A New Two-Parameter Lifetime Model with Statistical Properties and Applications

NAJWAN ALSADAT

Department of Quantitative Analysis, College of Business Administration, King Saud University, P.O. Box 2455, Riyadh, 11451, SAUDI ARABIA

Abstract: - A new lifetime distribution called the truncated Cauchy power length-biased exponential (TCP-LBEX) distribution that extends the length-biased (LBEX) model is investigated. The statistical properties of the TCP-LBEX model including the quantile function, incomplete moment, moment, and entropy are derived. The method of maximum likelihood estimation was used to estimate the parameters of the TCP-LBEX. Monto Carlo simulations are used to assess the behavior of parameters. Finally, we demonstrate applications of two real-world data sets to show the flexibility and potentiality of the proposed model.

Key-Words: - Truncated Cauchy power family; Length-biased exponential; moments; Rényi Entropy; Maximum likelihood estimation.

Received: July 20, 2022. Revised: January 19, 2023. Accepted: February 15, 2023. Published: March 29, 2023.

1 Introduction

Some scientists have recently proposed strategies incorporating probability for models. This parameter addition phenomenon generates more classes of distributions, which are useful for modeling datasets in engineering science, biological science, economics, medicine, income, physics, and environmental sciences. Several G-class of distributions are the T-X class, [1], the odd Fréchet-G class, [2], Kumaraswamy-G class, [3], odd Dagum-G class, [4], weighted exponential-G class, [5], alpha power class, [6], weighted exponentiated-G class, [7], Marshall-Olkin alpha-power-G class, [8], truncated inverted Kumaraswamy-G class, [9], transmuted geometric-G class, [10], complementary generalized transmuted Poisson-G class, [11], the exponentiated odd log-logistic-G class, [12], Type-II half logistic-G class, [13], Topp-Leone-G class, [14], truncated Cauchy power Weibull-G class, [15], Lomax-G class, [16], Type-I half logistic Burr X-G class, [17], type I general exponential-G class, [18], sine Topp-Leone-G class, [19], generalized odd Weibull class, [20], a new power Topp-Leone-G class, [21], odd power Lindley-G class, [22], the transmuted transmuted-G class, [23], exponentiated version of the M class, [24], the transmuted Gompertz-G class, [25], transmuted odd Fréchet-G class, [26], transmuted odd Lindley-G class, [27], Topp Leone odd Lindley-G class, [28], Topp-Leone odd log-logistic class, [29], odd Perks-G class, [30] and Kumaraswamy transmuted-G class, [31], among others.

Recently, [32], discussed the TCP-G class of distributions. The distribution function (cdf) of the TCP-G class is

$$F(x; \mu, \omega) = \frac{4}{\pi} \arctan(G(x; \omega)^{\mu}), x \in R, \quad (1)$$

where $\mu > 0$ and the cdf of a baseline with parameter vector ω is denoted by $G(x; \omega)$. The corresponding probability density function (pdf) and hazard rate function (hrf) respectively are

$$f(x; \mu, \omega) = \frac{4 \,\mu g(x; \,\omega) G(x; \,\omega)^{\mu-1}}{\pi [1 + (G(x))^{2\,\mu}]}, \qquad (2)$$

and

$$h(x; \mu, \omega) = \frac{f(x; \mu, \omega)}{\overline{F}(x; \mu, \omega)}$$
$$= \frac{4 \mu g(x; \omega) G(x; \omega)^{\mu - 1}}{\pi \eta^2 [1 + G(x; \omega)^{2\mu}] \left[1 - \frac{4}{\pi} \arctan G(x; \omega)^{\mu}\right]}.$$
(3)

Relevant research has been provided depending on the TCP-G family, for example, TCP-inverted Topp–Leone model, [33], TCP-inverse exponential model, [34], TCP-Lomax model, [35], TCP- Weibull-G class, [36], and TCP odd Frechet-G class, [37].

[38], proposed the LBEX by assigning a weight to the exponential (E) model using the concept proposed by [39]. They investigated that the LBEX model is more flexible than the E model. The cdf and pdf of LBEX distribution are provided below

$$G(x; \eta) = 1 - \left(1 + \frac{x}{\eta}\right)e^{-\frac{x}{\eta}}, x > 0$$
 (4)

and

$$g(x,\eta) = \frac{x}{\eta^2} e^{-\frac{x}{\eta}},$$
(5)

where $\eta > 0$ is a scale parameter. An extension of the LBEX model is proposed, and this extension is constructed utilizing the TCP-G class and LBEX model. This extension is termed the TCP-LBEX distribution.

The remainder of this article is outlined as follows. In Section 2, the cdf and pdf of the proposed distribution are presented and an expansion of the TCP-LBEX pdf is derived. The basic properties of the distribution, including the quantile function, moments, incomplete and conditional moments, and entropy, are presented in Section 3. In Section 4, the parameter estimation employing the maximum likelihood estimation (MLE) approach is discussed and Monto Carlo simulations are utilized to study the behavior of the parameters. In Section 5, the TCP-LBEX model is performed on two real-world data sets to examine its feasibility using some information criterion (INC) of the goodness of fit, like; the Akaike INC (K1), Bayesian INC (K2), consistent Akaike INC (K3), Hannan-Quinn INC (K4), Cramèr-Von Mises (K5), Anderson-Darling (K6), Kolmogorov-Smirnov (K7) statistics and pvalue (K8). Lastly, Section 6 presents the conclusions.

2 The New TCP-LBEX Model

By substituting (4) in (2), the TCP-LBEX cdf of random variable *X* is obtained as

$$F(x; \mu, \eta) = \frac{4}{\pi} \arctan\left[1 - \left(1 + \frac{x}{\eta}\right)e^{-\frac{x}{\eta}}\right]^{\mu}.$$
 (6)

The corresponding pdf is

$$f(x; \mu, \eta) = \frac{4 \mu x e^{-\frac{x}{\eta}} \left[1 - \left(1 + \frac{x}{\eta} \right) e^{-\frac{x}{\eta}} \right]^{\mu - 1}}{\pi \eta^2 \left[1 + \left[1 - \left(1 + \frac{x}{\eta} \right) e^{-\frac{x}{\eta}} \right]^{2\mu} \right]}.$$
 (7)

The reliability function (sf) of the TCP-LBEX distribution is provided below

$$\overline{F}(x; \mu, \eta) = 1 - \frac{4}{\pi} \arctan\left[1 - \left(1 + \frac{x}{\eta}\right)e^{-\frac{x}{\eta}}\right]^{\mu}.$$

For the TCP-LBEX distribution, the hazard rate function (hrf) is expressed as follows: $h(x; \mu, \eta)$

$$=\frac{4\,\mu x e^{-\frac{x}{\eta}} \left[1 - \left(1 + \frac{x}{\eta}\right) e^{-\frac{x}{\eta}}\right]^{\mu-1}}{\pi\,\eta^2 \left[1 + \left[1 - \left(1 + \frac{x}{\eta}\right) e^{-\frac{x}{\eta}}\right]^{2\mu}\right] \left[1 - \frac{4}{\pi}\arctan\left[1 - \left(1 + \frac{x}{\eta}\right) e^{-\frac{x}{\eta}}\right]^{\mu}\right]}$$

The reversed hazard rate (RHR) function of the TCP-LBEX distribution is provided below $\tau(x; \mu, \eta)$

$$=\frac{\mu x e^{-\frac{x}{\eta}} \left[1-\left(1+\frac{x}{\eta}\right) e^{-\frac{x}{\eta}}\right]^{\mu-1}}{\eta^2 \left[1+\left[1-\left(1+\frac{x}{\eta}\right) e^{-\frac{x}{\eta}}\right]^{2\mu}\right] \left\{\arctan\left[1-\left(1+\frac{x}{\eta}\right) e^{-\frac{x}{\eta}}\right]^{\mu}\right\}}$$

The cumulative hazard rate (CHR) function of the TCP-LBEX distribution is provided below

$$H(x; \mu, \eta) = -\ln\left[1 - \frac{4}{\pi} \arctan\left[1 - \left(1 + \frac{x}{\eta}\right)e^{-\frac{x}{\eta}}\right]^{\mu}\right].$$

Figure 1 presents the pdf of the TCP-LBEX model.

Fig. 1: cdf of the TCP-LBEX model.

Figure 2 presents the cdf of the TCP-LBEX model.

Fig. 2: cdf of the TCP-LBEX model.

Fig. 3: hrf of the TCP-LBEX model.

Najwan Alsadat

Fig. 4: sf of the TCP-LBEX model.

3 Statistical Properties of the TCP-LBEX Model

In this section, the statistical properties of the TCP-LBEX model, such as the useful expansion, quantiles, moments, generating functions, incomplete moments, and entropy, are discussed.

3.1 Useful expansion

In this subsection, the expansion of the TCP-LBEX pdf is established. Using the binomial series expansion,

$$(1+x)^{-d} = \sum_{i=0}^{\infty} (-1)^i {d+i-1 \choose i} x^i, \qquad (8)$$

which holds for |x| < 1, and *d* is a positive real non-integer. Further, the following relation is used:

$$(1-x)^{o-1} = \sum_{j=0}^{\infty} (-1)^j {o-1 \choose j} x^j, \quad (9)$$

where o is any positive real noninteger. By substituting (8) in (7), the TCP-LBEX pdf becomes

$$f(x; \mu, \eta) = \frac{4 \mu x e^{-\frac{x}{\eta}}}{\pi \eta^2} \sum_{i=0}^{\infty} (-1)^i \left[1 - \left(1 + \frac{x}{\eta} \right) e^{-\frac{x}{\eta}} \right]^{\mu(2i+1)-1}.$$
 (10)

Further, by substituting (9) in (10) and performing some algebraic manipulations, the TCP-LBEX pdf can be written as

$$f(x; \mu, \eta) = \sum_{k=0}^{\infty} \varpi_k x^{k+1} e^{-(j+1)\frac{x}{\eta}}, \quad (11)$$

where

$$\varpi_k = \frac{4\,\mu}{\pi\,\eta^{2+k}} \sum_{i,j=0}^{\infty} (-1)^{i+j} \binom{\mu(2i+1)}{j} \binom{j}{k}$$

3.2 Quantiles

Quantiles are fundamental for estimating and simulating the distribution parameters. The quantile function of X can be obtained by inverting (6) as

$$\left(1 + \frac{x}{\eta}\right)e^{-\frac{x}{\eta}} + \left(\tan\frac{u\pi}{4}\right)^{\frac{1}{\mu}} - 1 = 0, 1 < u$$

< 0. (12)

We cannot have closed form for Equation (12) but we can solve it numerically.

3.3 Moments

For X with a pdf (11), the r_{th} moment of X is

$$\mu'_r(x) = \int_0^\infty x^r f(x) dx$$
$$= \sum_{k=0}^\infty \varpi_k \int_0^\infty x^{r+k+1} e^{-(j+1)\frac{x}{\eta}} dx.$$

By substituting $y = (j + 1)\frac{x}{\eta}$ and some algebraic manipulations, the r_{th} moment achieves the following form:

$$\mu'_{r}(x) = \sum_{k=0}^{\infty} \varpi_{k} \left(\frac{\eta}{j+1}\right)^{r+k+2} \Gamma(r+k+2).$$
(13)

The mg function $M_X(t)$ of X can be derived from (11) as follows:

$$M_{X}(t) = E(e^{tX}) = \int_{0}^{\infty} e^{tx} f(x) dx$$

= $\sum_{k=0}^{\infty} \varpi_{k} \int_{0}^{\infty} x^{k+1} e^{-\left[\frac{j+1}{\eta} - t\right]x} dx$
= $\sum_{k=0}^{\infty} \varpi_{k} \frac{\Gamma(k+2)}{\left(\frac{j+1}{\eta} - t\right)^{k+2}}.$ (14)

The numerical values of specific parameters of the first four ordinary moments variance (σ^2), skewness (S), kurtosis (K), and coefficient of variation (CV) of the TCP-LBEX model are mentioned in Table 1.

From the data presented in Table 1, as the value of μ increases, the values of moments decrease for

constant η . In contrast, the values of σ^2 , S, K, and CV decrease.

3.4 Conditional Moments

The s_{th} upper incomplete moment of the TCP-LBEX distribution can be given by

$$\Phi_{s}(t) = \int_{t}^{\infty} x^{s} f(x) dx$$
$$= \sum_{k=0}^{\infty} \overline{\omega}_{k} \int_{t}^{\infty} x^{s+k+1} e^{-(j+1)\frac{x}{\eta}} dx$$
$$= \sum_{k=0}^{\infty} \overline{\omega}_{k} \left(\frac{\eta}{j+1}\right)^{s+k+2} \Gamma\left(s+k\right)$$
$$+ 2, (j+1)\frac{t}{\eta}, \qquad (15)$$

where $\Gamma(s,t) = \int_{t}^{\infty} x^{s-1} e^{-x} dx$ is the upper incomplete gamma function. Similarly, the s_{th} lower incomplete moment of the distribution is expressed as

$$\Lambda_{s}(t) = \int_{0}^{t} x^{s} f(x) dx$$
$$= \sum_{k=0}^{\infty} \varpi_{k} \int_{0}^{t} x^{s+k+1} e^{-(j+1)\frac{x}{\eta}} dx$$

$$=\sum_{k=0}\varpi_k\left(\frac{\eta}{j+1}\right)^{s+k+2}\gamma\left(s+k+2,(j+1)\frac{t}{\eta}\right),$$
(16)

where $\gamma(s,t) = \int_0^t x^{s-1} e^{-x} dx$ is the lower incomplete gamma function.

Table 1. Some numerical results of moments for the TCP-LBEX model at n = 0.5

ICF-LDEA MODEL at $\eta = 0.5$										
μ	μ_1'	μ_2'	μ'_3	μ_4'	σ^2	S	К	CV		
0.	1.0	9.4	2.1	0.3	2.5	1.1	0.6	0.5		
5	32	81	06	27	79	06	33	54		
1.	0.7	7.1	1.6	0.4	5.1	2.1	1.1	0.8		
0	39	97	46	09	01	43	59	66		
1.	0.6	6.5	1.4	0.4	7.5	3.1	1.5	1.0		
5	17	3	79	41	45	04	99	76		
2.	0.5	6.2	1.3	0.4	9.9	3.9	1.9	1.2		
0	48	28	93	57	08	97	78	33		
2.	0.5	6.0	1.3	0.4	12.	4.8	2.3	1.3		
5	02	61	42	66	195	32	12	59		
3.	0.4	5.9	1.3	0.4	14.	5.6	2.6	1.4		

0 69 59 09 7 408 17 1 63 3. 0.4 5.8 1.2 0.4 16. 6.3 2.8 1.5 5 43 91 86 73 555 59 81 52 4. 0.4 5.8 1.2 0.4 18. 7.0 3.1 1.6 0 23 43 69 75 64 63 3 29 4. 0.4 5.8 1.2 0.4 20. 7.7 3.3 1.6 5 06 09 56 76 668 34 59 98 5. 0.3 5.7 1.2 0.4 24. 8.9 3.7 1.8 6 0.3 5.7 1.2 0.4 28. 10. 4.1 1.9 5 61 37 26 77 282 15 4 14 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>									
3. 0.4 5.8 1.2 0.4 $16.$ 6.3 2.8 1.5 5 43 91 86 73 555 59 81 52 $4.$ 0.4 5.8 1.2 0.4 $18.$ 7.0 3.1 1.6 0 23 43 69 75 64 63 3 29 $4.$ 0.4 5.8 1.2 0.4 $20.$ 7.7 3.3 1.6 5 0.3 5.7 1.2 0.4 $22.$ 8.3 3.5 1.7 0 92 83 46 77 642 75 73 6 $5.$ 0.3 5.7 1.2 0.4 $24.$ 8.9 3.7 1.8 0.7 49 32 77 447 81 62 67 $6.$ 0.3 5.7 1.2 0.4 $30.$ $10.$ 4.3 1.9	0	69	59	09	7	408	17	1	63
5439186735555981524.0.45.81.20.418.7.03.11.602343697564633294.0.45.81.20.420.7.73.31.65060956766683459985.0.35.71.20.422.8.33.51.7092834677642757365.0.35.71.20.424.8.93.71.858643877568973166.0.35.71.20.426.9.53.91.8074932774478162676.0.35.71.20.428.10.4.11.9561372677282154147.0.35.71.20.430.10.4.31.9053272276078708587.0.35.71.20.431.11.4.41.95452197683623169988.0.35.71.20.435.12.4.72.0533	3.	0.4	5.8	1.2	0.4	16.	6.3	2.8	1.5
4. 0.4 5.8 1.2 0.4 $18.$ 7.0 3.1 1.6 0 23 43 69 75 64 63 3 29 $4.$ 0.4 5.8 1.2 0.4 $20.$ 7.7 3.3 1.6 5 0.6 09 56 76 668 34 59 98 $5.$ 0.3 5.7 1.2 0.4 $22.$ 8.3 3.5 1.7 0 92 83 46 77 642 75 73 6 $6.$ 0.3 5.7 1.2 0.4 $24.$ 8.9 3.7 1.8 0 7 49 32 77 447 81 622 67 $6.$ 0.3 5.7 1.2 0.4 $30.$ $10.$ 4.1 1.9 0 53 27 22 76 78 7 88 $7.$ 0.3 <td>5</td> <td>43</td> <td>91</td> <td>86</td> <td>73</td> <td>555</td> <td>59</td> <td>81</td> <td>52</td>	5	43	91	86	73	555	59	81	52
0 23 43 69 75 64 63 3 29 4. 0.4 5.8 1.2 0.4 20. 7.7 3.3 1.6 5 06 09 56 76 668 34 59 98 5. 0.3 5.7 1.2 0.4 22. 8.3 3.5 1.7 0 92 83 46 77 642 75 73 6 5. 0.3 5.7 1.2 0.4 24. 8.9 3.7 1.8 5 8 64 38 77 568 9 73 16 6. 0.3 5.7 1.2 0.4 28. 10. 4.1 1.9 5 61 37 26 77 282 15 4 14 7. 0.3 5.7 1.2 0.4 30. 10. 4.3 1.9 <t< td=""><td>4.</td><td>0.4</td><td>5.8</td><td>1.2</td><td>0.4</td><td>18.</td><td>7.0</td><td>3.1</td><td>1.6</td></t<>	4.	0.4	5.8	1.2	0.4	18.	7.0	3.1	1.6
4. 0.4 5.8 1.2 0.4 $20.$ 7.7 3.3 1.6 5 06 09 56 76 668 34 59 98 5. 0.3 5.7 1.2 0.4 $22.$ 8.3 3.5 1.7 0 92 83 46 77 642 75 73 6 5. 0.3 5.7 1.2 0.4 $24.$ 8.9 3.7 1.8 $6.$ 0.3 5.7 1.2 0.4 $26.$ 9.5 3.9 1.8 0 7 49 32 77 447 81 62 67 $6.$ 0.3 5.7 1.2 0.4 $30.$ $10.$ 4.3 1.9 0 53 27 22 76 078 7 08 58 $7.$ 0.3 5.7 1.2 0.4 $31.$ $11.$ 4.4 1.9 2.1 <	0	23	43	69	75	64	63	3	29
5 06 09 56 76 668 34 59 98 5. 0.3 5.7 1.2 0.4 22. 8.3 3.5 1.7 0 92 83 46 77 642 75 73 6 5. 0.3 5.7 1.2 0.4 24. 8.9 3.7 1.8 5 8 64 38 77 568 9 73 16 6. 0.3 5.7 1.2 0.4 26. 9.5 3.9 1.8 0 7 49 32 77 447 81 62 67 6. 0.3 5.7 1.2 0.4 30. 10. 4.3 1.9 0 53 27 22 76 078 7 08 58 7. 0.3 5.7 1.2 0.4 31. 11. 4.6 20 <t< td=""><td>4.</td><td>0.4</td><td>5.8</td><td>1.2</td><td>0.4</td><td>20.</td><td>7.7</td><td>3.3</td><td>1.6</td></t<>	4.	0.4	5.8	1.2	0.4	20.	7.7	3.3	1.6
5. 0.3 5.7 1.2 0.4 $22.$ 8.3 3.5 1.7 0 92 83 46 77 642 75 73 6 $5.$ 0.3 5.7 1.2 0.4 $24.$ 8.9 3.7 1.8 5 8 64 38 77 568 9 73 16 $6.$ 0.3 5.7 1.2 0.4 $26.$ 9.5 3.9 1.8 0 7 49 32 77 447 $81.$ 62 67 $6.$ 0.3 5.7 1.2 0.4 $30.$ $10.$ 4.3 1.9 0 53 27 22 76 078 7 08 58 $7.$ 0.3 5.7 1.2 0.4 $31.$ $11.$ 4.4 1.9 5 33 09 13 75 246 245 68 72	5	06	09	56	76	668	34	59	98
0 92 83 46 77 642 75 73 6 5. 0.3 5.7 1.2 0.4 24. 8.9 3.7 1.8 5 8 64 38 77 568 9 73 16 6. 0.3 5.7 1.2 0.4 26. 9.5 3.9 1.8 0 7 49 32 77 447 81 62 67 6. 0.3 5.7 1.2 0.4 28. 10. 4.1 1.9 5 61 37 26 77 282 15 4 14 7. 0.3 5.7 1.2 0.4 30. 10. 4.3 1.9 0 53 27 22 76 078 7 08 58 7. 0.3 5.7 1.2 0.4 31. 11. 4.6 2.0 <t< td=""><td>5.</td><td>0.3</td><td>5.7</td><td>1.2</td><td>0.4</td><td>22.</td><td>8.3</td><td>3.5</td><td>1.7</td></t<>	5.	0.3	5.7	1.2	0.4	22.	8.3	3.5	1.7
5. 0.3 5.7 1.2 0.4 $24.$ 8.9 3.7 1.8 5 8 64 38 77 568 9 73 16 6. 0.3 5.7 1.2 0.4 $26.$ 9.5 3.9 1.8 0 7 49 32 77 447 81 62 67 6. 0.3 5.7 1.2 0.4 $28.$ $10.$ 4.1 1.9 5 61 37 26 77 282 15 4 14 7. 0.3 5.7 1.2 0.4 $30.$ $10.$ 4.3 1.9 0 53 27 22 76 078 7 08 58 7. 0.3 5.7 1.2 0.4 $31.$ $11.$ 4.4 1.9 2.1 0 39 14 16 76 558 746 22 36 <t< td=""><td>0</td><td>92</td><td>83</td><td>46</td><td>77</td><td>642</td><td>75</td><td>73</td><td>6</td></t<>	0	92	83	46	77	642	75	73	6
5 8 64 38 77 568 9 73 16 6. 0.3 5.7 1.2 0.4 26. 9.5 3.9 1.8 0 7 49 32 77 447 81 62 67 6. 0.3 5.7 1.2 0.4 28. 10. 4.1 1.9 5 61 37 26 77 282 15 4 14 7. 0.3 5.7 1.2 0.4 30. 10. 4.3 1.9 0 53 27 22 76 078 7 08 58 7. 0.3 5.7 1.2 0.4 31. 11. 4.4 1.9 5 45 2 19 76 836 231 69 98 8. 0.3 5.7 1.2 0.4 35. 12. 4.7 2.0 <	5.	0.3	5.7	1.2	0.4	24.	8.9	3.7	1.8
6. 0.3 5.7 1.2 0.4 $26.$ 9.5 3.9 1.8 0 7 49 32 77 447 81 62 67 6. 0.3 5.7 1.2 0.4 $28.$ $10.$ 4.1 1.9 5 61 37 26 77 282 15 4 14 7. 0.3 5.7 1.2 0.4 $30.$ $10.$ 4.3 1.9 0 53 27 22 76 078 7 08 58 7. 0.3 5.7 1.2 0.4 $31.$ $11.$ 4.4 1.9 5 45 2 19 76 836 231 69 98 8. 0.3 5.7 1.2 0.4 $33.$ $11.$ 4.6 2.0 9. 0.3 5.7 1.2 0.4 $35.$ $12.$ 4.7 2.0 9	5	8	64	38	77	568	9	73	16
0 7 49 32 77 447 81 62 67 6. 0.3 5.7 1.2 0.4 28. 10. 4.1 1.9 5 61 37 26 77 282 15 4 14 7. 0.3 5.7 1.2 0.4 30. 10. 4.3 1.9 0 53 27 22 76 078 7 08 58 7. 0.3 5.7 1.2 0.4 31. 11. 4.4 1.9 5 45 2 19 76 836 231 69 98 8. 0.3 5.7 1.2 0.4 33. 11. 4.6 2.0 9. 0.3 5.7 1.2 0.4 35. 12. 4.7 2.0 5 33 09 13 75 246 245 68 72	6.	0.3	5.7	1.2	0.4	26.	9.5	3.9	1.8
6. 0.3 5.7 1.2 0.4 $28.$ $10.$ 4.1 1.9 5 61 37 26 77 282 15 4 14 7. 0.3 5.7 1.2 0.4 $30.$ $10.$ 4.3 1.9 0 53 27 22 76 078 7 08 58 7. 0.3 5.7 1.2 0.4 $31.$ $11.$ 4.4 1.9 5 45 2 19 76 836 231 69 98 $8.$ 0.3 5.7 1.2 0.4 $33.$ $11.$ 4.6 2.0 $9.$ 0.3 5.7 1.2 0.4 $35.$ $12.$ 4.7 2.0 5 $9.$ 0.3 5.7 1.2 0.4 $36.$ $12.$ 4.9 2.1 0 27 05 11 75 902 729 08 66 <	0	7	49	32	77	447	81	62	67
5 61 37 26 77 282 15 4 14 7. 0.3 5.7 1.2 0.4 $30.$ $10.$ 4.3 1.9 0 53 27 22 76 078 7 08 58 7. 0.3 5.7 1.2 0.4 $31.$ $11.$ 4.4 1.9 5 45 2 19 76 836 231 69 98 8. 0.3 5.7 1.2 0.4 $33.$ $11.$ 4.6 2.0 0 39 14 16 76 558 746 22 36 8. 0.3 5.7 1.2 0.4 $35.$ $12.$ 4.7 2.0 9. 0.3 5.7 1.2 0.4 $38.$ $13.$ 5.0 2.1 0 27 05	6.	0.3	5.7	1.2	0.4	28.	10.	4.1	1.9
7. 0.3 5.7 1.2 0.4 $30.$ $10.$ 4.3 1.9 0 53 27 22 76 078 7 08 58 7. 0.3 5.7 1.2 0.4 $31.$ $11.$ 4.4 1.9 5 45 2 19 76 836 231 69 98 8. 0.3 5.7 1.2 0.4 $33.$ $11.$ 4.6 2.0 0 39 14 16 76 558 746 22 36 8. 0.3 5.7 1.2 0.4 $35.$ $12.$ 4.7 2.0 5 33 09 13 75 246 245 68 72 9. 0.3 5.7 1.2 0.4 $38.$ $13.$ 5.0 2.1 5 22 02 09 74 528 201 43 37 10	5	61	37	26	77	282	15	4	14
0 53 27 22 76 078 7 08 58 7. 0.3 5.7 1.2 0.4 31. 11. 4.4 1.9 5 45 2 19 76 836 231 69 98 8. 0.3 5.7 1.2 0.4 33. 11. 4.6 2.0 0 39 14 16 76 558 746 22 36 8. 0.3 5.7 1.2 0.4 35. 12. 4.7 2.0 5 33 09 13 75 246 245 68 72 9. 0.3 5.7 1.2 0.4 36. 12. 4.9 2.1 0 27 05 11 75 902 729 08 06 9. 0.3 5.7 1.2 0.4 40. 13. 5.1 2.1	7.	0.3	5.7	1.2	0.4	30.	10.	4.3	1.9
7. 0.3 5.7 1.2 0.4 $31.$ $11.$ 4.4 1.9 5 45 2 19 76 836 231 69 98 8. 0.3 5.7 1.2 0.4 $33.$ $11.$ 4.6 2.0 0 39 14 16 76 558 746 22 36 8. 0.3 5.7 1.2 0.4 $35.$ $12.$ 4.7 2.0 5 33 09 13 75 246 245 68 72 $9.$ 0.3 5.7 1.2 0.4 $36.$ $12.$ 4.9 2.1 0 27 05 11 75 902 729 08 06 $9.$ 0.3 5.7 1.2 0.4 $38.$ $13.$ 5.0 2.1 5 22 02 09 74 528 201 43 37 10 0.3 1.2 0.4 $40.$ $13.$ 5.1 2.1 $.0$ 17 5.7 07 74 126 66 73 68 10 0.3 5.6 1.2 0.4 $41.$ $14.$ 5.2 2.1 $.5$ 13 98 06 73 696 107 98 96 11 0.3 5.6 1.2 0.4 $43.$ $14.$ 5.4 2.2 $.0$ 09 96 05 73 24 543 <th< td=""><td>0</td><td>53</td><td>27</td><td>22</td><td>76</td><td>078</td><td>7</td><td>08</td><td>58</td></th<>	0	53	27	22	76	078	7	08	58
5452197683623169988.0.3 5.7 1.2 0.4 $33.$ $11.$ 4.6 2.0 039 14 16 76 558 746 22 36 8. 0.3 5.7 1.2 0.4 $35.$ $12.$ 4.7 2.0 5 33 09 13 75 246 245 68 72 9. 0.3 5.7 1.2 0.4 $36.$ $12.$ 4.9 2.1 0 27 05 11 75 902 729 08 06 9. 0.3 5.7 1.2 0.4 $38.$ $13.$ 5.0 2.1 5 22 02 09 74 528 201 43 37 10 0.3 1.2 0.4 $40.$ $13.$ 5.1 2.1 $.0$ 17 5.7 07 74 126 66 73 68 10 0.3 5.6 1.2 0.4 $41.$ $14.$ 5.2 2.1 $.5$ 13 98 06 73 696 107 98 96 11 0.3 5.6 1.2 0.4 $43.$ $14.$ 5.4 2.2 $.0$ 09 96 05 73 24 543 18 24 11 0.3 5.6 1.2 0.4 $46.$ $15.$ 5.6 2.2 <td>7.</td> <td>0.3</td> <td>5.7</td> <td>1.2</td> <td>0.4</td> <td>31.</td> <td>11.</td> <td>4.4</td> <td>1.9</td>	7.	0.3	5.7	1.2	0.4	31.	11.	4.4	1.9
8. 0.3 5.7 1.2 0.4 $33.$ $11.$ 4.6 2.0 0 39 14 16 76 558 746 22 36 $8.$ 0.3 5.7 1.2 0.4 $35.$ $12.$ 4.7 2.0 5 33 09 13 75 246 245 68 72 $9.$ 0.3 5.7 1.2 0.4 $36.$ $12.$ 4.9 2.1 0 27 05 11 75 902 729 08 06 $9.$ 0.3 5.7 1.2 0.4 $38.$ $13.$ 5.0 2.1 5 22 02 09 74 528 201 43 37 10 0.3 5.7 0.7 74 126 66 73 68 10 0.3 5.6 1.2 0.4 $41.$ $14.$ 5.2 2.1 <td>5</td> <td>45</td> <td>2</td> <td>19</td> <td>76</td> <td>836</td> <td>231</td> <td>69</td> <td>98</td>	5	45	2	19	76	836	231	69	98
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8.	0.3	5.7	1.2	0.4	33.	11.	4.6	2.0
8. 0.3 5.7 1.2 0.4 $35.$ $12.$ 4.7 2.0 5 33 09 13 75 246 245 68 72 $9.$ 0.3 5.7 1.2 0.4 $36.$ $12.$ 4.9 2.1 0 27 05 11 75 902 729 08 06 $9.$ 0.3 5.7 1.2 0.4 $38.$ $13.$ 5.0 2.1 5 22 02 09 74 528 201 43 37 10 0.3 1.2 0.4 $40.$ $13.$ 5.1 2.1 $.0$ 17 5.7 07 74 126 66 73 68 10 0.3 5.6 1.2 0.4 $41.$ $14.$ 5.2 2.1 $.5$ 13 98 06 73 696 107 98 96 11 0.3 5.6 1.2 0.4 $43.$ $14.$ 5.4 2.2 $.0$ 09 96 05 73 24 543 18 24 11 0.3 5.6 1.2 0.4 $44.$ $14.$ 5.5 2.2 $.5$ 05 95 04 72 759 969 35 5 12 0.2 5.6 1.2 0.4 $47.$ $15.$ 5.7 2.2 $.5$ 99 94 02 71 727 79	0	39	14	16	76	558	746	22	36
53309137524624568729.0.35.71.20.436.12.4.92.102705117590272908069.0.35.71.20.438.13.5.02.15220209745282014337100.31.20.440.13.5.12.1.0175.70774126667368100.35.61.20.441.14.5.22.1.5139806736961079896110.35.61.20.443.14.5.42.2.009960573245431824110.35.61.20.444.14.5.52.2.505950472759969355120.35.61.20.446.15.5.62.2.0029503722543854875120.25.61.20.447.15.5.72.2.5999402717277925799130.25.61.20.449.16.5.82.3.09	8.	0.3	5.7	1.2	0.4	35.	12.	4.7	2.0
9. 0.3 5.7 1.2 0.4 $36.$ $12.$ 4.9 2.1 0 27 05 11 75 902 729 08 06 9. 0.3 5.7 1.2 0.4 $38.$ $13.$ 5.0 2.1 5 22 02 09 74 528 201 43 37 10 0.3 1.2 0.4 $40.$ $13.$ 5.1 2.1 .0 17 5.7 07 74 126 66 73 68 10 0.3 5.6 1.2 0.4 $41.$ $14.$ 5.2 2.1 .5 13 98 06 73 696 107 98 96 11 0.3 5.6 1.2 0.4 $43.$ $14.$ 5.4 2.2 .0 09 96 05 73 24 543 18 24 11 0.3 5.6 1.2 0.4 $44.$ $14.$ 5.5 2.2 .5 05 95 04 72 759 969 35 5 12 0.3 5.6 1.2 0.4 $47.$ $15.$ 5.7 2.2 .6 99 94 02 71 727 792 57 99 13 0.2 5.6 1.2 0.4 $49.$ $16.$ 5.8 2.3 .0 95 94 02 71 178 19 63 <	5	33	09	13	/5	246	245	68	/2
0 27 05 11 75 902 729 08 06 9. 0.3 5.7 1.2 0.4 $38.$ $13.$ 5.0 2.1 5 22 02 09 74 528 201 43 37 10 0.3 1.2 0.4 $40.$ $13.$ 5.1 2.1 $.0$ 17 5.7 07 74 126 66 73 68 10 0.3 5.6 1.2 0.4 $41.$ $14.$ 5.2 2.1 $.5$ 13 98 06 73 696 107 98 96 11 0.3 5.6 1.2 0.4 $43.$ $14.$ 5.4 2.2 $.0$ 09 96 05 73 24 543 18 24 11 0.3 5.6 1.2 0.4 $44.$ $14.$ 5.5 2.2 $.0$ 09 96 05 73 24 543 18 24 11 0.3 5.6 1.2 0.4 $44.$ $14.$ 5.5 2.2 $.5$ 05 95 04 72 759 969 35 5 12 0.2 5.6 1.2 0.4 $47.$ $15.$ 5.7 2.2 $.5$ 99 94 02 71 727 792 57 99 13 0.2 5.6 1.2 0.4 $49.$ $16.$	9.	0.3	5.7	1.2	0.4	36.	12.	4.9	2.1
9. 0.3 5.7 1.2 0.4 $38.$ $13.$ 5.0 2.1 5 22 02 09 74 528 201 43 37 10 0.3 1.2 0.4 $40.$ $13.$ 5.1 2.1 $.0$ 17 5.7 07 74 126 66 73 68 10 0.3 5.6 1.2 0.4 $41.$ $14.$ 5.2 2.1 $.5$ 13 98 06 73 696 107 98 96 11 0.3 5.6 1.2 0.4 $43.$ $14.$ 5.4 2.2 $.0$ 09 96 05 73 24 543 18 24 11 0.3 5.6 1.2 0.4 $44.$ $14.$ 5.5 2.2 $.0$ 09 96 05 73 24 543 18 24 11 0.3 5.6 1.2 0.4 $44.$ $14.$ 5.5 2.2 $.5$ 05 95 04 72 759 969 35 5 12 0.3 5.6 1.2 0.4 $47.$ $15.$ 5.7 2.2 $.0$ 02 95 03 72 254 385 48 75 12 0.2 5.6 1.2 0.4 $47.$ $15.$ 5.7 2.2 $.5$ 99 94 02 71 727 792	0	27	05	11	/5	902	/29	08	06
522020974528201433710 0.3 1.2 0.4 40. $13.$ 5.1 2.1 .0 17 5.7 07 74 126 66 73 68 10 0.3 5.6 1.2 0.4 $41.$ $14.$ 5.2 2.1 .5 13 98 06 73 696 107 98 96 11 0.3 5.6 1.2 0.4 $43.$ $14.$ 5.4 2.2 .0 09 96 05 73 24 543 18 24 11 0.3 5.6 1.2 0.4 $44.$ $14.$ 5.5 2.2 .5 05 95 04 72 759 969 35 5 12 0.3 5.6 1.2 0.4 $46.$ $15.$ 5.6 2.2 .0 02 95 03 72 254 385 48 75 12 0.2 5.6 1.2 0.4 $47.$ $15.$ 5.7 2.2 .5 99 94 02 71 727 792 57 99 13 0.2 5.6 1.2 0.4 $49.$ $16.$ 5.8 2.3 .0 95 94 02 71 178 19 63 22 13 0.2 5.6 1.2 0.4 $50.$ $16.$ 5.9 2.3 .	9. -	0.3	5.7	1.2	0.4	38. 520	13.	5.0	2.1
10 0.3 1.2 0.4 $40.$ $13.$ 5.1 2.1 $.0$ 17 5.7 07 74 126 66 73 68 10 0.3 5.6 1.2 0.4 $41.$ $14.$ 5.2 2.1 $.5$ 13 98 06 73 696 107 98 96 11 0.3 5.6 1.2 0.4 $43.$ $14.$ 5.4 2.2 $.0$ 09 96 05 73 24 543 18 24 11 0.3 5.6 1.2 0.4 $44.$ $14.$ 5.5 2.2 $.5$ 05 95 04 72 759 969 35 5 12 0.3 5.6 1.2 0.4 $46.$ $15.$ 5.6 2.2 $.0$ 02 95 03 72 254 385 48 75 12 0.2 5.6 1.2 0.4 $47.$ $15.$ 5.7 2.2 $.5$ 99 94 02 71 727 792 57 99 13 0.2 5.6 1.2 0.4 $49.$ $16.$ 5.8 2.3 $.0$ 95 94 02 71 178 19 63 22 13 0.2 5.6 1.2 0.4 $50.$ $16.$ 5.9 2.3 $.5$ 93 94 01 7 608	5	22	02	09	74	528	201	43	3/
.0 17 5.7 07 74 126 66 73 68 10 0.3 5.6 1.2 0.4 $41.$ $14.$ 5.2 2.1 .5 13 98 06 73 696 107 98 96 11 0.3 5.6 1.2 0.4 $43.$ $14.$ 5.4 2.2 .0 09 96 05 73 24 543 18 24 11 0.3 5.6 1.2 0.4 $44.$ $14.$ 5.5 2.2 .5 05 95 04 72 759 969 35 5 12 0.3 5.6 1.2 0.4 $46.$ $15.$ 5.6 2.2 .0 02 95 03 72 254 385 48 75 12 0.2 5.6 1.2 0.4 $47.$ $15.$ 5.7 2.2 .5 99 94 02 71 727 792 57 99 13 0.2 5.6 1.2 0.4 $49.$ $16.$ 5.8 2.3 .0 95 94 02 71 178 19 63 22 13 0.2 5.6 1.2 0.4 $50.$ $16.$ 5.9 2.3 .5 93 94 01 7 608 58 67 44 14 0.2 5.6 1.2 0.4 $52.$ $16.$ 6.0 </td <td>10</td> <td>17</td> <td>г 7</td> <td>1.2</td> <td>0.4 74</td> <td>40. 126</td> <td>13. cc</td> <td>5.1 72</td> <td>2.1 C0</td>	10	17	г 7	1.2	0.4 74	40. 126	13. cc	5.1 72	2.1 C0
10 0.3 5.6 1.2 0.4 $41.$ $14.$ 5.2 2.1 $.5$ 13 98 06 73 696 107 98 96 11 0.3 5.6 1.2 0.4 $43.$ $14.$ 5.4 2.2 $.0$ 09 96 05 73 24 543 18 24 11 0.3 5.6 1.2 0.4 $44.$ $14.$ 5.5 2.2 $.5$ 05 95 04 72 759 969 35 5 12 0.3 5.6 1.2 0.4 $46.$ $15.$ 5.6 2.2 $.0$ 02 95 03 72 254 385 48 75 12 0.2 5.6 1.2 0.4 $47.$ $15.$ 5.7 2.2 $.5$ 99 94 02 71 727 792 57 99 13 0.2 5.6 1.2 0.4 $49.$ $16.$ 5.8 2.3 $.0$ 95 94 02 71 178 19 63 22 13 0.2 5.6 1.2 0.4 $50.$ $16.$ 5.9 2.3 $.5$ 93 94 01 7 608 58 67 44 14 0.2 5.6 1.2 0.4 $52.$ $16.$ 6.0 2.3 $.0$ 9 94 7 019 9	.0	1/	5.7	1.2	74	120	14	73	2 1
.3139800730901079890110.35.61.20.443.14.5.42.2.009960573245431824110.35.61.20.444.14.5.52.2.505950472759969355120.35.61.20.446.15.5.62.2.0029503722543854875120.25.61.20.447.15.5.72.2.5999402717277925799130.25.61.20.449.16.5.82.3.095940271178196322130.25.61.20.450.16.5.92.3.59394017608586744140.25.61.20.452.16.6.02.3.099470199626766	10	0.5 12	0.0 00	1.2	0.4 72	41. 606	14. 107	5.Z	2.1
11 0.3 3.6 1.2 0.4 $43.$ $14.$ 5.4 2.2 .009960573245431824110.3 5.6 1.2 0.4 44.14. 5.5 2.2 .50595047275996935 5 120.3 5.6 1.2 0.4 46.15. 5.6 2.2 .0029503722543854875120.2 5.6 1.2 0.4 47.15. 5.7 2.2 .599940271727792 57 9913 0.2 5.6 1.2 0.4 49.16. 5.8 2.3 .095940271 178 19632213 0.2 5.6 1.2 0.4 $50.$ 16. 5.9 2.3 .59394017 608 58 67 44 14 0.2 5.6 1.2 0.4 $52.$ 16. 6.0 2.3 .09947 019 962 67 66	.J 11	1.2	56	1 2	0.4	12	107	5 /	20
10 05 50 05 75 24 545 10 24 11 0.3 5.6 1.2 0.4 $44.$ $14.$ 5.5 2.2 $.5$ 05 95 04 72 759 969 35 5 12 0.3 5.6 1.2 0.4 $46.$ $15.$ 5.6 2.2 $.0$ 02 95 03 72 254 385 48 75 12 0.2 5.6 1.2 0.4 $47.$ $15.$ 5.7 2.2 $.5$ 99 94 02 71 727 792 57 99 13 0.2 5.6 1.2 0.4 $49.$ $16.$ 5.8 2.3 $.0$ 95 94 02 71 178 19 63 22 13 0.2 5.6 1.2 0.4 $50.$ $16.$ 5.9 2.3 $.5$ 93 94 01 7 608 58 67 44 14 0.2 5.6 1.2 0.4 $52.$ $16.$ 6.0 2.3 $.0$ 9 94 7 019 962 67 66	0	0.5	96	05	73	4J. 2/I	14. 5/13	18	2.2
11 0.3 3.6 1.2 0.4 $44.$ $14.$ 5.5 2.2 .5 05 95 04 72 759 969 35 5 12 0.3 5.6 1.2 0.4 $46.$ $15.$ 5.6 2.2 .0 02 95 03 72 254 385 48 75 12 0.2 5.6 1.2 0.4 $47.$ $15.$ 5.7 2.2 .5 99 94 02 71 727 792 57 99 13 0.2 5.6 1.2 0.4 $49.$ $16.$ 5.8 2.3 .0 95 94 02 71 178 19 63 22 13 0.2 5.6 1.2 0.4 $50.$ $16.$ 5.9 2.3 .5 93 94 01 7 608 58 67 44 14 0.2 5.6 1.2 0.4 $52.$ $16.$ 6.0 2.3 .0 9 94 7 019 962 67 66	11	03	5.6	1 2	01	<u></u> //	1/	55	27
1.5 0.5 5.5 0.4 7.2 7.55 5.65 5.5 5.5 12 0.3 5.6 1.2 0.4 $46.$ $15.$ 5.6 2.2 $.0$ 02 95 03 72 254 385 48 75 12 0.2 5.6 1.2 0.4 $47.$ $15.$ 5.7 2.2 $.5$ 99 94 02 71 727 792 57 99 13 0.2 5.6 1.2 0.4 $49.$ $16.$ 5.8 2.3 $.0$ 95 94 02 71 178 19 63 22 13 0.2 5.6 1.2 0.4 $50.$ $16.$ 5.9 2.3 $.5$ 93 94 01 7 608 58 67 44 14 0.2 5.6 1.2 0.4 $52.$ $16.$ 6.0 2.3 $.0$ 9 94 7 019 962 67 66	5	0.5	95	04	72	759	969	35	5
.0 02 95 03 72 254 385 48 75 12 0.2 5.6 1.2 0.4 $47.$ $15.$ 5.7 2.2 $.5$ 99 94 02 71 727 792 57 99 13 0.2 5.6 1.2 0.4 $49.$ $16.$ 5.8 2.3 $.0$ 95 94 02 71 178 19 63 22 13 0.2 5.6 1.2 0.4 $50.$ $16.$ 5.9 2.3 $.5$ 93 94 01 7 608 58 67 44 14 0.2 5.6 1.2 0.4 $52.$ $16.$ 6.0 2.3 $.0$ 9 94 7 019 962 67 66	12	03	5.6	12	0.4	46	15	5.6	22
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.0	02	95	03	72	254	385	48	75
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	0.2	5.6	1.2	0.4	47.	15.	5.7	2.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.5	99	94	02	71	727	792	57	99
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	0.2	5.6	1.2	0.4	49.	16.	5.8	2.3
13 0.2 5.6 1.2 0.4 50. 16. 5.9 2.3 .5 93 94 01 7 608 58 67 44 14 0.2 5.6 1.2 0.4 52. 16. 6.0 2.3 .0 9 94 7 019 962 67 66	.0	95	94	02	71	178	19	63	22
.5 93 94 01 7 608 58 67 44 14 0.2 5.6 1.2 0.4 52. 16. 6.0 2.3 .0 9 94 7 019 962 67 66	13	0.2	5.6	1.2	0.4	50.	16.	5.9	2.3
14 0.2 5.6 1.2 0.4 52. 16. 6.0 2.3 .0 9 94 7 019 962 67 66	.5	93	94	01	7	608	58	67	44
.0 9 94 7 019 962 67 66	14	0.2	5.6	1.2	0.4	52.	16.	6.0	2.3
	.0	9	94		7	019	962	67	66

3.5 Entropy

The Rényi entropy is defined using $(\nu > 0, \nu \neq 1)$: 1 $[c^{\infty}]$

$$I_R(\nu) = \frac{1}{1-\nu} \log \left[\int_0^\infty f^{\nu}(x) dx \right].$$

Using (2.2), the following expression is obtained:

$$\int_{0}^{\infty} f^{\nu}(x) dx$$

= $\left(\frac{4 \mu}{\pi \eta^{2}}\right)^{\nu} \int_{0}^{\infty} x^{\nu} e^{-\nu \frac{x}{\eta}} \frac{\left[1 - \left(1 + \frac{x}{\eta}\right) e^{-\frac{x}{\eta}}\right]^{\nu(\mu-1)}}{\left[1 + \left[1 - \left(1 + \frac{x}{\eta}\right) e^{-\frac{x}{\eta}}\right]^{2\mu}\right]^{\nu}} dx.$

Using the same procedure employed for the useful expansion (8) and performing by some simplifications, the following expression is obtained:

$$\int_0^\infty f^{\nu}(x)dx = \sum_{k=0}^\infty \varpi_k^* \int_0^\infty x^{\nu+k} e^{-(\nu+j)\frac{x}{\eta}} dx$$
$$= \sum_{k=0}^\infty \varpi_k^* \Gamma(\nu+k+1),$$

Where

$$\varpi_k^* = \left(\frac{4\,\mu}{\pi\,\eta}\right)^{\nu} \sum_{i,j=0}^{\infty} (-1)^{i+j} {-\nu \choose i} {\mu(2i+\nu)-\nu \choose j} {j \choose k} \left(\frac{1}{\nu+j}\right)^{\nu+k}.$$
Thus

Thus,

$$I_{R}(\nu) = \frac{1}{1-\nu} \log \left\{ \sum_{k=0}^{\infty} \varpi_{k}^{*} \Gamma(\nu+k+1) \right\}.$$
 (17)

Some numerical results of $I_R(\nu)$ for the TCP-LBEX distribution for some choices of parameter η and μ are listed in Table 2.

Table 2. Some numerical results of Rényi entropy for the TCP-LBEX model.

η	μ	$\nu = 0.5$	$\nu = 1.5$	$\nu = 3.0$
	0.5	0.028	0.09	0.354
	1.0	0.19	0.266	0.451
	1.5	0.238	0.311	0.485
0.5	2.0	0.258	0.33	0.501
	2.5	0.269	0.34	0.51
	3.0	0.275	0.346	0.516
	3.5	0.279	0.35	0.52
	0.5	0.574	0.692	0.956
	1.0	0.792	0.868	1.054
	1.5	0.84	0.913	1.087
2.0	2.0	0.86	0.932	1.103
	2.5	0.871	0.942	1.112
	3.0	0.877	0.948	1.118
	3.5	0.881	0.952	1.122

_

The numerical values in Table 2 belong to [0.028, 1.122]; this indicates that η and μ have an important impact on the amount of information.

4 Parameter Estimation

The MLE technique is utilized in this section to estimate the unknown parameters of the TCP-LBEX distribution. Suppose that x_1, \ldots, x_n be an *n*th random sample from the specified distribution (7). The TCP-LBEX distribution's log-likelihood function (LLF) is supplied by

$$L_{n} = n \log\left(\frac{4}{\pi}\right) + n \log(\mu) - 2n \log(\eta) + \sum_{i=1}^{n} x_{i} - \sum_{i=1}^{n} \frac{x_{i}}{\eta} + (\mu - 1) \sum_{i=1}^{n} \log\left[1 - \left(1 + \frac{x}{\eta}\right)e^{-\frac{x}{\eta}}\right] + \sum_{i=1}^{n} \log\left[1 + \left[1 + \left[1 + \left(1 + \frac{x}{\eta}\right)e^{-\frac{x}{\eta}}\right]^{2\mu}\right]\right].$$
(18)

The LLF in equation (18) can be computed by differentiating (18) regards to μ and η :

$$\frac{\partial L_n}{\partial \mu} = \frac{n}{\mu} + \sum_{i=1}^n \log\left[1 - \left(1 + \frac{x_i}{\eta}\right)e^{-\frac{x_i}{\eta}}\right]$$

$$-2 \mu \sum_{i=1}^{n} \frac{\left[1 - \left(1 + \frac{x_i}{\eta}\right)e^{-\frac{x_i}{\eta}}\right]^{2\mu} \log\left[1 - \left(1 + \frac{x_i}{\eta}\right)e^{-\frac{x_i}{\eta}}\right]}{1 + \left[1 - \left(1 + \frac{x_i}{\eta}\right)e^{-\frac{x_i}{\eta}}\right]^{2\mu}}$$

= 0, (19)

and

$$\frac{\partial L_n}{\partial \eta} = \frac{-2n}{\eta} + \sum_{i=1}^n \frac{x_i}{\eta^2} + (\mu)$$
$$-1) \sum_{i=1}^n \frac{\frac{x_i}{\eta}(2 + \frac{x_i}{\eta})e^{-\frac{x_i}{\eta}}}{1 - (1 + \frac{x_i}{\eta})e^{-\frac{x_i}{\eta}}}$$

Naiwan Alsadat

$$-2 \mu \sum_{i=1}^{n} \frac{\left[1 - \left(1 + \frac{x_i}{\eta}\right)e^{-\frac{x_i}{\eta}}\right] - \frac{x_i}{\eta}\left(2 + \frac{x_i}{\eta}\right)e^{-\frac{x_i}{\eta}}}{1 + \left[1 - \left(1 + \frac{x_i}{\eta}\right)e^{-\frac{x_i}{\eta}}\right]^{2\mu}} = 0, \qquad (20)$$

respectively. The MLEs of the parameters μ and η are denoted by $\hat{\mu}$ and $\hat{\eta}$ and are obtained by solving the above last system of equations (19) and (20). It is commonly more convenient to employ nonlinear optimization techniques, like the quasi-Newton approach, to numerically optimize the sample likelihood function.

4.1 Simulation Study

In this section, a simulation study has been conducted to illustrate the MLEs of η and μ for the TCP-LBEX model. The estimates are assessed and compared based on the root mean square errors (RMSErs). For this purpose, the following algorithm is adopted.

Step 1: A random sample of size n = 50, 100, 200,300, 500, 700, and 1000 are generated from the TCP-LBEX distribution.

Step 2: The parameter values are considered as set 1: $(\eta = 0.5, \mu = 0.5)$, set 2: $(\eta = 0.5, \mu =$ 1.5), set 3: ($\eta = 0.5, \mu = 2.0$), and set 4: $(\eta =$ $1.5, \mu = 1.5$).

Step 3: For the selected values of parameters and each sample of size *n*, the MLEs are calculated.

Step 4: Steps 1-3 are repeated, and N = 10000 times, representing various samples.

Step 5: The outcomes of the simulation study are presented in Table 3 and Table 4.

Table 3. MLEs and RMSEr of the TCP-LBEX distribution for set 1 and set 2

distribution for set 1 and set 2										
n	set	t 1	set 2							
	MLE RMSEr		MLE	RMSEr						
50	0.519876	0.010675	0.549776	0.015231						
20	0.583619	0.096384	1.763210	0.652452						
100	0.519020	0.006504	0.526846	0.006895						
100	0.580228	0.050699	1.731120	0.467523						
200	0.507657	0.002476	0.512182	0.002960						
200	0.532262	0.013490	1.621920	0.109372						
300	0.506596	0.001206	0.501286	0.001231						
200	0.504893	0.006243	1.561980	0.063621						
500	0.503032	0.000785	0.501934	0.000863						
500	0.510978	0.003014	1.488500	0.028265						
700	0.503911	0.000366	0.504906	0.000489						
700	0.505968	0.001960	1.527870	0.024482						
1000	0.502257	0.000234	0.500685	0.000212						
1000	0.499607	0.001162	1.505420	0.007254						

Table 4. MLEs and RMSEr of the TCP-LBEX distribution for set 3 and set 4

n	se	t 3	set 4			
11	MLE	RMSEr	MLE	RMSEr		
50	0.536645	0.013190	1.504310	0.032153		
•••	2.312980	1.042390	1.507250	0.037610		
100	0.514007	0.004442	1.518710	0.010780		
100	2.160900	0.424585	1.521170	0.013241		
200	0.506586	0.003029	1.505840	0.003223		
200	2.009150	0.119023	1.505360	0.003831		
300	0.502757	0.001286	1.501350	0.001183		
200	2.000800	0.090311	1.500930	0.001369		
500	0.505382	0.000974	1.503320	0.000541		
200	2.071520	0.064444	1.503850	0.000738		
700	0.502108	0.000509	1.502030	0.000213		
700	2.036330	0.042179	1.501890	0.000286		
1000	0.500067	0.000247	1.498890	0.000053		
1000	2.019420	0.016566	1.498660	0.000069		

From the above Table 3 and Table 4, the RMSErs of the TCP-LBEX model decrease when *n* increase.

5 Applications

In this section, we used two real-world data sets to compare the TCP-LBEX model to several other known competing models like; the LBEX model, Burr X-EX (BrXEX) model, Marshall–Olkin EX (MOEX) model, Kumaraswamy Marshall–Olkin EX (KMOEX) model, Kumaraswamy EX (KEX) model, beta EX (BEX) model, generalized Marshall–Olkin EX (GMOEX) model, EX model and Marshall–Olkin Kumaraswamy EX (MOKEX) model) in this part to highlight its usefulness in data modeling. To estimate the parameters of the competing models, the MLE approach is employed. To choose the optimal model, the K1, K2, K3, K4, K5, K6, K7, and K8model selection criteria and goodness of fit tests are utilized.

The first Data set: This data set contains the survival periods (in days) of 72 guinea pigs infected with virulent tubercle bacilli, [40]. For the first data set, MLEs and standard errors (SErs) are computed. Table 5 shows the numerical results of MLEs and the SErs for all competitive models for the first data set. Based on the numerical numbers in Table 6 and the information in Figure 3, we can conclude that the TCP-LBEX model provides the best fit for the first data set because the TCP-LBEX model has the lowest numerical value in K1, K2, K3, K4, K5, K6, K7 but has the largest value in K8.

Мо	MLEs	5			SErs			
dels								
ТСР	0.7	1.66			0.0	0.30		
-	81	5			92	1		
LBE								
х								
(η,μ)								
LBE	0.9				0.0			
Х	25				76			
(η)	2				8			
BrX	0.4	0.20			0.0	0.01		
EX	75	55			60	2		
(η,μ)								
МО	8.7	1.37			3.5	0.19		
EX	78	9			55	3		
(η,μ)								
КМ	0.3	3.47	3.3	0.2	0.1	0.86	0.7	1.1
OEX	73	82	06	99	35	2	81	13
(η,	1		3	0	8			
δ, γ,								
μ)								
KEX	3.3	1.10	1.0		1.1	0.76	0.6	
(δ,	04	02	37		06	42	14	
γ,	1		1		1		1	
μ)								
BEX	0.8	3.46	1.3		0.6	1.00	0.8	
(δ,	07	12	31		96	32	55	
γ,	3		1		1		1	
β)								
GM	0.1	47.6	4.4		0.0	44.9	1.3	
OEX	78	350	65		70	011	27	
(λ,	9		2		2		0	
α,								
μ)								
EX	0.5				0.0			
(η)	40				63			
мо	0.0	2.71	1.9	0.0	0.0	1.31	0.7	0.0
KEX	08	62	86	99	02	58	83	48
(η,	1		1	2	1		9	1
δ, γ,								
μ)								

Table 6. Numerical values of K1, K2, K3, K4,

K5, K6, K7, and K8 for the first data set.											
Mod	K1	K2	К3	К4	К5	К6	K7	K8			
els											
TCP-	191.	191.	191.	193.	0.	0.	0.	(0.6			
LBEX	60	31	77	41	08	48	09	35)			
LBEX	210.	212.	210.	211.	0.	1.	0.	(0.1			
	40	68	45	30	25	52	14	30)			
BrXE	235.	239.	235.	237.	0.	2.	0.	(0.0			
Х	30	90	50	10	52	90	22	02)			
MOE	210.	214.	210.	212.	0.	1.	0.	(0.4			
Х	36	92	53	16	17	18	10	30)			
KM	207.	216.	208.	211.	0.	0.	0.	(0.5			
OEX	82	94	42	42	11	61	09	30)			
KEX	209.	216.	209.	212.	0.	0.	0.	(0.5			
	42	24	77	12	11	74	09	00)			
BEX	207.	214.	207.	210.	0.	0.	0.	(0.3			
	38	22	73	08	15	98	11	40)			
GM	210.	217.	210.	213.	0.	1.	0.	(0.5			
OEX	54	38	89	24	16	02	09	10)			
EX	234.	236.	234.	235.	1.	6.	0.	(0.0			
	63	91	68	54	25	53	27	60)			
MO	209.	218.	210.	213.	0.	0.	0.	(0.4			
KEX	44	56	04	04	12	79	10	40)			

Fig. 3: Fitted cdf, pdf, and pp plots for the first data set

The second data set: This data collection contains information from 20 individuals and consists of histories pertaining to relief periods (in minutes) for patients who have taken an analgesic, [41]. Table 7 shows the numerical results of MLEs and the SErs for all competitive models for the second data set. Based on the numerical numbers in Table 8 and the information in Figure 4, we can conclude that the TCP-LBEX provides the best fit for the second data set because the TCP-LBEX model has the lowest numerical value in K1, K2, K3, K4, K5, K6, K7 but has the largest value in K8.

Table 7. MLEs and SErs for the second data set.

					1			
Mo	MLEs				SErs			
	0 /1	117			0.07	6.02		
TCP	0.41	11.7			0.07	0.95		
-	3	14			/	9		
LBE								
X								
(η, μ)	0.05				0.45			
LBE	0.95				0.15			
X	02				01			
(η)								
BrX	1.16	0.32			0.33	0.03		
EX	35	07			0	0		
(η,μ)								
мо	54.4	2.31			35.5	0.37		
EX	74	6			82	4		
(η,μ)								
KM	8.86	34.8	0.2	4.8	9.14	22.3	0.2	3.1
OEX	79	258	989	988	59	119	387	757
(η,								
δ, γ,								
μ)								
KEX	83.7	0.56	3.3		42.3	0.32	1.1	
(δ,	558	79	329		612	61	880	
γ,								
μ)								
BEX	81.6	0.54	3.5		120.	0.32	1.4	
(δ,	333	21	142		410	72	101	
γ, β)								
GM	0.51	89.4	3.1		0.25	66.2	0.7	
OEX	92	623	691		61	782	721	
(λ,								
α,								
μ)								
EX	0.52				0.11			
(η)	6				7			
мо	0.13	33.2	0.5	1.6	0.33	57.8	0.7	1.8
KEX	33	322	711	691	20	371	211	141
(η,								
δ, γ,								
μ)								

Table 8. Numerical values of K1, K2, K3, K4, K5, K6 K7 and K8 for the second data set

Ko, K, and Ko for the second data set.											
Mod	K1	К2	КЗ	К4	К5	К6	K7	K8			
els											
TCP-	36.	35.	37.	36.	0.	0.	0.	(0.9			
LBEX	43	03	14	82	06	35	13	0)			
LBEX	54.	55.	54.	54.	0.	2.	0.	(0.0			
	32	31	54	50	53	76	32	7)			
BrXE	48.	50.	48.	48.	0.	1.	0.	(0.1			
Х	10	10	80	50	24	39	25	7)			
MO	43.	45.	44.	43.	0.	0.	0.	(0.5			
EX	51	51	22	90	14	80	18	5)			
KM	42.	46.	45.	43.	0.	0.	0.	(0.8			
OEX	80	84	55	60	19	08	15	6)			
KEX	41.	44.	43.	42.	0.	0.	0.	(0.8			
	78	75	28,	32	07	45	14	6)			
BEX	43.	46.	44.	44.	0.	0.	0.	(0.8			
	48	45	98	02	12	70	16	0)			
GM	42.	45.	44.	43.	0.	0.	0.	(0.7			
OEX	75	74	25	34	08	51	15	8)			
EX	67.	68.	67.	67.	0.	4.	0.	(0.0			
	67	67	89	87	96	60	44	04)			
MO	41.	45.	44.	42.	0.	0.	0.	(0.8			
KEX	58	54	25	30	11	60	14	7)			

Fig. 4: Fitted cdf, pdf, and pp plots for the second data set

6 Conclusion

A new two-parameter model named the TCP-LBEX model was proposed. Some of the statistical properties of the TCP-LBEX model were investigated. The maximum likelihood estimator of the TCP-LBEX model was derived. Monto Carlo simulations are used to assess the behavior of parameters. Using two real data sets, the proposed model achieved better goodness of fit than some of the other competitive models. The limitation of our work is that we only used the complete samples and maximum likelihood method to estimate the parameters of the suggested model. For future directions, the other authors can estimate the parameters of the suggested model using different methods of estimation and utilizing different censored schemes.

References:

- [1] Alzaatreh, A., Lee, C., and Famoye, F., A new method for generating families of continuous distributions. *Metron*, 71, 2013, P 63–79.
- [2] Haq, M., and Elgarhy, M., The odd Fréchet- G family of probability distributions. J. Stat. Appl. Probab. 7, 2018, P 189–203.
- [3] Cordeiro, G. M., and Castro, M., A new family of generalized distributions. *Journal of Statistical Computation and Simulation*, 81(7), 2011, P 883– 898.
- [4] Afify, A.Z. and Alizadeh, M., The odd Dagum family of distributions: properties and applications. *J. Appl. Probab. Stat.*, 15, 2020, P 45-72.
- [5] Nadia, H. A., and Lamyaa, K. H., Weighted exponential-G family of probability distributions. *Saudi J. Eng. Technol.*, 3(2), 2018, P 51–59.
- [6] Mahdavi, A., Kundu, D., A new method for generating distributions with an application to exponential distribution. *Commun. Stat.-Theory Methods*, 46, 2017, P 6543–6557.
- [7] Bakouch, H. S., Chesneau, C., and Enany, M. G., A new weighted exponential distribution as an alternative to the Weibull distribution and its fit to reliability data. *International Journal of Data Science*, 6(3), 2021, P 223–240.
- [8] Nassar, M., Kumar, D., Dey, S., Cordeiro, G.M. and Afify, A.Z., The Marshall-Olkin alpha power family of distributions with applications. *Journal of Computational and Applied Mathematics*, 351, 2019, P 41-53.
- [9] Bantan, R.A., Jamal, F., Chesneau, C., Elgarhy, M., Truncated inverted Kumaraswamy generated family of distributions with applications. *Entropy*, 21, 2019, 1089.
- [10] Afify, A.Z., Alizadeh, M., Yousof, H.M., Aryal, G., Ahmad, M., The transmuted geometric-G

family of distributions: Theory and applications. *Pak. J. Statist*, 32, 2016, P 139–160.

- [11] Alizadeh, M., Yousof, H.M., Afify, A.Z., Cordeiro, G.M., Mansoor, M., The complementary generalized transmuted Poisson-G family of distributions. *Austrian J. Stat.* 47, 2018, P 60–80.
- [12] Alizadeh, M., Tahmasebi, S., Haghbin, H., The exponentiated odd log-logistic family of distributions: properties and applications. J Stat Model Theory Appl, 1, 2018, P 1–24.
- [13] Hassan, A.S., Elgarhy, M., and Shakil, M., Type II half Logistic family of distributions with applications. *Pak. J. Stat. Oper. Res.* 13, 2017, P 245–264.
- [14] Al-Shomrani, A., Arif, O., Shawky, K., Hanif, S., Shahbaz, M.Q. Topp-Leone family of distributions: some properties and application. *Pak. J. Stat. Oper.* Res. 12, 2016, P 443–451.
- [15] Alotaibi, N., Elbatal, I., Almetwally, E.M., Alyami, S.A., Al-Moisheer, A.S., Elgarhy, M., Truncated Cauchy Power Weibull-G Class of Distributions: Bayesian and Non-Bayesian Inference Modelling for COVID-19 and Carbon Fiber Data. *Mathematics*. 10, 2022, 1565.
- [16] Cordeiro, G.M., Ortega, E.M.M., Popovi c, B.V., and Pescim, R.R., The Lomax generator of distributions: properties, minification process and regression model. *Appl. Math. Comput.* 247, 2014, P 465–486.
- [17] Algarni, A., MAlmarashi, A., Elbatal, I., Hassan, A.S., Almetwally, E.M., Daghistani, A.M., and Elgarhy, M., Type I half logistic Burr XG family: Properties, Bayesian, and non-Bayesian estimation under censored samples and applications to COVID-19 data. *Math. Probl. Eng.* 2021.
- [18] Hamedani, G.G., Yousof, H.M., Rasekhi, M., Alizadeh, M., Najibi, S.M., Type I general exponential class of distributions. *Pak. J. Stat. Oper. Res.* 14, 2018, P 39–55.
- [19] Al-Babtain, A.A., Elbatal, I., Chesneau, C., Elgarhy, M., Sine Topp-Leone-G family of distributions: Theory and applications. *Open Phys.* 18, 2020, P 74–593.
- [20] Korkmaz, M.Ç., Alizadeh, M., Yousof, H.M., Butt, N.S., The generalized odd Weibull generated family of distributions: statistical properties and applications. *Pak. J. Stat. Oper. Res.* 14, 2018, P 541–556.
- [21] Bantan, R.A., Jamal, F., Chesneau, C., Elgarhy, M., A New Power Topp–Leone Generated Family of Distributions with Applications. *Entropy*, 21, 2019, 1177.
- [22] Korkmaz, M.Ç., Altun, E., Yousof, H.M., Hamedani, G.G., The odd power Lindley generator of probability distributions: properties, characterizations and regression modeling. *Int. J. Stat. Probab.* 8, 2019, P 70–89.
- [23] Mansour, M.M., Abd Elrazik, E.M., Afify, A.Z., Ahsanullah, M., and Altun, E., The transmuted

transmuted-G family: properties and applications. *J. Nonlinear Sci. Appl.* 12, 2019, P 217–229.

- [24] Bantan, R.A., Chesneau, C., Jamal, F., Elgarhy, M., On the Analysis of New COVID-19 Cases in Pakistan Using an Exponentiated Version of the M Family of Distributions. *Mathematics*, 8, 2020, 953.
- [25] Reyad, H., Jamal, F., Othman, S., and Hamedani, G.G., The transmuted Gompertz-G family of distributions: properties and applications. *Tbilisi*. *Math. J.* 11, 2018, P 47–67.
- [26] Badr, M.M., Elbatal, I., Jamal, F., Chesneau, C., and Elgarhy, M., The transmuted odd Fréchet-G family of distributions: Theory and applications. *Mathematics*, 8, 2020, 958.
- [27] Reyad, H., Jamal, F., Othman, S., Hamedani, G.G., The transmuted odd Lindley-G family of distributions. *Asian. J. Probab. Stat.* 1, 2018, P 1– 2526.
- [28] Reyad, H., Alizadeh, M., Jamal, F., and Othman, S., The Topp Leone odd Lindley-G family of distributions: properties and applications. J. Stat. Manag. Syst. 21, 2018, P 1273–1297.
- [29] Brito, E., Cordeiro, G.M., Yousof, H.M., Alizadeh, M., and Silva, G.O. Topp-Leone odd log-logistic family of distributions. J. Stat. Comput. Simul. 87, 2017, P 3040–3058.
- [30] Elbatal, I., Alotaibi, N., Almetwally, E.M., Alyami, S.A., and Elgarhy, M., On Odd Perks-G Class of Distributions: Properties, Regression Model, Discretization, Bayesian and Non-Bayesian Estimation, and Applications. *Symmetry*, 14, 2022, 883.
- [31] Afify, A.Z., Cordeiro, G.M., Yousof, H.M., Alzaatreh, A., Nofal, Z.M. The Kumaraswamy transmuted-G family of distributions: Properties and applications. *J. Data Sci.* 14, 2016, 245–270.
- [32] Aldahlan, M., Jamal, F., Chesneau, C., Elgarhy, M., Elbatal, I., The truncated Cauchy power family of distributions with inference and applications. *Entropy*, 22, 2020, 346.
- [33] Mohamed, R.A.H., Elgarhy, M., Alabdulhadi, M.H., Almetwally, E.M., and Radwan, T., Statistical Inference of Truncated Cauchy Power-Inverted Topp–Leone Distribution under Hybrid Censored Scheme with Applications. *Axioms*, 12, 2023, 148.
- [34] Chaudhary, A.K., Sapkota, L.P., and Kumar, V., Truncated Cauchy Power Inverse Exponential Distribution: Theory and Applications. *IOSR J. Math.* 16, 2020, P 12–23.
- [35] Almarashi, A.M., Truncated Cauchy power Lomax model and its application to biomedical data. *Nanosci. Nanotechnol. Lett.* 12, 2020, P 16– 24.
- [36] Alotaibi, N., Elbatal, I., Almetwally, E.M., Alyami, S.A., Al-Moisheer, A.S., and Elgarhy, M., Truncated Cauchy Power Weibull-G Class of Distributions: Bayesian and Non-Bayesian

Najwan Alsadat

Inference Modelling for COVID-19 and Carbon Fiber Data. *Mathematics*, 10, 2022, 1565.

- [37] Shrahili, M., and Elbatal, I., Truncated Cauchy power odd Fréchet family of distributions: Theory and applications. *Complexity*, 2021, 4256945.
- [38] Dara, S.T., and Ahmad. M., Recent advances in moment distribution and their hazard rates. *Lap Lambert Academic Publishing GmbH KG*. 2012.
- [39] Fisher, R.A., The effects of methods of ascertainment upon the estimation of frequencies. *Annals of Eugenics*, 6(1), 1934, P 13–25.
- [40] Bjerkedal, T., Acquisition of resistance in guinea pigs infected with different doses of virulent tubercle bacilli. *American Journal of Epidemiology*, 72(1), 1960, P 130–48.
- [41] Gross, A.J., and Clark, V.A., Survival distributions: Reliability applications in the biomedical sciences. *John Wiley and Sons*, New York. 1975.

Contribution of Individual Authors to the Creation of a Scientific Article (Ghostwriting Policy)

Najwan Alsadat has written, reviewed, and actively participated in all the publication stages of this manuscript.

Sources of Funding for Research Presented in a Scientific Article or Scientific Article Itself

No funding was received for conducting this study.

Conflict of Interest

The author has no conflict of interest to declare that is relevant to the content of this article.

Creative Commons Attribution License 4.0 (Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative Commons Attribution License 4.0

https://creativecommons.org/licenses/by/4.0/deed.e n_US