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1 Introduction 
Integral equations are presented in numerous areas 
of engineering, physics, and mathematics, used in 
initial and boundary value problems, and 
transferred to Fredholm and Volterra integro–
differential equations (VIE), e.g. Dirichlet problems 
in astrophysics, conformal mapping, mathematics, 
physical models, diffusion problems, water, [1]. 
Nonlinear integral equations are used in many 
fields of study, e.g. queuing theory, chemical 
kinetics, fluid dynamics, etc., [2], [3], [4], are also 
used in numerical solution by various methods such 
as Galerkin, decomposition, quadrature, cubic 
spline polynomials, etc., [5], [6], [7]. One of the 
useful and important methods that have received a 
lot of attention is the Adomian decomposition 
method (ADM). In this method, more emphasis is 
placed on finding reliable and efficient solution 
methods in various fields of science and 
technology, [8], [9], [10], [11], [12].  
The ARA transformation is introduced in 2020, 
[13]. It is defined by the improper integral. 

𝒢𝑛[𝜓(𝜏)] = Ψ(𝑛, 𝑢) = 𝑢 ∫ 𝜏𝑛−1𝑒−𝑢 𝜏𝜓(𝜏)𝑑𝜏

∞

0

,

𝑢 > 0. 
This transformation has attracted a lot of attention 
from researchers due to its ability to produce 
multiple transformations of index 𝑛, and it could 
also easily overcome the challenges of having 
singular points in differential equations. Despite all 
these merits, it could be used to solve different 
types of problems. In this work, we use the first-

order ARA transform 𝒢1[𝜓(𝜏)], which we denote 
by 𝒢[𝜓(𝜏)] for the sake of simplicity. 
This work aims to develop a combined form of the 
ARA transformation method with the ADM, called 
the ARA-decomposition method (ARA-DM), to 
obtain exact solutions or high-precision 
approximations for the nonlinear VIE. The 
advantage of this method is its ability to combine 
the two powerful methods for obtaining exact 
solutions to nonlinear integral equations. 
In this study, we investigate the solutions of the 
nonlinear VIE of the second kind is 

𝜓(𝑚)(𝜏) = 𝜑(𝜏) + ∫ 𝑘(𝜏 − 𝑣)𝑄(𝜓(𝑣))𝑑𝑣

𝜏

0

, 

where the kernel 𝑘(𝜏 − 𝑣) and 𝜑(𝜏) are real-valued 
functions, and 𝑄(𝜓(𝑣))is a nonlinear function of 
𝜓(𝑣), such as 𝜓3(𝑣), sin 𝜓(𝑣), cos 𝜓(𝑣). 
 
The rest of the paper is constructed as follows. 
Section 2 defines the basic definitions of the ARA 
transform and ADM. Section 3 introduces the 
concept of applying the ARA transform in 
combination with the ADM to solve the second 
type of nonlinear VIE. By solving significant 
examples in Section 4, the effectiveness and 
efficiency of the proposed method are illustrated. 
Finally, in Section 5, the conclusion of the work is 
presented. 
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2 Preliminaries 
In this section, we present the basic definitions and 
properties of the ARA transform. In addition, the 
basic idea of the ADM method is presented. 
 
2.1. ARA Integral Transform, [13] 
Definition 1. Let 𝜓(𝜏) be a piecewise continuous 
function defined on (0, ∞). Then ARA transforms 
for 𝜓(𝜏) denoted and defined by  

𝒢[𝜓(𝜏)] = 𝛹(𝑢) = 𝑢 ∫ 𝑒−𝑢 𝜏𝜓(𝜏)𝑑𝜏

∞

0

, 𝑢 > 0. 

The inverse ARA transform for Ψ(𝑢) denoted 
and defined by  

𝒢−1[Ψ(𝑢)] = 𝜓(𝜏) =
1

2𝜋𝑖
∫

𝑒𝑢𝜏

𝑢
Ψ(𝑢)𝑑𝑢

𝑐+𝑖∞

𝑐−𝑖∞

. 

Theorem 1.(Existence Condition) If 𝜓(𝜏) is a 
piecewise continuous function on [0, ∞) and 
satisfies the condition  

|𝜓(𝜏)| ≤ 𝑀𝑒𝛽𝜏, for some 𝑚 > 0. 

Then, ARA transform 𝒢[𝜓(𝜏)] =  Ψ(𝑢) exists 
for Re(𝑢) > 𝛽. 

 

Proof. Using the definition of ARA transform, we 
obtain 

|Ψ(𝑢)| = |𝑢 ∫ 𝑒−𝑢𝜏𝜓(𝜏)𝑑𝜏

∞

0

| ≤ 𝑢 ∫ 𝑒−𝑢𝜏|𝜓(𝜏)|𝑑𝜏

∞

0

≤ 𝑢 ∫ 𝑒−𝑢𝜏𝑀𝑒𝛼𝜏𝑑𝜏

∞

0

= 𝑢𝑀 ∫ 𝑒−𝜏(𝑢−𝛼)𝑑𝜏

∞

0

=
𝑢𝑀

𝑢 − 𝛽
,

Re(𝑢) > 𝛽 > 0. 

Hence, ARA integral transform exists for 
Re(𝑢) > 𝛽 > 0. □ 

Now, we mention some properties of ARA 
transform to the basic functions. Suppose that 
Ψ1(𝑢) = 𝒢[𝜓1(𝜏)] and Ψ2(𝑢) = 𝒢[𝜓2(𝜏)] and 
𝛼, 𝛽 ∈ ℝ, then 

𝒢[𝛼𝜓1(𝜏) + 𝛽𝜓2(𝜏)] = 𝛼Ψ1(𝑢) + 𝛽Ψ2(𝑢). 

𝒢−1[𝛼Ψ1(𝑢) + 𝛽Ψ2(𝑢)] = 𝛼𝜓1(𝜏) + 𝛽𝜓2(𝜏). 

Now the following table (Table 1) introduces 
some values of ARA transform to some elementary 
functions. 

Table 1.  ARA transform for some functions. 
𝜓(𝜏) 𝒢[𝜓(𝜏)] =  Ψ(𝑢) 

1 1 

𝜏𝑎 Γ(𝑎 + 1)

𝑢𝑎
 

𝑒𝑎𝜏 
𝑢

𝑢 − 𝑎
 

sin 𝑎𝜏 
𝑎𝑢

𝑢2 + 𝑎2
 

cos 𝑎𝜏 𝑢2

𝑢2 + 𝑎2
 

sinh 𝑎𝜏 
𝑎𝑢

𝑢2 − 𝑎2
 

cosh 𝑎𝜏 𝑢2

𝑢2 − 𝑎2
 

𝜓′(𝜏) 𝑢Ψ(𝑢) − 𝑢𝜓(0) 

𝜓(𝑛)(𝜏) 𝑢𝑛Ψ(𝑢) − ∑ 𝑢𝑛−𝑗+1𝜓(𝑗−1)(0)

𝑛

𝑗=1

 

(𝜓 ∗ 𝜙)(𝜏) 𝒢[𝜓(𝜏)]𝒢[𝜙(𝜏)]

𝑢
 

 
2.2 Adomian Decomposition Method, [2] 
In this section, we introduce the main idea of 
ADM, which is a powerful technique used to 
handle a large class of nonlinear ordinary 
differential equations and partial differential 
equations. 

The ADM is a very powerful approach used to 
solve broad classes of nonlinear partial and 
ordinary differential equations. It has wide 
applications in engineering, physics, and applied 
mathematics. 

The ADM depends on decomposing the unknown 
equation into the sum of some components to be 
determined. The sum of these components 
represents the solution with high accuracy. ADM's 
algorithm is illustrated in the following steps: 

 Assume that the target problem has the 
following series solution represented as 

𝜓(𝜏) = ∑ 𝜓𝑛(𝜏)

∞

𝑛=0

= 𝜓0(𝜏) + 𝜓1(𝜏) + ⋯. 
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 Establish a recursive relation of the nonlinear 
term in the target problem and substitute the 
value of the series solution depending on the 
relation 

𝐴𝑖(𝜏) =
1

𝑖!

𝑑𝑖

𝑑𝜆𝑖 
(𝑙 (∑ 𝜆𝑗𝜓𝑗(𝜏) 

𝑖

𝑗=0

)|

𝜆=0 

) ,

𝑖 = 0,1,2, ⋯. 

 

 

3 Solving Nonlinear VIE by ARA-

DM 
In this section, we apply the ARA transform in 
combination with the ADM to solve the nonlinear 
VIE of the second type. Also, we assume that the 
given kernel is of a different kind, which could be 
expressed in the form 𝑘(𝑥 − 𝜏), such as sinh(𝑥 −
𝜏), (𝑥 − 𝜏)2, cosh(𝑥 − 𝜏).  
Now let us consider the nonlinear VIE equation of 
the form 

𝜓(𝑚)(𝜏) = 𝜑(𝜏) + ∫ 𝑘(𝜏 − 𝑣)𝑄(𝜓(𝑣))𝑑𝑣

𝜏

0

, (1) 

subject to the initial conditions (ICs) 
𝜓(𝑖)(0) = 𝜉𝑖 , 𝑖 = 0,1, … , 𝑚 − 1, 𝑚 ∈ ℕ, (2) 
where 𝑄(𝜓(𝑣)) is a nonlinear function on 𝜓(𝑣). 
To obtain the solution of Equation (1) by ARA-
DM, we firstly apply ARA transform to both sides 
of Equation (1) 

𝒢[𝜓(𝑚)(𝜏)] = 𝒢[𝜑(𝜏)]

+ 𝒢 [∫ 𝑘(𝜏 − 𝑣)𝑄(𝜓(𝑣))𝑑𝑣

𝜏

0

]. 

Applying the differential and the convolution 
properties of the ARA transform, we can rewrite 
Equation (1) as 

𝑢𝑚𝒢[𝜓(𝜏)] − 𝑢𝑚𝜉0 − 𝑢𝑚−1𝜉1 − ⋯
− 𝑢𝜉𝑚−1

= 𝒢[𝜑(𝜏)]

+
1

𝑢
𝒢[𝑘(𝜏)]𝒢[𝑄(𝜓(𝜏))]. 

(3) 

Thus, substituting the ICs (2) and simplifying 
Equation (3), we obtain 

𝒢[𝜓(𝜏)] = 𝜉0 +
𝜉1

𝑢
+ ⋯ +

𝜉𝑚−1

𝑢𝑚−1

+
1

𝑢𝑚
𝒢[𝜑(𝜏)]

+
1

𝑢𝑚+1
𝒢[𝑘(𝜏)]𝒢[𝑄(𝜓(𝜏))]. 

(4) 

Now, utilizing the ADM to handle the nonlinear 
term 𝑄(𝜓(𝜏)), we need to express 𝜓(𝜏) as an 
infinite series with components as 

𝜓(𝜏) = ∑ 𝜓𝑖(𝜏)

∞

𝑖=0

= 𝜓0(𝜏) + 𝜓1(𝜏) + 𝜓2(𝜏)
+ ⋯. 

(5) 

The components 𝜓𝑖(𝜏), 𝜏 = 0,1, …, can be obtained 
from a recurrence relation, and the nonlinear term 
𝑄(𝜓(𝜏)) can be presented as 

𝑄(𝜓(𝜏)) = ∑ 𝐴𝑖(𝜏)

∞

𝑖=0

, (6) 

where 𝐴𝑖(𝜏), 𝑖 = 0,1,2, … are defined as 

𝐴𝑖(𝜏) =
1

𝑖!

𝑑𝑖

𝑑𝜆𝑖 
(𝑙 (∑ 𝜆𝑗𝜓𝑗(𝜏) 

𝑖

𝑗=0

)|

𝜆=0 

) , 𝑖

= 0,1,2, ⋯. 

(7) 

where 𝐴𝑖 's are called the Adomian polynomials for 
the nonlinear function 𝐻(𝜓(𝜏)), the Adomian 
polynomial can be determined by 

𝐴0 = 𝑄(𝜓0), 
𝐴1 = 𝜓1𝑄′(𝜓0), 

𝐴2 = 𝜓2𝑄′(𝜓0) +
1

2!
𝜓1

2𝑄′′(𝜓0), 
𝐴3 = 𝜓3𝑄′(𝜓0) + 𝜓1𝜓2𝑄′′(𝜓0)

+
1

3!
𝜓1

3𝑄′′′(𝜓0), 

𝐴4 = 𝜓4𝑄′(𝜓0) + (
1

2!
𝜓2

2 + 𝜓1𝜓3) 𝑄′′(𝜓0)

+
1

2!
𝜓1

2𝜓2𝑄′′′(𝜓0)

+
1

4!
𝜓1

4𝑄(4)(𝜓0).   

(8) 

Thus, by substituting Equations (5) and (6) in 
Equation (4), we get 

𝒢 [∑ 𝜓𝑖(𝜏)

∞

𝑖=0

]

= 𝜉0 +
𝜉1

𝑢
+ ⋯ +

𝜉𝑚−1

𝑢𝑚−1
+

1

𝑢𝑚
𝒢[𝜑(𝜏)]

+
1

𝑢𝑚+1
𝒢[𝑘(𝜏)]𝒢 [∑ 𝐴𝑖(𝜏)

∞

𝑖=0

]. 

(9) 

The recursive relation from ADM implies 

𝒢[𝜓0(𝜏)] = 𝜉0 +
1

𝑢
𝜉1 + ⋯ +

1

𝑢𝑚−1
𝜉𝑚(0)

+
1

𝑢𝑚
𝒢[𝜑(𝜏)]. 

(10) 

From Equation (9), one can get 

𝒢[𝜓𝑛+1 (𝜏)] =
1

𝑢𝑚+1
𝒢[𝑘(𝜏)]𝒢[𝐴𝑛(𝜏)]. (11) 
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Remark 1. A necessary condition for Equation (11) 
to be well-defined is that  

lim
𝑢→∞

1

𝑢𝑚+1
𝒢[𝑘(𝜏)] = 0. 

Operating the inverse ARA transform to the 
equations in (11) recursively, we can obtain the 
values of the components 𝜓0(𝜏), 𝜓1(𝜏), ⋯  . 
The solution of the VID Equation (1) is 

𝜓(𝜏) = 𝜓0(𝜏) + 𝜓1(𝜏) + ⋯. 
The proposed method is efficient in finding 
approximate solutions of nonlinear VIEs. To 
measure the accuracy of the method, we solve some 
problems and use the maximum absolute error, 
given as  

𝐴𝑏𝑠𝐸𝑟𝑟 = max|𝜓𝑒𝑥𝑎𝑐𝑡 − 𝜓𝑎𝑝𝑝|, 
which is given in some intervals. 
 
 
4 Numerical Applications 
In this section, we apply ARA-DM to solve some 
applications of VIEs, and we use absolute error to 
determine the efficiency of our results. 
Problem 1.  

Consider the following nonlinear VIE of the form 

𝜓(𝜏) = 2𝜏 −
𝜏4

12
+

1

4
∫(𝜏 − 𝑢)𝜓2(𝑢)𝑑𝑢

𝜏

0

. (12) 

Solution. The exact solution of Equation (12) is 
𝜓(𝜏) = 2𝜏. 
To get the solution by the proposed method, we 
again apply ARA transform to Equation (12), to get 

Ψ(𝑠) = 𝒢 [2𝜏 −
𝜏4

12
] +

1

4𝑢
𝒢[𝜏]𝒢[𝜓2(𝜏)]

=
2

𝑢
−

5!

12 𝑢4

+
1

4𝑢2
𝒢[𝜓2(𝜏)]. 

(13) 

For the nonlinear term 𝜓2(𝑢), it can be 
decomposed using the formula in Equation (7), one 
can obtain the following components 

𝐴0 = 𝜓0
2, 

𝐴1 = 2𝜓0𝜓1, 
𝐴2 = 𝜓1

2 + 2𝜓0𝜓2, 
𝐴3 = 2𝜓1𝜓2 + 2𝜓0𝜓3, 

𝐴4 = 𝜓2
2 + 2𝜓1𝜓3 + 2𝜓0𝜓4. 

(14) 

 
Making comparisons in the iterative form of 
Equation (7) and applying the inverse ARA 
transform, to obtain 

𝜓0(𝜏) = 2𝜏 −
𝜏4

12
, 

𝜓1(𝜏) =
𝜏4

12
−

𝜏7

126
+

𝜏10

51840
, 

𝜓2(𝜏) =
𝜏7

504
−

𝜏10

181440
+

127𝜏13

56609280

−
𝜏16

298598400
, 

𝜓3(𝜏) =
𝜏4

12
−

𝜏7

504
+

𝜏10

2792
−

19𝜏13

14152320

+
71𝜏16

2264371200

−
7893𝜏19

575787643000000
. 

 
Thus, the approximate solution can be expressed as  

𝜓(𝜏) = 𝜓0(𝜏) + 𝜓1(𝜏) + 𝜓2(𝜏) + 𝜓3(𝜏) + ⋯

= 2𝜏 +
𝜏4

12
−

𝜏7

126
−

𝜏10

362880

+
51𝜏13

56609280
+ ⋯. 

 
Table 2 below presents the values of the exact and 
ARA-DM solutions of Problem 1, and to test the 
efficiency we compute the absolute error as 
follows. 
 

Table 2. The exact and ARA-DM solution of 
Problem 1, and the absolute error. 

 
Exact 

Solution 

ARA-DM 

Solution 
Absolute Error 

0.0 0.0 0.0000000000 0.0000000000 

0.1 0.2 0.2000083325 0.0000083325 

0.2 0.4 0.4001332317 0.0001332317 

0.3 0.6 0.6006732643 0.0006732643 

0.4 0.8 0.8021203322 0.0021203322 

0.5 1.0 1.0051463480 0.0051463480 

0.6 1.2 1.2105779450 0.0105779450 

0.7 1.4 1.4193552730 0.0193552730 

0.8 1.6 1.6328034650 0.0328034650 

0.9 1.8 1.8508857190 0.0508857190 

1.0 2.0 1.8833526250 0.1166473750 

 
In the following figure below, we sketch the exact 
and approximate solutions in Figure 1 below. Also, 
we sketch the absolute error of Problem 1 in Figure 
2. 
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Fig. 1: The exact and approximate solutions of the 
nonlinear VIE in Problem 1. 
 

 
Fig. 2: The absolute error of the exact and 
approximate solutions of Problem 1. 
 
Problem 2. Consider the following nonlinear VIE 
of the form 

𝜓(𝜏) = 𝜏 + ∫ 𝜓2(𝑢)𝑑𝑢

𝜏

0

. (15) 

Solution. The exact solution of Equation (15) is 
𝜓(𝜏) = tan 𝜏. 
Applying ARA transform to Equation (15), we get  

𝒢[𝜓(𝜏)] =
1

𝑢
+

1

𝑢
𝒢[𝜓2(𝜏)]. (16) 

Thus by similar arguments to Problem 1 one can 
obtain 
 

𝜓0(𝜏) = 𝜏, 

𝜓1(𝜏) =
𝜏3

3
, 

𝜓2(𝜏) =
2𝜏5

15
, 

𝜓3(𝜏) =
17𝜏7

315
. 

 
Thus, the approximate solution can be expressed as  

𝜓(𝜏) = 𝜏 +
𝜏3

3
+

2𝜏5

15
+

17𝜏7

315
+ ⋯. 

Table 3 below presents the values of the exact and 
ARA-DM solutions of Problem 2 and tests the 
efficiency we compute the absolute error. 
 

Table 3 The exact and ARA-DM solutions of 
Problem 2, and the absolute error. 

 Exact Solution 
ARA-DM 

Solution 
Absolute Error 

0.0 0.00000000000 0.0000000000 0.0000000000 

0.1 0.1002940335 0.1003346721 0.0000406386 

0.2 0.2026262629 0.2027100241 0.0000837612 

0.3 0.3092040035 0.3093358029 0.0001317994 

0.4 0.4226035289 0.4227870883 0.0001835594 

0.5 0.5460413117 0.5462549603 0.0002136486 

0.6 0.6837824776 0.6838787656 0.0000962880 

0.7 0.8418070516 0.8411871844 0.0006198672 

0.8 1.0289756740 1.0256752970 0.0033003770 

0.9 1.2592215210 1.2475448490 0.0116766720 

1.0 1.5560303730 1.5206349210 0.03539545198 

 
In the following figures below, we sketch the exact 
and approximate solutions in Figure 3 below, and 
we sketch the absolute error in Figure 4. 
 

 
 

Fig. 3: The exact and approximate solutions of the 
nonlinear VIE in Problem 2. 

 

 
Fig. 4: The absolute error of the exact and 
approximate solutions of Problem 2. 
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Problem 3. Consider the following nonlinear VIE 
of the form 

𝜓′(𝜏) =
3

2
𝑒𝜏 −

1

2
𝑒3𝜏 + ∫ 𝑒𝑣−𝜏𝜓3(𝜏)𝑑𝜏

𝜏

0

, (17) 

𝜓(0) = 1. (18) 
Solution. Applying ARA transform to Equation 
(17), we get 

Ψ(𝑢) = 1 +
3

2(𝑢 − 1)
−

1

2(𝑢 − 3)

+
1

𝑢2
𝒢[𝑒𝜏]𝒢[𝜓3(𝜏)]

= 1 +
3

2(𝑢 − 1)
−

1

2(𝑢 − 3)

+
1

𝑢(𝑢 − 1)
𝒢[𝜓3(𝜏)]. 

Now, we have 

𝒢[𝜓0(𝜏)] = 1 +
3

2(𝑢 − 1)
−

1

2(𝑢 − 3)
, 

𝒢[𝜓𝑛+1(𝜏)] =
1

𝑢(𝑢 − 1)
𝒢[𝐴𝑛(𝜏)], 𝑛 ≥ 0. 

(19) 

 
The Adomian polynomials 𝐴𝑛(𝜏) of 𝜓3(𝜏), can be 
determined as 

𝐴0 = 𝜓0
3, 

𝐴1 = 3𝜓0
2𝜓1, 

𝐴2 = 3𝜓0
2𝜓2 + 3𝜓0𝜓1

3, 
𝐴3 = 3𝜓0

2𝜓3 + 6𝜓0𝜓1𝜓2 + 𝜓1
3.   

 
Taking the inverse ARA to transform to the 
functions (19) and using the given recursive 
relation, one can obtain 

𝜓0(𝜏) = 1 + 𝜏 −
1

2
𝜏3 −

𝜏4

2
−

13

40
𝜏5 + ⋯, 

𝜓1(𝜏) =
1

2
𝜏2 +

2

3
𝜏3 +

5

12
𝜏4 +

7

120
𝜏5 + ⋯, 

𝜓2(𝜏) =
1

8
𝜏4 +

11

40
𝜏5 + ⋯. 

 
Hence, the approximate series solution of Problem 
3 is  

𝜓(𝜏) = 1 + 𝜏 +
𝜏2

2!
+

𝜏3

3!
+

𝜏4

4!
+ ⋯, 

 
which converges to the exact solution 𝜓(𝜏) = 𝑒𝜏. 
 
Table 4 below, presents the values of the exact and 
ARA-DM solutions of Problem 3, and to test the 
efficiency we compute the absolute error. 
 
 
 
 
 

Table 4. The exact and ARA-DM solution of 
Problem 3, and the absolute error. 

 Exact Solution 
ARA-DM 

Solution 
Absolute Error 

0.0 1 1 0 

0.1 1.1051709181 1.1051709181 2.2204460493 × 10−16 

0.2 1.2214027582 1.2214027582 0 

0.3 1.3498588076 1.3498588076 2.2204460493 × 10−16 

0.4 1.4918246976 1.4918246976 2.2204460492 × 10−16 

0.5 1.6487212707 1.6487212707 8.8817841970 × 10−16 

0.6 1.8221188004 1.8221188004 9.5479180118 × 10−15 

0.7 2.0137527075 2.0137527075 8.1268325403 × 10−14 

0.8 2.2255409285 2.2255409285 5.3290705182 × 10−13 

0.9 2.4596031112 2.4596031112 2.7911006839 × 10−12 

1.0 2.7182818285 2.7182818284 1.228617207 × 10−11 

 
In the following figure below, we sketch the exact 
and approximate solutions in Figure 5 below. We 
also sketch the absolute error of the exact and 
approximate solutions of Problem 3 in Figure 6. 

 
 

Fig. 5: The exact and approximate solutions of the 
nonlinear VIE in Problem 3. 
 

 
Fig. 6: The absolute error of the exact and 
approximate solutions of Problem 3. 
 
Problem 4. Consider the following nonlinear VIE 

of the form 
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𝜓′(𝜏) = −2 sin 𝜏 −
2𝜏

3
cos 𝜏

+ ∫ cos(𝑢 − 𝜏) 𝜓2(𝜏)𝑑𝜏

𝜏

0

, 
(20) 

𝜓(0) = 1. (21) 
Solution. Applying the same procedure from the 
previous problems, we can obtain 

𝜓0(𝜏) = 1 − 𝜏 − 𝜏2 +
1

2
𝜏3 +

1

12
𝜏4 −

11

120
𝜏5 + ⋯, 

𝜓1(𝜏) =
1

2
𝜏2 −

1

3
𝜏3 −

1

8
𝜏4 +

1

6
𝜏5 + ⋯, 

𝜓2(𝜏) =
1

12
𝜏4 −

1

12
𝜏5 + ⋯. 

Thus, the approximate solution of (20) and (21) can 
be expressed as  

𝜓(𝜏) = (1 −
𝜏2

2!
+

𝜏4

4!
+ ⋯ ) − (𝜏 −

𝜏3

3!
−

𝜏5

5!
+ ⋯ ), 

which converge to the exact solution 
𝜓(𝜏) = cos 𝜏 − sin 𝜏. 

 
Table 5 below presents the values of the exact and 
ARA-DM solutions of Problem 4, and to test the 
efficiency we compute the absolute error. 
 

Table 5. The exact and ARA-DM solutions of 
Problem 4, and the absolute error. 

 
In the following figure below, we sketch the exact 
and approximate solutions in Figure 7 below. 
Lastly, the absolute error of the exact and 
approximate solutions of Problem 4 is presented in 
Figure 8. 

 
 

Fig. 7: The exact and approximate solutions of the 
nonlinear VIE in Problem 4. 
 

 
Fig. 8: The absolute error of the exact and 
approximate solutions of Problem 4. 

 
 

5 Discussion and Conclusion 
The main goal of this research is to develop an 
effective approach to solving nonlinear VIE. We 
obtain an approximate series solution of a specific 
family of nonlinear VIE problems using a new 
approach, that combines a combination of the ARA 
transform and the decomposition method, called 
ARA decomposition approach. The given problems 
are first simplified using the ARA transform, and 
then the results are treated by applying the 
Adomian decomposition method. The solutions to 
VIE problems are examined and found to best 
represent the true dynamics of the problem. 
To demonstrate the validity of the proposed 
method, the results are presented graphically and 
tabulated. The main advantage of the proposed 
method is the rapid convergence of the series form 
solutions to the precise ones. It turns out that the 
presented method for solving nonlinear integro-
differential equations is both simple and effective, 
and thus can be applied to other scientific 
problems. 
The method provides a useful way to develop an 
analytical treatment for these equations. In future 

 Exact Solution 
ARA-DM 

Solution 
Absolute Error 

0.0 1 1 0 

0.1 0.8951707486 0.8951709167 0.0000001680 

0.2 0.7813972470 0.7814026667 0.0000054196 

0.3 0.6598162825 0.65985775 0.0000414675 

0.4 0.5316426517 0.5318186667 0.00017601497 

0.5 0.3981570233 0.3986979167 0.0005408933 

0.6 0.2606931415 0.262048 0.0013548589 

0.7 0.12062450 0.1235714167 0.0029469166 

0.8 −0.0206493816 −0.0148693333 0.0057800482 

0.9 −0.1617169414 −0.151241750 0.0104751914 

1.0 −0.3011686789 −0.2833333333 0.0178353456 
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work, we will use the proposed scheme to solve 
other nonlinear equations and fractional differential 
equations. 

The ARA-DM is used in this research to solve 
nonlinear integro-differential equations. We solved 
some numerical examples and sketched the 
solutions. From the problems discussed, one can 
see the efficiency of the proposed method. From 
the previous figure, we can see the agreement 
between the exact and approximate solution. We 
also made comparisons and calculated the absolute 
errors.  
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