) =
1

√1−𝑥2
,  

𝑢 = Φ(𝑥) = ∫ 𝑒𝐹(𝑠)𝑑𝑠
𝑥

0
= ∫

1

√1−𝑠2
𝑑𝑠

𝑥

0
=  

= arcsin 𝑥,   |𝑥| < 1,  

𝑥 = 𝑥(𝑢) = sin 𝑢,   |𝑢| <
𝜋

2
. 

Then  

𝑢′′ + ℎ(𝑢) = 𝑢′′ + 𝑘 𝑡𝑔𝑢 = 0, |𝑢| <
𝜋

2
. (41) 

Since ∫ 𝑡𝑔 𝑠 𝑑𝑠
𝑢

0
= − ln cos 𝑢 , |𝑢| <

𝜋

2
, the 

integral 𝑢′2 + 2𝐻 of (41) is  

𝑢′2(𝑡) − 2𝑘 ln cos 𝑢 = 𝑐𝑜𝑛𝑠𝑡 = 𝛼2 =  

= −2𝑘 ln cos 𝑀 , 0 < 𝑀 <
𝜋

2
 (42) 

for a solution of (41) with the initial conditions 

𝑢(0) = 0, 𝑢′(0) = 𝛼 > 0. (43) 

One has, as before, that 

∫
𝑑𝑠

√𝛼2+2𝑘 ln cos 𝑠

𝑀

0
=

1

4
 𝑇, (44) 

and the relation between amplitude A of 𝑥(𝑡) ad 

the period T is 

𝑇 = 4 ∫
𝑑𝑠

√𝛼2+2𝑘 ln cos 𝑠

𝑎𝑟𝑐𝑠𝑖𝑛𝐴

0
 , (45) 

for 𝛼 given. 

 

 

7 Conclusion  

A relatively broad class of nonlinear oscillators can 

be treated using Sabatini’s transformation. 

Relations between period/frequency and the 

amplitudes of oscillation can be established with 

the accuracy, allowed by used computational 

instruments. In further studies of nonlinear 

oscillators represented by the equations of the form  

𝑥′′ + 𝑓(𝑥)𝑥′2 + 𝑔(𝑥) = 0  focus can be made on 

the coefficient  f(x). The new variable u can be 

defined on a bounded interval, in contrast with the 

variable x. This is the case if the integral in (11) is 

convergent. A great variety of variants are possible 

if f(x) is a somewhat arbitrary polynomial with 

multiple zeros. If g(x) is a polynomial of 

sufficiently high degree, period annuli can appear 

in a related equation 𝑥′′ + 𝑔(𝑥) = 0.   The 

interrelation between period annuli in this 

shortened equation and the above one with the 
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middle term is interesting for practical purposes and 

challenging for theoreticians’ problems. An 

interesting problem is to compare the equation in 

question with its dissipative counterpart 𝑥′′ +
𝑓(𝑥)𝑥′ + 𝑔(𝑥) = 0.   
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