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1 Introduction 
Some scientists have recently proposed strategies 

for incorporating probability models. This 

parameter addition phenomenon generates more 

classes of distributions, which are useful for 

modeling datasets in engineering science, biological 

science, economics, medicine, income, physics, and 

environmental sciences. Several G-class of 

distributions are the T-X class, [1], the odd Fréchet-

G class, [2], Kumaraswamy-G class, [3], odd 

Dagum-G class, [4], weighted exponential-G class, 

[5], alpha power class, [6], weighted exponentiated-

G class, [7], Marshall-Olkin alpha-power-G class, 

[8], truncated inverted Kumaraswamy-G class, [9], 

transmuted geometric-G class, [10], complementary 

generalized transmuted Poisson-G class, [11], the 

exponentiated odd log-logistic-G class, [12], Type-

II half logistic-G class, [13], Topp-Leone-G class, 

[14], truncated Cauchy power Weibull-G class, 

[15], Lomax-G class, [16], Type-I half logistic Burr 

X-G class, [17], type I general exponential-G class, 

[18], sine Topp-Leone-G class, [19], generalized 

odd Weibull class, [20], a new power Topp-Leone-

G class, [21], odd power Lindley-G class, [22], the 

transmuted transmuted-G class, [23], exponentiated 

version of the M class, [24], the transmuted 

Gompertz-G class, [25], transmuted odd Fréchet-G 

class, [26], transmuted odd Lindley-G class, [27], 

Topp Leone odd Lindley-G class, [28], Topp-Leone 

odd log-logistic class, [29], odd Perks-G class, [30] 

and Kumaraswamy transmuted-G class, [31], 

among others. 

Recently, [32], discussed the TCP-G class of 

distributions. The distribution function (cdf) of the 

TCP-G class is 

𝐹(𝑥;  𝜇, 𝜔) =
4

𝜋
𝑎𝑟𝑐𝑡𝑎𝑛( 𝐺(𝑥;  𝜔) 𝜇), 𝑥 ∈ 𝑅,     (1) 

where 𝜇 > 0 and the cdf of a baseline with 

parameter vector 𝜔 is denoted by 𝐺(𝑥;  𝜔). The 

corresponding probability density function (pdf) 

and hazard rate function (hrf) respectively are 

𝑓(𝑥;  𝜇, 𝜔) =
4 𝜇𝑔(𝑥;  𝜔)𝐺(𝑥;  𝜔) 𝜇−1

𝜋[1 + (𝐺(𝑥))2 𝜇]
 ,              (2) 

and 

ℎ(𝑥;  𝜇, 𝜔) =
𝑓 (𝑥;  𝜇, 𝜔)

𝐹(𝑥;  𝜇, 𝜔)

=
4 𝜇𝑔(𝑥;  𝜔)𝐺(𝑥;  𝜔) 𝜇−1

𝜋 𝜂2[1 + 𝐺(𝑥;  𝜔)2 𝜇] [1 −
4

𝜋
𝑎𝑟𝑐𝑡𝑎𝑛 𝐺 (𝑥;  𝜔) 𝜇]

.    

(3) 

Relevant research has been provided depending on 

the TCP-G family, for example, TCP-inverted 

Topp–Leone model, [33], TCP-inverse exponential 

model, [34], TCP-Lomax model, [35], TCP-
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Weibull-G class, [36], and TCP odd Frechet-G 

class, [37]. 

[38], proposed the LBEX by assigning a weight to 

the exponential (E) model using the concept 

proposed by [39]. They investigated that the LBEX 

model is more flexible than the E model. The cdf 

and pdf of LBEX distribution are provided below 

𝐺(𝑥;  𝜂) = 1 − (1 +
𝑥

 𝜂
) 𝑒

−
𝑥

 𝜂, 𝑥 > 0         (4) 

and 

𝑔(𝑥, 𝜂) =
𝑥

 𝜂2
𝑒

−
𝑥

 𝜂,                                     (5) 

where  𝜂 > 0 is a scale parameter. An extension of 

the LBEX model is proposed, and this extension is 

constructed utilizing the TCP-G class and LBEX 

model. This extension is termed the TCP-LBEX 

distribution. 

The remainder of this article is outlined as follows. 

In Section 2, the cdf and pdf of the proposed 

distribution are presented and an expansion of the 

TCP-LBEX pdf is derived. The basic properties of 

the distribution, including the quantile function, 

moments, incomplete and conditional moments, and 

entropy, are presented in Section 3. In Section 4, 

the parameter estimation employing the maximum 

likelihood estimation (MLE) approach is discussed 

and Monto Carlo simulations are utilized to study 

the behavior of the parameters. In Section 5, the 

TCP-LBEX model is performed on two real-world 

data sets to examine its feasibility using some 

information criterion (INC) of the goodness of fit, 

like; the Akaike INC (K1), Bayesian INC (K2), 

consistent Akaike INC (K3), Hannan–Quinn INC 

(K4), Cramѐr–Von Mises (K5), Anderson–Darling 

(K6), Kolmogorov–Smirnov (K7) statistics and p-

value (K8). Lastly, Section 6 presents the 

conclusions. 

 

 

 

 

 

  

2 The New TCP-LBEX Model 
By substituting (4) in (2), the TCP-LBEX cdf of 

random variable X is obtained as 

𝐹(𝑥;  𝜇, 𝜂) =
4

𝜋
𝑎𝑟𝑐𝑡𝑎𝑛 [1 − (1 +

𝑥

 𝜂
) 𝑒

−
𝑥

 𝜂]
 𝜇

.    (6) 

 

The corresponding pdf is 

𝑓 (𝑥;  𝜇, 𝜂)

=
4 𝜇𝑥𝑒

−
𝑥

 𝜂 [1 − (1 +
𝑥

 𝜂
) 𝑒

−
𝑥

 𝜂]
 𝜇−1

𝜋 𝜂2 [1 + [1 − (1 +
𝑥

 𝜂
) 𝑒

−
𝑥

 𝜂]
2 𝜇

]

.                (7) 

 

The reliability function (sf) of the TCP-LBEX 

distribution is provided below 

𝐹(𝑥;  𝜇, 𝜂) = 1 −
4

𝜋
𝑎𝑟𝑐𝑡𝑎𝑛 [1 − (1 +

𝑥

 𝜂
) 𝑒

−
𝑥

 𝜂]
 𝜇

. 

 

For the TCP-LBEX distribution, the hazard rate 

function (hrf) is expressed as follows: 

ℎ(𝑥;  𝜇, 𝜂)

=
4 𝜇𝑥𝑒

−
𝑥

 𝜂 [1 − (1 +
𝑥

 𝜂
) 𝑒

−
𝑥

 𝜂]
 𝜇−1

𝜋 𝜂2 [1 + [1 − (1 +
𝑥

 𝜂
) 𝑒

−
𝑥

 𝜂]
2 𝜇

] [1 −
4

𝜋
𝑎𝑟𝑐𝑡𝑎𝑛 [1 − (1 +

𝑥

 𝜂
) 𝑒

−
𝑥

 𝜂]
 𝜇

]

.       

 

The reversed hazard rate (RHR) function of the 

TCP-LBEX distribution is provided below  

𝜏(𝑥;  𝜇, 𝜂)

=
 𝜇𝑥𝑒

−
𝑥

 𝜂 [1 − (1 +
𝑥

 𝜂
) 𝑒

−
𝑥

 𝜂]
 𝜇−1

 𝜂2 [1 + [1 − (1 +
𝑥

 𝜂
) 𝑒

−
𝑥

 𝜂]
2 𝜇

] {𝑎𝑟𝑐𝑡𝑎𝑛 [1 − (1 +
𝑥

 𝜂
) 𝑒

−
𝑥

 𝜂]
 𝜇

}

. 

 

The cumulative hazard rate (CHR) function of the 

TCP-LBEX distribution is provided below  

𝐻(𝑥;  𝜇, 𝜂) = −ln [1

−
4

𝜋
𝑎𝑟𝑐𝑡𝑎𝑛 [1 − (1 +

𝑥

 𝜂
) 𝑒

−
𝑥

 𝜂]
 𝜇

].  

Figure 1 presents the pdf of the TCP-LBEX model. 
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Fig. 1: cdf of the TCP-LBEX model.  

 

 

Figure  2 presents the cdf of the TCP-LBEX 

model. 

 

 

Fig. 2: cdf of the TCP-LBEX model.  

         

 
 
Fig. 3: hrf of the TCP-LBEX model. 

 

 
 
Fig. 4: sf of the TCP-LBEX model. 

 
 

 

3 Statistical Properties of the TCP-

LBEX Model 
In this section, the statistical properties of the TCP-

LBEX model, such as the useful expansion, 

quantiles, moments, generating functions, 

incomplete moments, and entropy, are discussed. 

 

3.1 Useful expansion 
In this subsection, the expansion of the TCP-LBEX 

pdf is established. Using the binomial series 

expansion, 

(1 + 𝑥)−𝑑 = ∑(−1)𝑖 (
𝑑 + 𝑖 − 1

𝑖
) 𝑥𝑖

∞

𝑖=0

,        (8) 

which holds for |𝑥| < 1, and 𝑑 is a positive real 

non-integer. Further, the following relation is used: 

(1 − 𝑥)𝑜−1 = ∑(−1)𝑗 (
𝑜 − 1

𝑗
) 𝑥𝑗 ,    (9)

∞

𝑗=0

 

where 𝑜 is any positive real noninteger. By 

substituting (8) in (7), the TCP-LBEX pdf becomes 

𝑓 (𝑥;  𝜇, 𝜂) =
4 𝜇𝑥𝑒

−
𝑥

 𝜂

𝜋 𝜂2
∑(−1)𝑖

∞

𝑖=0

[1

− (1 +
𝑥

 𝜂
) 𝑒

−
𝑥

 𝜂]
 𝜇(2𝑖+1)−1

. (10) 

Further, by substituting (9) in (10) and performing 

some algebraic manipulations, the TCP-LBEX pdf 

can be written as 

𝑓 (𝑥;  𝜇, 𝜂) = ∑ 𝜛𝑘  𝑥𝑘+1𝑒
−(𝑗+1)

𝑥

 𝜂

∞

𝑘=0

, (11) 
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where 

𝜛𝑘 =
4 𝜇

𝜋 𝜂2+𝑘
∑ (−1)𝑖+𝑗∞

𝑖,𝑗=0 (
 𝜇(2𝑖 + 1) −

𝑗
) (

𝑗
𝑘

). 

 

3.2 Quantiles 

Quantiles are fundamental for estimating and 

simulating the distribution parameters. The quantile 

function of 𝑋 can be obtained by inverting (6) as 

(1 +
𝑥

 𝜂
) 𝑒

−
𝑥

 𝜂 + (𝑡𝑎𝑛
𝑢𝜋

4
)

1

 𝜇
− 1 = 0, 1 < 𝑢

< 0.           (12) 

We cannot have closed form for Equation (12) but 

we can solve it numerically. 

 

3.3 Moments 

For 𝑋 with a pdf (11), the 𝑟𝑡ℎ moment of 𝑋 is 

𝜇𝑟
′ (𝑥) = ∫ 𝑥𝑟𝑓(𝑥)𝑑𝑥

∞

0

= ∑ 𝜛𝑘

∞

𝑘=0

 ∫ 𝑥𝑟+𝑘+1𝑒
−(𝑗+1)

𝑥

 𝜂𝑑𝑥
∞

0

. 

By substituting 𝑦 = (𝑗 + 1)
𝑥

 𝜂
 and some algebraic 

manipulations, the 𝑟𝑡ℎ moment achieves the 

following form: 

𝜇𝑟
′ (𝑥) = ∑ 𝜛𝑘

∞

𝑘=0

(
 𝜂

𝑗 + 1
)

𝑟+𝑘+2

𝛤(𝑟 + 𝑘 + 2).   (13) 

The mg function 𝑀𝑋(𝑡) of 𝑋 can be derived from 

(11) as follows: 

𝑀𝑋(𝑡) = 𝐸(𝑒𝑡𝑋) = ∫ 𝑒𝑡𝑥
∞

0

𝑓 (𝑥)𝑑𝑥

= ∑ 𝜛𝑘

∞

𝑘=0

 ∫ 𝑥𝑘+1𝑒
−[

𝑗+1

 𝜂
−𝑡]𝑥

∞

0

𝑑𝑥 

= ∑ 𝜛𝑘

𝛤(𝑘 + 2)

(
𝑗+1

 𝜂
− 𝑡)

𝑘+2

∞

𝑘=0

.              (14) 

 

The numerical values of specific parameters of the 

first four ordinary moments variance (𝜎2), 

skewness (S), kurtosis (K), and coefficient of 

variation (CV) of the TCP-LBEX model are 

mentioned in Table 1. 

 

 

From the data presented in Table 1, as the value of 

𝜇 increases, the values of moments decrease for 

constant 𝜂. In contrast, the values of 𝜎2, S, K, and 

CV decrease. 

 

3.4 Conditional Moments 

The 𝑠𝑡ℎ upper incomplete moment of the TCP-

LBEX distribution can be given by 

𝛷𝑠(𝑡) = ∫ 𝑥𝑠
∞

𝑡

𝑓(𝑥)𝑑𝑥

= ∑ 𝜛𝑘

∞

𝑘=0

 ∫ 𝑥𝑠+𝑘+1
∞

𝑡

𝑒
−(𝑗+1)

𝑥

 𝜂𝑑𝑥 

 

= ∑ 𝜛𝑘

∞

𝑘=0

(
 𝜂

𝑗 + 1
)

𝑠+𝑘+2

𝛤 (𝑠 + 𝑘

+ 2, (𝑗 + 1)
𝑡

 𝜂
),              (15) 

where 𝛤(𝑠, 𝑡) = ∫ 𝑥𝑠−1∞

𝑡
𝑒−𝑥𝑑𝑥 is the upper 

incomplete gamma function. Similarly, the 𝑠𝑡ℎ 

lower incomplete moment of the distribution is 

expressed as 

𝛬𝑠(𝑡) = ∫ 𝑥𝑠
𝑡

0

𝑓 (𝑥)𝑑𝑥

= ∑ 𝜛𝑘

∞

𝑘=0

 ∫ 𝑥𝑠+𝑘+1
𝑡

0

𝑒
−(𝑗+1)

𝑥

 𝜂𝑑𝑥 

 

= ∑ 𝜛𝑘

∞

𝑘=0

(
 𝜂

𝑗 + 1
)

𝑠+𝑘+2

𝛾 (𝑠 + 𝑘 + 2, (𝑗 + 1)
𝑡

 𝜂
) ,

(16) 

where 𝛾(𝑠, 𝑡) = ∫ 𝑥𝑠−1𝑡

0
𝑒−𝑥𝑑𝑥 is the lower 

incomplete gamma function. 

 

Table 1. Some numerical results of moments for the 

TCP-LBEX model at 𝜂 = 0.5 

CV K S 𝝈𝟐 𝜇4
′  𝜇3

′  𝜇2
′  𝜇1

′  𝜇 

0.5
54 

0.6
33 

1.1
06 

2.5
79 

0.3
27 

2.1
06 

9.4
81 

1.0
32 

0.
5 

0.8
66 

1.1
59 

2.1
43 

5.1
01 

0.4
09 

1.6
46 

7.1
97 

0.7
39 

1.
0 

1.0
76 

1.5
99 

3.1
04 

7.5
45 

0.4
41 

1.4
79 

6.5
3 

0.6
17 

1.
5 

1.2
33 

1.9
78 

3.9
97 

9.9
08 

0.4
57 

1.3
93 

6.2
28 

0.5
48 

2.
0 

1.3
59 

2.3
12 

4.8
32 

12.
195 

0.4
66 

1.3
42 

6.0
61 

0.5
02 

2.
5 

1.42.65.614.0.41.35.90.43.
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1.5
52 

2.8
81 

6.3
59 

16.
555 

0.4
73 

1.2
86 

5.8
91 

0.4
43 

3.
5 

1.6
29 

3.1
3 

7.0
63 

18.
64 

0.4
75 

1.2
69 

5.8
43 

0.4
23 

4.
0 

1.6
98 

3.3
59 

7.7
34 

20.
668 

0.4
76 

1.2
56 

5.8
09 

0.4
06 

4.
5 

1.7
6 

3.5
73 

8.3
75 

22.
642 

0.4
77 

1.2
46 

5.7
83 

0.3
92 

5.
0 

1.8
16 

3.7
73 

8.9
9 

24.
568 

0.4
77 

1.2
38 

5.7
64 

0.3
8 

5.
5 

1.8
67 

3.9
62 

9.5
81 

26.
447 

0.4
77 

1.2
32 

5.7
49 

0.3
7 

6.
0 

1.9
14 

4.1
4 

10.
15 

28.
282 

0.4
77 

1.2
26 

5.7
37 

0.3
61 

6.
5 

1.9
58 

4.3
08 

10.
7 

30.
078 

0.4
76 

1.2
22 

5.7
27 

0.3
53 

7.
0 

1.9
98 

4.4
69 

11.
231 

31.
836 

0.4
76 

1.2
19 

5.7
2 

0.3
45 

7.
5 

2.0
36 

4.6
22 

11.
746 

33.
558 

0.4
76 

1.2
16 

5.7
14 

0.3
39 

8.
0 

2.0
72 

4.7
68 

12.
245 

35.
246 

0.4
75 

1.2
13 

5.7
09 

0.3
33 

8.
5 

2.1
06 

4.9
08 

12.
729 

36.
902 

0.4
75 

1.2
11 

5.7
05 

0.3
27 

9.
0 

2.1
37 

5.0
43 

13.
201 

38.
528 

0.4
74 

1.2
09 

5.7
02 

0.3
22 

9.
5 

2.1
68 

5.1
73 

13.
66 

40.
126 

0.4
74 

1.2
07 5.7 

0.3
17 

10
.0 

2.1
96 

5.2
98 

14.
107 

41.
696 

0.4
73 

1.2
06 

5.6
98 

0.3
13 

10
.5 

2.2
24 

5.4
18 

14.
543 

43.
24 

0.4
73 

1.2
05 

5.6
96 

0.3
09 

11
.0 

2.2
5 

5.5
35 

14.
969 

44.
759 

0.4
72 

1.2
04 

5.6
95 

0.3
05 

11
.5 

2.2
75 

5.6
48 

15.
385 

46.
254 

0.4
72 

1.2
03 

5.6
95 

0.3
02 

12
.0 

2.2
99 

5.7
57 

15.
792 

47.
727 

0.4
71 

1.2
02 

5.6
94 

0.2
99 

12
.5 

2.3
22 

5.8
63 

16.
19 

49.
178 

0.4
71 

1.2
02 

5.6
94 

0.2
95 

13
.0 

2.3
44 

5.9
67 

16.
58 

50.
608 

0.4
7 

1.2
01 

5.6
94 

0.2
93 

13
.5 

2.3
66 

6.0
67 

16.
962 

52.
019 

0.4
7 

1.2 5.6
94 

0.2
9 

14
.0 
 

3.5 Entropy 

The Rényi entropy is defined using (𝜈 > 0, 𝜈 ≠ 1): 

𝐼𝑅(𝜈) =
1

1 − 𝜈
𝑙𝑜𝑔 [∫ 𝑓 𝜈(𝑥)𝑑𝑥

∞

0

]. 

Using (2.2), the following expression is obtained: 

∫ 𝑓 𝜈(𝑥)𝑑𝑥
∞

0

= (
4 𝜇

𝜋 𝜂2
)

𝜈

∫ 𝑥𝜈
∞

0

𝑒
−𝜈

𝑥

 𝜂

[1 − (1 +
𝑥

 𝜂
) 𝑒

−
𝑥

 𝜂]
𝜈( 𝜇−1)

[1 + [1 − (1 +
𝑥

 𝜂
) 𝑒

−
𝑥

 𝜂]
2 𝜇

]

𝜈 𝑑𝑥. 

 

Using the same procedure employed for the useful 

expansion (8) and by performing some 

simplifications, the following expression is 

obtained: 

∫ 𝑓 𝜈(𝑥)𝑑𝑥
∞

0

= ∑ 𝜛𝑘
∗

∞

𝑘=0

∫ 𝑥𝜈+𝑘𝑒
−(𝜈+𝑗)

𝑥

 𝜂𝑑𝑥
∞

0

= ∑ 𝜛𝑘
∗

∞

𝑘=0

𝛤(𝜈 + 𝑘 + 1), 

 

Where 

𝜛𝑘
∗

= (
4 𝜇

𝜋 𝜂
)

𝜈

∑ (−1)𝑖+𝑗

∞

𝑖,𝑗=0

(
−𝜈

𝑖
) (

 𝜇(2𝑖 + 𝜈) − 𝜈
𝑗

) (
𝑗
𝑘

) (
1

𝜈 + 𝑗
)

𝜈+𝑘

. 

Thus, 

𝐼𝑅(𝜈) =
1

1 − 𝜈
𝑙𝑜𝑔 {∑ 𝜛𝑘

∗𝛤(𝜈 + 𝑘 + 1)

∞

𝑘=0

}.    (17) 

 

Some numerical results of 𝐼𝑅(𝜈) for the TCP-LBEX 

distribution for some choices of parameter  

𝜂 and 𝜇 are listed in Table 2. 

Table 2. Some numerical results of Rényi entropy 

for the TCP-LBEX model. 

𝜈 = 3.0 𝜈 = 1.5 𝜈 = 0.5 𝜇 𝜂 

0.354 0.09 0.028 0.5  
 
 

0.5 

0.451 0.266 0.19 1.0 

0.485 0.311 0.238 1.5 

0.501 0.33 0.258 2.0 

0.51 0.34 0.269 2.5 

0.516 0.346 0.275 3.0 

0.52 0.35 0.279 3.5 

0.956 0.692 0.574 0.5  
 
 

2.0 

1.054 0.868 0.792 1.0 

1.087 0.913 0.84 1.5 

1.103 0.932 0.86 2.0 

1.112 0.942 0.871 2.5 

1.118 0.948 0.877 3.0 

1.122 0.952 0.881 3.5 
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The numerical values in Table 2 belong to [0.028, 

1.122]; this indicates that 𝜂 and 𝜇 have an 

important impact on the amount of information. 

 

 

4 Parameter Estimation 
The MLE technique is utilized in this section to 

estimate the unknown parameters of the TCP-

LBEX distribution. Suppose that 𝑥1, . . . , 𝑥𝑛 be an n-

th random sample from the specified distribution 

(7). The TCP-LBEX distribution's log-likelihood 

function (LLF) is supplied by 

 

𝐿𝑛 = 𝑛 𝑙𝑜𝑔 (
4

𝜋
) + 𝑛 𝑙𝑜𝑔(  𝜇) − 2𝑛 𝑙𝑜𝑔(  𝜂)

+ ∑ 𝑥𝑖

𝑛

𝑖=1

− ∑
𝑥𝑖

 𝜂

𝑛

𝑖=1

 

 

+( 𝜇 − 1) ∑ 𝑙𝑜𝑔 [1 − (1 +
𝑥

 𝜂
) 𝑒

−
𝑥

 𝜂]

𝑛

𝑖=1

+ ∑ 𝑙𝑜𝑔 [1

𝑛

𝑖=1

+ [1

− (1 +
𝑥

 𝜂
) 𝑒

−
𝑥

 𝜂]
2 𝜇

].         (18) 

 

The LLF in equation (18) can be computed by 

differentiating (18) regards to 𝜇 and 𝜂: 

𝜕𝐿𝑛

𝜕 𝜇
=

𝑛

 𝜇
+ ∑ 𝑙𝑜𝑔 [1 − (1 +

𝑥𝑖

 𝜂
) 𝑒

−
𝑥𝑖
 𝜂 ]

𝑛

𝑖=1

 

 

−2 𝜇 ∑
[1 − (1 +

𝑥𝑖

 𝜂
) 𝑒

−
𝑥𝑖
 𝜂 ]

2 𝜇

𝑙𝑜𝑔 [1 − (1 +
𝑥𝑖

 𝜂
) 𝑒

−
𝑥𝑖
 𝜂 ]

1 + [1 − (1 +
𝑥𝑖

 𝜂
) 𝑒

−
𝑥𝑖
 𝜂 ]

2 𝜇

𝑛

𝑖=1

= 0,              (19) 

and 

𝜕𝐿𝑛

𝜕 𝜂
=

−2𝑛

 𝜂
+ ∑

𝑥𝑖

 𝜂2

𝑛

𝑖=1

+ ( 𝜇

− 1) ∑

𝑥𝑖

 𝜂
(2 +

𝑥𝑖

 𝜂
)𝑒

−
𝑥𝑖
 𝜂

1 − (1 +
𝑥𝑖

 𝜂
) 𝑒

−
𝑥𝑖
 𝜂

𝑛

𝑖=1

 

 

−2 𝜇 ∑
[1 − (1 +

𝑥𝑖

 𝜂
) 𝑒

−
𝑥𝑖
 𝜂 ]

2 𝜇−1
𝑥𝑖

 𝜂
(2 +

𝑥𝑖

 𝜂
) 𝑒

−
𝑥

 𝜂

1 + [1 − (1 +
𝑥𝑖

 𝜂
) 𝑒

−
𝑥𝑖
 𝜂 ]

2 𝜇

𝑛

𝑖=1

= 0,                          (20) 

respectively. The MLEs of the parameters  𝜇 and  𝜂 

are denoted by  �̂� and  𝜂 ̂ and are obtained by 

solving the above last system of equations (19) and 

(20). It is commonly more convenient to employ 

nonlinear optimization techniques, like the quasi-

Newton approach, to numerically optimize the 

sample likelihood function. 

 

4.1 Simulation Study 

In this section, a simulation study has been 

conducted to illustrate the MLEs of 𝜂 and  𝜇 for the 

TCP-LBEX model. The estimates are assessed and 

compared based on the root mean square errors 

(RMSErs). For this purpose, the following 

algorithm is adopted. 

Step 1: A random sample of size n = 50, 100, 200, 

300, 500, 700, and 1000 are generated from the 

TCP-LBEX distribution.  

Step 2: The parameter values are considered as 

𝑠𝑒𝑡 1: (𝜂 = 0.5, 𝜇 = 0.5),𝑠𝑒𝑡 2: (𝜂 = 0.5, 𝜇 =

1.5), 𝑠𝑒𝑡 3: (𝜂 = 0.5, 𝜇 = 2.0), and 𝑠𝑒𝑡 4: (𝜂 =

1.5, 𝜇 = 1.5). 

Step 3: For the selected values of parameters and 

each sample of size n, the MLEs are calculated. 

Step 4: Steps 1–3 are repeated, and N = 10000 

times, representing various samples.  

Step 5: The outcomes of the simulation study are 

presented in Table 3 and Table 4. 
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Table 3. MLEs and RMSEr of the TCP-LBEX 

distribution for set 1 and set 2 

n 
set 1 set 2 

MLE RMSEr MLE RMSEr 

50 
0.519876 0.010675 0.549776 0.015231 

0.583619 0.096384 1.763210 0.652452 

100 
0.519020 0.006504 0.526846 0.006895 

0.580228 0.050699 1.731120 0.467523 

200 
0.507657 0.002476 0.512182 0.002960 

0.532262 0.013490 1.621920 0.109372 

300 
0.506596 0.001206 0.501286 0.001231 

0.504893 0.006243 1.561980 0.063621 

500 
0.503032 0.000785 0.501934 0.000863 

0.510978 0.003014 1.488500 0.028265 

700 
0.503911 0.000366 0.504906 0.000489 

0.505968 0.001960 1.527870 0.024482 

1000 
0.502257 0.000234 0.500685 0.000212 

0.499607 0.001162 1.505420 0.007254 

 

Table 4. MLEs and RMSEr of the TCP-LBEX 

distribution for set 3 and set 4 

n 
set 3 set 4 

MLE RMSEr MLE RMSEr 

50 
0.536645 0.013190 1.504310 0.032153 

2.312980 1.042390 1.507250 0.037610 

100 
0.514007 0.004442 1.518710 0.010780 

2.160900 0.424585 1.521170 0.013241 

200 
0.506586 0.003029 1.505840 0.003223 

2.009150 0.119023 1.505360 0.003831 

300 
0.502757 0.001286 1.501350 0.001183 

2.000800 0.090311 1.500930 0.001369 

500 
0.505382 0.000974 1.503320 0.000541 

2.071520 0.064444 1.503850 0.000738 

700 
0.502108 0.000509 1.502030 0.000213 

2.036330 0.042179 1.501890 0.000286 

1000 
0.500067 0.000247 1.498890 0.000053 

2.019420 0.016566 1.498660 0.000069 

From the above Table 3 and Table 4, the RMSErs 

of the TCP-LBEX model decrease when n increase. 

 

 

5 Applications 
In this section, we used two real-world data sets to 

compare the TCP-LBEX model to several other 

known competing models like; the LBEX model, 

Burr X-EX (BrXEX) model, Marshall–Olkin EX 

(MOEX) model, Kumaraswamy Marshall–Olkin 

EX (KMOEX) model, Kumaraswamy EX (KEX) 

model, beta EX (BEX) model, generalized 

Marshall–Olkin EX (GMOEX) model, EX model 

and Marshall–Olkin Kumaraswamy EX (MOKEX) 

model) in this part to highlight its usefulness in data 

modeling. To estimate the parameters of the 

competing models, the MLE approach is employed. 

To choose the optimal model, the K1, K2, K3, K4, 

K5, K6, K7, and K8model selection criteria and 

goodness of fit tests are utilized. 

 

The first Data set: This data set contains the 

survival periods (in days) of 72 guinea pigs infected 

with virulent tubercle bacilli, [40]. For the first data 

set, MLEs and standard errors (SErs) are computed. 

Table 5 shows the numerical results of MLEs and 

the SErs for all competitive models for the first data 

set. Based on the numerical numbers in Table 6 and 

the information in Figure 3, we can conclude that 

the TCP-LBEX model provides the best fit for the 

first data set because the TCP-LBEX model has the 

lowest numerical value in K1, K2, K3, K4, K5, K6, 

K7 but has the largest value in K8. 
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Table 5. MLEs and SErs for the first data set. 

Mo

dels 

MLEs SErs 

TCP

-

LBE

X 

(𝜂, 𝜇) 

0.7

81 

1.66

5 

  0.0

92 

0.30

1 

  

LBE

X 

(𝜂) 

0.9

25

2 

   0.0

76

8 

   

BrX

EX 

(𝜂, 𝜇) 

0.4

75 

0.20

55 

  0.0

60 

0.01

2 

  

MO

EX 

(𝜂, 𝜇) 

8.7

78 

1.37

9 

  3.5

55 

0.19

3 

  

KM

OEX 

(𝜂, 

δ, γ, 

𝜇) 

0.3

73

1 

3.47

82 

3.3

06

3 

0.2

99

0 

0.1

35

8 

0.86

2 

0.7

81 

1.1

13 

KEX 

(δ, 

γ, 

𝜇) 

3.3

04

1 

1.10

02 

1.0

37

1 

 1.1

06

1 

0.76

42 

0.6

14

1 

 

BEX 

(δ, 

γ, 

β) 

0.8

07

3 

3.46

12 

1.3

31

1 

 0.6

96

1 

1.00

32 

0.8

55

1 

 

GM

OEX 

(λ, 

α, 

𝜇) 

0.1

78

9 

47.6

350 

4.4

65

2 

 0.0

70

2 

44.9

011 

1.3

27

0 

 

EX

(𝜂) 

0.5

40 

   0.0

63 

   

MO

KEX 

(𝜂, 

δ, γ, 

𝜇) 

0.0

08

1 

2.71

62 

1.9

86

1 

0.0

99

2 

0.0

02

1 

1.31

58 

0.7

83

9 

0.0

48

1 

 

 

 

 

 

 

Table 6. Numerical values of K1, K2, K3, K4, 

K5, K6, K7, and K8 for the first data set. 

Mod

els 

K1 K2 K3 K4 K5 K6 K7 K8 

TCP-

LBEX 

191.

60  

191.

31 

191.

77 

193.

41 

0.

08 

0.

48 

0.

09 

(0.6

35) 

LBEX 210.

40  

212.

68 

210.

45 

211.

30 

0.

25 

1.

52 

0.

14 

(0.1

30) 

BrXE

X 

235.

30  

239.

90 

235.

50 

237.

10 

0.

52 

2.

90 

0.

22 

(0.0

02) 

MOE

X 

210.

36  

214.

92 

210.

53 

212.

16 

0.

17 

1.

18 

0.

10 

(0.4

30) 

KM

OEX 

207.

82  

216.

94 

208.

42 

211.

42 

0.

11 

0.

61 

0.

09 

(0.5

30) 

KEX 209.

42  

216.

24 

209.

77 

212.

12 

0.

11 

0.

74 

0.

09 

(0.5

00) 

BEX 207.

38  

214.

22 

207.

73 

210.

08 

0.

15 

0.

98 

0.

11 

(0.3

40) 

GM

OEX 

210.

54  

217.

38 

210.

89 

213.

24 

0.

16 

1.

02 

0.

09 

(0.5

10) 

EX 234.

63  

236.

91 

234.

68 

235.

54 

1.

25 

6.

53 

0.

27 

(0.0

60) 

MO

KEX 

209.

44  

218.

56 

210.

04 

213.

04 

0.

12 

0.

79 

0.

10 

(0.4

40) 

 

 

 
Fig. 3: Fitted cdf, pdf, and pp plots for the first data 

set 

 

The second data set: This data collection contains 

information from 20 individuals and consists of 

histories pertaining to relief periods (in minutes) for 

patients who have taken an analgesic, [41]. Table 7 

shows the numerical results of MLEs and the SErs 
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for all competitive models for the second data set. 

Based on the numerical numbers in Table 8 and the 

information in Figure 4, we can conclude that the 

TCP-LBEX provides the best fit for the second data 

set because the TCP-LBEX model has the lowest 

numerical value in K1, K2, K3, K4, K5, K6, K7 but 

has the largest value in K8. 

 

Table 7. MLEs and SErs for the second data set. 

Mo

dels 

MLEs SErs 

TCP

-

LBE

X 

(𝜂, 𝜇) 

0.41

3 

11.7

14 

  0.07

7 

6.93

9 

  

LBE

X 

(𝜂) 

0.95

02 

   0.15

01 

   

BrX

EX 

(𝜂, 𝜇) 

1.16

35 

0.32

07 

  0.33

0 

0.03

0 

  

MO

EX 

(𝜂, 𝜇) 

54.4

74 

2.31

6 

  35.5

82 

0.37

4 

  

KM

OEX 

(𝜂, 

δ, γ, 

𝜇) 

8.86

79 

34.8

258 

0.2

989 

4.8

988 

9.14

59 

22.3

119 

0.2

387 

3.1

757 

KEX 

(δ, 

γ, 

𝜇) 

83.7

558 

0.56

79 

3.3

329 

 42.3

612 

0.32

61 

1.1

880 

 

BEX 

(δ, 

γ, β) 

81.6

333 

0.54

21 

3.5

142 

 120.

410 

0.32

72 

1.4

101 

 

GM

OEX 

(λ, 

α, 

𝜇) 

0.51

92 

89.4

623 

3.1

691 

 0.25

61 

66.2

782 

0.7

721 

 

EX

(𝜂) 

0.52

6 

   0.11

7 

   

MO

KEX 

(𝜂, 

δ, γ, 

𝜇) 

0.13

33 

33.2

322 

0.5

711 

1.6

691 

0.33

20 

57.8

371 

0.7

211 

1.8

141 

Table 8. Numerical values of K1, K2, K3, K4, K5, 

K6, K7, and K8 for the second data set. 

Mod

els 

K1 K2 K3 K4 K5 K6 K7 K8 

TCP-

LBEX 

36.

43 

35.

03 

37.

14 

36.

82 

0.

06 

0.

35 

0.

13 

(0.9

0) 

LBEX 54.

32 

55.

31 

54.

54 

54.

50 

0.

53 

2.

76 

0.

32 

(0.0

7) 

BrXE

X 

48.

10 

50.

10 

48.

80 

48.

50 

0.

24 

1.

39 

0.

25 

(0.1

7) 

MO

EX 

43.

51 

45.

51 

44.

22 

43.

90 

0.

14 

0.

80 

0.

18 

(0.5

5) 

KM

OEX 

42.

80 

46.

84 

45.

55 

43.

60 

0.

19 

0.

08 

0.

15 

(0.8

6) 

KEX 41.

78 

44.

75 

43.

28, 

42.

32 

0.

07 

0.

45 

0.

14 

(0.8

6) 

BEX 43.

48 

46.

45 

44.

98 

44.

02 

0.

12 

0.

70 

0.

16 

(0.8

0) 

GM

OEX 

42.

75 

45.

74 

44.

25 

43.

34 

0.

08 

0.

51 

0.

15 

(0.7

8) 

EX 67.

67 

68.

67 

67.

89 

67.

87 

0.

96 

4.

60 

0.

44 

(0.0

04) 

MO

KEX 

41.

58 

45.

54 

44.

25 

42.

30 

0.

11 

0.

60 

0.

14 

(0.8

7) 

 

 
 

Fig. 4: Fitted cdf, pdf, and pp plots for the second 

data set 
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6 Conclusion 
A new two-parameter model named the TCP-LBEX 

model was proposed. Some of the statistical 

properties of the TCP-LBEX model were 

investigated. The maximum likelihood estimator of 

the TCP-LBEX model was derived. Monto Carlo 

simulations are used to assess the behavior of 

parameters. Using two real data sets, the proposed 

model achieved better goodness of fit than some of 

the other competitive models. The limitation of our 

work is that we only used the complete samples and 

maximum likelihood method to estimate the 

parameters of the suggested model. For future 

directions, the other authors can estimate the 

parameters of the suggested model using different 

methods of estimation and utilizing different 

censored schemes. 
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